pipeline design.pdf

Upload: gilbertotiburcio

Post on 05-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Pipeline Design.pdf

    1/436

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Surface Facilities

    Pipelines Design, Operation and Maintenance

    Leonardo Montero R., M.Sc.

  • 8/16/2019 Pipeline Design.pdf

    2/436

    2

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Engineering Required Before Designing a Pipeline

    Exploration and Production

    Reservoir Geology

    Geoscience Petroleum Engineering

    FacilityEngineering

    PipelineDesign

    Geophysics

    ExplorationGeology

    Drilling

    ReservoirSimulation

    ReservoirDescription

    Reservoir Management

    ProductionManagement

    Well SystemDefinition

    ProcessDefinition

    Pipelines

    Manifolds

    Controls

    HostEngineering

  • 8/16/2019 Pipeline Design.pdf

    3/436

    3

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Pipelines - Terminology

    Flowlines & Gathering Lines  – The lines travelshort distances within an area. They gather productsand move them to processing facilities.

    Flowlines are usually small, e.g. 2- 4 in diameter,and gathering lines bigger (say 4-12” )

    They carry many products, often mixedtogether.

    Feeder Lines - These pipelines move productsfrom processing facilities, storage, etc., to the maintransmission lines

    Typically 6-20 in diameter Carry variety of products, sometimes ‘batched’.

  • 8/16/2019 Pipeline Design.pdf

    4/436

    4

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Pipelines - TerminologyTransmission Lines - These are the main conduits of oil

    and gas transportation.

    These lines can be very large diameter (up to 56 in)

    Natural gas transmission lines deliver to industry or‘distribution’ system.

    Crude oil transmission lines carry different types ofproducts, sometimes batched, to refineries or storage

    Petroleum product lines carry liquids such as refinedpetroleum products or natural gas liquids.

    Distribution Lines - These lines allow local distributionfrom the transmission system.

    These lines can be large diameter, but most are under6 in diameter

  • 8/16/2019 Pipeline Design.pdf

    5/436

    5

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Pipelines - System

    ProductionProductionWells

    PlatformsSurface Facilities

    Transportation DistributionGate Station

    Metering EquipmentCompression Stations

    Metering Equipments

    Compression Station

    IT System

    Drawdown AnalysisLinepacking Analysis

    Wells

    Gathering Pipeline

    Storage

    Commercial

    Residential

    Industrial & Utilities

    Storage Distributors

    Plants

  • 8/16/2019 Pipeline Design.pdf

    6/436

    6

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Oil and Gas Transportation by Pipelines

    Offshore

    Receiving Facilities

    Land PipelineTransmission

    J- TubesRisersProcess Equipment

    Shore Approaches

    Distribution Lines

    Trunk Lines

    Crossings

    WyesTeesHot Taps

    Manifolds

    FlowlinesCables

  • 8/16/2019 Pipeline Design.pdf

    7/436

    7

     S  ch l   um b  er  g er P 

    r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Pipelines are Preferred

    Pipeline is the main mode of transportation for liquid

    and gas, for several reasons: Less damaging to the environment

    Safety: It is the safest the for oil and gastransportation

    Economical: Is the most efficient method totransport high volume

    Reliability

  • 8/16/2019 Pipeline Design.pdf

    8/436

    8

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Pipelines Around the World

    0

    125

    250

    375

    500

    625

    750

    UK Western Europe USA Rest of The World

       L  e  n  g

       t   h   (   M   i   l  e  s

       )

       T   h  o  u  s  a  n

       d  s

    Onshore Gas Trans > 300.000 miles

    Offshore Gas Trans > 6.000 miles

    Onshore Gas Gathering > 21.000 miles

    Offshore Gas Gathering > 6.000 miles

    Onshore Distribution > 1.000.000 miles

    Liquid Trans. Lines > 157.000 miles

  • 8/16/2019 Pipeline Design.pdf

    9/436

    9

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering LinesGathering Lines

  • 8/16/2019 Pipeline Design.pdf

    10/436

    10

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    These lines travel short distances within an

    area.Gathers products and moves them toprocessing facilities.

    Flowlines are usually small, e.g. 2- 4indiameter,

    Gathering lines bigger (say 4-12” )

    They carry many products, often mixedtogether.

    Flowlines and Gathering Lines

  • 8/16/2019 Pipeline Design.pdf

    11/436

    11

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flowlines and Gathering Lines

    Flow Station

    Multiphase Manifold

    Tank Farm

    Multiphase Pipeline

    Oil Pipeline

    LL-33

    LL-3416"-0.375

     1  2  " -  0

    . 4 4

    M-LH-7

    10"-0.365; 31,8%

    12"-0.44; 13,5%

    M-LH-8

    LL-39

    LL-35

    LL-29

    LL-41LL-47

    LL-20

       2   4    "  -

       0 .   3   8

       ;     9   6   0

       0    '    (    1   9

       9   2    ) 

    1   2   "    -  0   . 3   

    7    5   

    1   2   "    -  0   

    . 3   7    5   

     1  2 "  - 0  . 3  7  5  ;  2  0  , 3  %

     v  i   s  i   b  l   e

    24"

    16"

    24"

      1   0   "  -   0 .

      3   6   5

    12"-0.44"; LL-16

     2 0 " - 0. 3 7 5;  5 5 91

     ' (1 9 9 0 )

    Macolla 3

    LL-87

    M-LH-9

    2 4" -0 .3 7 5 ; 2 43 0 '  ( 19 9 3 )

      2 4  " -  0

    . 3  7  5 ;  1

     1 4 3 6  '  (  1

      9  9 3  )

    12"

    16"

    6"

    20" 12"

    Linea de 8" que debe ser

    desactivada

    8"

       6   8   0  4

       '   (   1   9   9   0

       )

      3   8  4   9   '   ( 

      1   9   8   7

       )

       6  3   0   '

       (   1   9   7

       9   )

       6  1   8  4

       '   (   1   9   8   0

       )

      1   5   9   9

       '     (   1   9   9

       0   )

    5   4   6   7    

    '      (    1   9   7    9    )   

    1   1   4   8   '     

     (    1   9   8   8    )   

    4    6    2    1    '      (    1    

    9    8    1     )    

    8   2   6   

    9   '      (    1   

    9   9   0    )   

    Vertical deteriorado (corroido)

     1 3 3 0 '  (  1

     9 8 8 )

     1 0 7 0 '  (  1

     9 8 0 )

    4  6  5 1 '   (  1  9  9  0  )  

        2    7   8    7    '     (  

       1    9    7   4    ) 

        7    7   8    '     (  

       1    9   8   8    ) 

       3    2    7

        2    '     (     1    9    7

       3    ) 

    2  3  2  '   (  1  9  8  8   )  

      5  0  0  ' 

     (  1  9  8  8

      )

     6  7 1  7  '  (  1

      9  9  0  )

     3 6 3 3 '  ( 

     1 9 7 4  )

    1331' (1989)4047' (1977)

    663' (1980)

    6"

       4   2   6    '    ( 

       1   9   8

       8    ) 

       6   1   5    7    ' 

       (    1   9    7

       9    ) 

       1   0   2   8    ' 

       (    1   9   8

       9    ) 

    LL-41(nueva)

                                                                                                                                                                    1                                                                                                                                                                6     

                                                                                                                                                                     "                                                                       -                                                                                                                                                                0                             .

                                                                                                                                                                    3                                                                                                                                                                      7                                                                                                                                                                 5                                                                                                                            ;                                  

                                                                                                                                                                    1                                                                                                                                                                4                                                                                                                                                                0     

                                                                                                                                                                    3                                                                                                                                                                     3                                                                                                                                                                      '

                                                                                                                                                                         (                                                                                                                                                                                                                1                                                                                                                                                                9     

                                                                                                                                                                    9                                                                                                                                                                     6                                                                                                                                                                          )                                                

    1            6            "            -      0            .  3            8               ;         

    6            2            0            0            '               (             

    1            9            9            5            

        )            

    4000'

    LL-83

    LL-37

    2     4     "     -   0     

    . 3     7     5      ;    2     

    0     0     0     0     '       (      1     

    9     8     6       )     

      1  6   "  ;    5

      0  0  0   '

       (   1   9   9

      6   )

          1      6       "   -

           0 .       3

           7       5

         ;         5       0       8       0       '       (        1

           9       9      6

            )  

    Grapa a nivel sublacustre

    Grapa colocada para corregir

    corrosión en vertical.

    Oil Manifold

  • 8/16/2019 Pipeline Design.pdf

    12/436

    12

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    FS-5-9FS-1-8

    FS 21-5

    FS 2-6

    FS 16-5

    FS 9-5

    FS 1-5FS 22-5

    FS 5-6

    PE 8-3

    PA

    EM-2

    EM-1

    GasPlant

    PC-VII

    GasPlant

    Gas

    Plant

    FS-23-5

    MG-CL-1

    High Pressure System

    Low Pressure System

    Evaluation with Simulators:

    *Pipephase, Stationary State* Pipesim, Stationary State* TGNET, Dynamic State

    Equations:Bernoulli*Beggs & Brill * Moody o Darcy*Weymouth* Panhandle A/B

    * AGA

    Gas Gathering System: Example

    The gas gathering system consists of several interconnected pipelines withdiameter between 4 and 12 inches and low pressure line (< 500 psi).

  • 8/16/2019 Pipeline Design.pdf

    13/436

    13

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gas Gathering System: Types

    The smallest gathering system consists simply of two

    or more gas wells interconnected by piping and tied

    directly into a distribution system.

    For large fields and for several interconnected fields

    involving hundreds of miles of piping, gathering

    systems may include such equipment as drips,

    separators, meters, heaters, dehydrators, gasoline

    plant, sulfur plant, cleaners and compressors, as wellas piping and valves.

  • 8/16/2019 Pipeline Design.pdf

    14/436

    14

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gas Gathering System: Types

    Axial Gathering SystemIn the axial gathering system, several

    wells produce into a common flowline.

    Flowlines

    Wellhead

    Header

  • 8/16/2019 Pipeline Design.pdf

    15/436

    15

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gas Gathering System: Types

    Radial Gathering SystemFlowlines emanating from several different wellheads

    converge to a central point where facilities are located.

    Flowlines are usually terminated at a header, which is

    essentially a pipe large enough to handle the flow of all

    the flowlines

    Wellhead

    Compression Station

  • 8/16/2019 Pipeline Design.pdf

    16/436

    16

     S  ch l   um b  er  g er P r 

    i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gas Gathering System: Types

    Wellhead

    Loop Gathering System

    CompressionStation

    Separator

  • 8/16/2019 Pipeline Design.pdf

    17/436

    17

     S  ch l   um b  er  g er P r 

    i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Well Center 

    Well Center Gathering System

    Central Gathering Section

    Well Center

    The well center gathering system uses radial philosophyat the local level for individual wells, brings all theflowlines to a central header

  • 8/16/2019 Pipeline Design.pdf

    18/436

    18

     S  ch l   um b  er  g er P r 

    i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Trunk Line

    Uses an axialgathering scheme for

    the groups of wells.Uses several remoteheaders to collectfluid.Is more applicable to

    relatively largeleases, and no caseswhere it isundesirable orimpractical to build

    the field processingfacilities at a centralpoint.

    Trunk Line

    Well Head

    Header

  • 8/16/2019 Pipeline Design.pdf

    19/436

    19

     S  ch l   um b  er  g er P r 

    i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Decision

    The choice between the gathering systems

    is usually economic.The cost of the several small sections ofpipe in well-center system is compared tothe cost of single large pipe for the trunk-

    line system.

    Technical feasibility may be anothercriterion.

    The production characteristics of the field

  • 8/16/2019 Pipeline Design.pdf

    20/436

    20

     S  ch l   um b  er  g er P r 

    i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Pipeline System

    Series Pipelines

    LA LB LC

    A B C

    Looped Pipelines Loopless Pipeline Systems

    q1

    q2 q3 qn-1 qnqn + 1

    p1 p2 p3 pn-1 pn pn+1

    NCE

    1 2 3 n-1 n n+1Nodenumber

    pressure

    1 2 3 n-1 nA

    B

    C

    LA LC

    Parallel Pipelines

    A

    B

    C

  • 8/16/2019 Pipeline Design.pdf

    21/436

  • 8/16/2019 Pipeline Design.pdf

    22/436

  • 8/16/2019 Pipeline Design.pdf

    23/436

    23

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Pipeline System

    Looped pipeline: Alooped pipeline is one in

    which only a part of the linehas a parallel segment. Theoriginal pipeline is looped tosome distance with anotherline to increase the flowcapacity.Le = LC + (Le )AB

    Looped pipelines

    A

    B

    C

    LA LC

  • 8/16/2019 Pipeline Design.pdf

    24/436

    24

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Pipeline System

    Loopless Pipelines : Aloopless pipeline system,

    defined as one where theNCE's (node connectingelements) joined by nodesform no closed loop

    Loopless Pipelines

    q1

    q2 q3 qn-1 qnqn + 1

    p1 p2 p3 pn-1 pn pn+1

    NCE

    1 2 3 n-1 n n+1Nodenumber

    pressure

    1 23 n-1 n

  • 8/16/2019 Pipeline Design.pdf

    25/436

    25

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gathering System: Equations for Complex Gas Flow

  • 8/16/2019 Pipeline Design.pdf

    26/436

  • 8/16/2019 Pipeline Design.pdf

    27/436

    27

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    Fluid is defined as a single phase of gas or liquid or both.Each sort of flow results in a pressure drop.

    Three categories of fluid flow: vertical, inclined andhorizontal

    Overall production system

  • 8/16/2019 Pipeline Design.pdf

    28/436

    28

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    Possible Pressure Losses Possible Pressure Losses ∆∆∆∆∆∆∆∆pp88== PPwhwh--PPsepsep

    PPwfswfs--PPwfwf == ∆∆∆∆∆∆∆∆pp22

    P P m m  P P e e P P wfs wfs P P wf wf 

    Pur

    Puv

    Pdv

    P wh  P ds P P sep sep 

    Gas Flowlines

    Separator

    Tanks

    Reservoir

    Flowlines

    Well

    ∆∆∆∆∆∆∆∆pp11=P=Pmm--PPwfswfs

    ∆∆∆∆∆∆∆∆pp33== PPurur--PPdrdr

    ∆∆∆∆∆∆∆∆pp44== PPuvuv--PPdvdv

    Pdr

    ∆∆∆∆∆∆∆∆pp66== PPdsds--PPsepsepPPwhwh--PPdsds == ∆∆∆∆∆∆∆∆pp55

          ∆      ∆∆      ∆      ∆      ∆∆      ∆  p  p   7   7  =  =   P   P  w   f  w   f  -  -   P   P  w   h  w   h

    Surface Choke

    Safety Valves

    Bottom Hole

    Restricción

    ∆∆∆∆p1=Pm- Pwfs Loss in porous medium∆∆∆∆p2=Pwfs- Pwf Loss across completion∆∆∆∆p3=Pur- Pdr Loss across restrictions∆∆∆∆p4=Puv- Pdv Loss across safety valves∆∆∆∆p5=Pwh- Pds Loss across surface choke

    ∆∆∆∆p6=Pds- Psep Loss in flowlines∆∆∆∆p7=Pwf- Pwh Total loss in tubing∆∆∆∆p8=Pwh- Psep Total loss in flowlines

    Source: Handbook of Petroleum and Gas Engineering, William Lyons

  • 8/16/2019 Pipeline Design.pdf

    29/436

    29

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    Production Pressure Profile Production Pressure Profile 

    Source: Handbook of Petroleum and Gas Engineering, William Lyons

    Reservoir Tubing Flowline Transfer Line

    DrainageBoundary

    Wellbore(Perforations)

    Wellhead &Choke Separator

    StockTank

       P  r  e

      s  s  u  r  e

    ro W

    Pwf

    Po

    Pwf

    PspPST

  • 8/16/2019 Pipeline Design.pdf

    30/436

    30

     S  ch l   um b  er  g er P r i  

    v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    SINGLE-PHASE FLOW: Liquid and gas velocity in a pipeline

    q A u

    u = q / A

    It is the flow rate (q), at pressure and temperature in the pipe,divided by cross-sectional area of the pipe (A). It is calculated by

    the following equation:

  • 8/16/2019 Pipeline Design.pdf

    31/436

    31

     S  ch l   um b  er  g er P r i  

    v a t   e

    Copyright 2006, NExT, All rights reserved

    A) Laminar Flow B) Turbulent Flow

    Laminar Flow ⇒⇒⇒⇒ Re < 2000

    Turbulent Flow⇒⇒⇒⇒

    Re > 2100

    R = Duρρρρ/µµµµ

    Pipeline Fluid Flow

    pipeline

    velocity

    pipeline

    velocity

  • 8/16/2019 Pipeline Design.pdf

    32/436

    32

     S  ch l   um b  er  g er P r i  

    v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    ∆∆∆∆p = ∆∆∆∆pPE + ∆∆∆∆pKE + ∆∆∆∆pF∆∆∆∆pPE : pressure drop due to potential energy change

    ∆∆∆∆pKE : pressure drop due to kinetic energy change

    ∆∆∆∆pF : frictional pressure dropu : velocity of the fluid

    D :pipeline internal diameter

    L :Length of the pipe

    f : friction factor

    ρ : liquid density

    Single-Phase Flow: Liquid

    Pressure Drop Calculation

    dp + udu + g dz + 2 f u2 dL = 0ρρρρ gc gc D gc (Energy Equation)

    g ρ∆ρ∆ρ∆ρ∆z + ρρρρ ∆∆∆∆u2 + 2f ρρρρu2 L (ρρρρ = constant)

    gc∆∆∆∆p = p1 – p2 =

    2gc D gc

    Where:

  • 8/16/2019 Pipeline Design.pdf

    33/436

    33

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    ∆∆∆∆z = z2 – z1 = L sin θθθθ∆∆∆∆pPE = (g/gc)ρρρρL sin θθθθ

    ∆∆∆∆pPE , the pressure drop due to potential energy change

    θθθθ = 0   ∆∆∆∆pPE = 0

    q

    ∆∆∆∆z

    L

    1

    2

    θθθθ

    q

    ∆∆∆∆z

    L

    2

    1

    θθθθ

    (a) Upward flow (b) Downward flow

    Single-Phase Flow: Liquid

    Horizontal Flow

  • 8/16/2019 Pipeline Design.pdf

    34/436

    34

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    ∆∆∆∆pKE = the pressure drop due to kinetic energy change

    Is the pressure drop resulting from the change in the velocity of the fluidbetween positions 1 and 2.

    ∆∆∆∆pKE = (ρρρρ/2gc) ∆∆∆∆u2 = (ρρρρ/2gc) (u22- u12)

    ρρρρ = constant , A = constant ∆∆∆∆pKE = 0

    q = constant

    u = q/A , A = ππππD2/4 ∴∴∴∴ u = 4q/ππππD2 ∆∆∆∆pKE = 8ρρρρq2/ππππ2gc(1/D24 – 1/D14)

    Flow of Fluid

    Single-Phase Flow: Liquid

    Where: u = Velocity of the fluid, ft/sec.q = Volumetric flow rate, ft3/sec.

    D = Pipeline internal diameter, ft

    ρρρρ = Liquid density, lbm/ft3

    A = Pipeline cross-sectional area, ft2

  • 8/16/2019 Pipeline Design.pdf

    35/436

  • 8/16/2019 Pipeline Design.pdf

    36/436

  • 8/16/2019 Pipeline Design.pdf

    37/436

    37

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    ∆∆∆∆pKE = the pressure drop due to kinetic energy change

    Example

    Suppose that 2000 bbl/d of oil with a density of 58 lbm/ft3 isflowing through a horizontal pipeline having a diameter reductionfrom 4 in. to 2 in., as illustrated in the figure. Calculate the kineticenergy pressure drop caused by the diameter change.

    D1D2

    q

    u1

    q

    u2

    Single-Phase Flow: Liquid

    Fl f Fl id

  • 8/16/2019 Pipeline Design.pdf

    38/436

    38

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Since ρρρρ = constant, then   ∆∆∆∆pKE = 8ρρρρq2

    /ππππ2

    (1/D24

     – 1/D14

    )q = (2000 bbl/d)(5.615 ft3/bbl)(day/86400 sec.) = 0.130 ft3/sec.

    D1 = (4/12) ft = 0.3333 ft

    D2 = (2/12) ft = 0.16667 ft

    ∆∆∆∆pKE =

    Flow of Fluid

    ∆∆∆∆pKE = the pressure drop due to kinetic energy change

    Solution:

    (ππππ2 x 32.17 ft-lbm/lbf-sec2)]

    8(58 lbm/ft3)(0.130 ft3/sec.)2-

    (0.3333)4 (0.16667)41 1[ ]

    ∆∆∆∆pKE = 0.28 psi

    Single-Phase Flow: Liquid

    Fl f Fl id

  • 8/16/2019 Pipeline Design.pdf

    39/436

    39

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    ∆∆∆∆pf = the pressure drop due to friction

    The frictional pressure drop is obtained from the equation:

    Where: f = is the Moody’s friction factor.

    In laminar flow NRe > 2100 f = f(NRe,εεεε)

    where NRe : is the Reynolds number

    εεεε : is the relative pipe roughness

    which are given by:

    NRe = ρρρρud/µµµµ

    εεεε = k/D (k = Absolute roughness, in)

    Flow of Fluid

    ∆∆∆∆pf =fρρρρu2L2gcD

    Single-Phase Flow: Liquid

    Fl f Fl id

  • 8/16/2019 Pipeline Design.pdf

    40/436

    40

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    where   ρρρρ = Liquid density, lbm/ft3

    u = Velocity, ft/s

    D = Internal pipeline diameter, ft

    µµµµ = Liquid viscosity, lbm/ft-s

    Other expresions:

    NRe = 1488 ρρρρuD/µµµµ

    where:ρρρρ : Liquid density, lbm/ft3

    u : Velocity, ft/s

    D : Internal pipeline diameter, ft

    µµµµ : Liquid viscosity, cP

    Single-Phase Flow: Liquid

    Fl f Fl id

  • 8/16/2019 Pipeline Design.pdf

    41/436

    41

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    ∆∆∆∆pf = the pressure drop due to friction

    In oilfield units

    NRe = 1.48 qρρρρ/Dµµµµ = 92.35 γ γγ γ Lq/Dµµµµ

    Where:ρρρρ : Liquid density, lbm/ft3γ γγ γ 

    L

    : Liquid specific gravityq : Volumetric flow rate, bbl/dD : Internal pipe diameter, in.µ: Liquid viscosity, cP

    NRe

    = 1.722 x 10-2 w D/A µµµµ

    Where:w : Mass flow rate, lbm/dA : Pipeline cross-sectional area, ft2

    µµµµ : Liquid viscosity, cP

    Single-Phase Flow: Liquid

  • 8/16/2019 Pipeline Design.pdf

    42/436

  • 8/16/2019 Pipeline Design.pdf

    43/436

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    44/436

    y

    44

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    Relative Roughness of Common Piping Material.

    Flow of Fluid

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    45/436

    y

    45

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    ∆∆∆∆pf = the pressure drop due to friction

    Example

    Calculate the frictional pressure drop for the 1000 bbl/d of brine injectiondescribed in Example No. 1. The brine has a viscosity of 1.2 cP, and thepipe relative roughness is 0.001.

    Solution:

    First, the Reynolds number must be calculated to determine if the flow islaminar or turbulent.

    NRe = ρρρρuD/µµµµ = 1.48qρρρρ/Dµµµµ = (1.48)(1000bbl/d)(65.5 lbm/ft3)/(2.259 in.)(1.2 cP)

    = 35,700 > 2100 ∴∴∴∴ the flow is turbulent

    Using Chen equation:

    1/√√√√f =

    ]}[log(0.001)1.1098

    2.8257+ 7.194

    3.57 x104( )0.89810.001

    3.7065-

    3.57 x 1045.0452-2log{

    Flow of Fluid

    Single-Phase Flow: LiquidHasta aquí vamos

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    46/436

    y

    46

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    ∆∆∆∆pf = the pressure drop due to friction

    f = 0.0252

    u = q/A = 4q/ππππD2 = 4(1000 bbl/d)(5.615 ft3/bbl)(1day/86,400 s)

    ππππ[(2.259/12) ft]2= 2.33 ft/s

    ∆∆∆∆pF =(0.0252)(65.5 lbm/ft3)(2.33 ft/s)2 (1000 ft)

    2(32.17 ft-lbm/lbf-s2)[(2.259/12) ft]

    = (740 lbf/ft2)(ft2/144 in2) = 5.14 psi

    Notice that the frictional pressure drop is considerable less than the potentialenergy or hydrostatic pressure drop, which it was calculated to be -292 psi inExample No. 1

    Flow of Fluid

    Single-Phase Flow: Liquid

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    47/436

    47

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    ∆∆∆∆pf = the pressure drop due to friction

    Example

    The 1000 bbl/d of injection water described in Examples 1 and 3 is suppliedto the wellhead through a 3000 ft long, 1 ½ in. I.D. flow line from a centralpumping station. The relative roughness of the galvanized iron pipe is0.004. If the pressure at the wellhead is 100 psia, what is the pressure at thepumping station, neglecting any pressure drops through valves or other

    fittings?

    Solution:

    NRe = 1.48qρρρρ/Dµµµµ = 1.48(1000 bbl/d)(65.5 lbm/ft3)/(1.5 in.)(1.2 cP) = 53,900

    1/√√√√f =

    f = 0.0304

    ]}[log(0.004)1.1098

    2.8257 + 7.1945.39 x104( )0.89810.0043.7065 - 5.39 x 1045.0452-2log{

    Flow of Fluid

    Single-Phase Flow: Liquid

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    48/436

    48

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    4(1000 bbl/d)(5.615 ft3

    /bbl)(1day/86,400 s)ππππ[(1.5/12) ft]2

    = 5.3 ft/s

    ∆∆∆∆pf = the pressure drop due to friction

    u = q/A = 4q/ππππD2 =

    ∆∆∆∆pF = p1 – p2 =(0.0304)(65.5 lbm/ft3)(5.3 ft/s)2 (3000 ft)

    2(32.17 ft-lbm/lbf-s2)[(1.5/12) ft]

    = 20,864 lbf/ft2 = (20,864 lbf/ft2) (ft2/144 in.2) = 145 psi

    p1= p2 + 145 = 100 + 145 = 245 psia

    This is a significant pressure loss over 3000 ft. It can be reducedsubstantially by using larger pipe for this water supply, since thefrictional pressure drop depends approximately on the pipe diameter tothe fifth power

    Flow of Fluid

    Single-Phase Flow: Liquid

  • 8/16/2019 Pipeline Design.pdf

    49/436

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    50/436

    50

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    To determine de diameter of the pipe

    The equation can not be solve directly

    Assume a friction factor (start with 0.025)Determine the Reynolds number

    Read the friction factor in figure and

    compare.Iterate the solution until the friction factorconverge.

    Flow of Fluid

    ∆∆∆∆pf =fρρρρu2L

    2gcD=11.5x10-6

    fQ2L  γ γγ γ L

    D5

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    51/436

    51

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    Hazen-Williams Formula: To avoid iteration

    0.015

    C

    Q1.85

    D

    1.854.87

    WhereHL : Head loss due to friction. ftQ : Liquid flow rate, bpd

    C : friction factor constant: 140 for new steel pipe: 130 for Cast iron pipe: 100 for riveted pipe

    L : Length of the pipe, ftD : Internal pipe diameter, in.

    ∆∆∆∆P =HLγ γγ γ L xρρρρw144144144144

    HL =

    Pressure Drop in Liquid Pipeline

  • 8/16/2019 Pipeline Design.pdf

    52/436

    52

     S  ch l   um b  er  g er P r i  v

     a t   e

    Copyright 2006, NExT, All rights reserved

    Exercise

    p q p

    A pipeline transport condensate (800 bpd) and water (230 bpd). Thecondensate and water specific gravity are 0.87 and 1.05, respectively.Viscosity = 3cP, Length of the pipeline 7,000 ft., Inlet pressure 900 psi

    and temperature 80ºC.Determine the pressure drop for 2 inch, 4 inch and 6 inch I.D, usingthe general equation and Hazen Williams (Assume C=120. AssumeOld pipeline (εεεε=0.004)

    Pressure Drop in Liquid Pipeline

  • 8/16/2019 Pipeline Design.pdf

    53/436

    53

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Solution

    p q p

    Mixture’s rule

    γ γγ γ L= X1x γ γγ γ 1 + x2x γ γγ γ 2 =(230)

    (230 +800)

    1.05 +(800)

    (230 +800)

    0.87

    γ γγ γ L= 0.91

    NRe =92.35 γ γγ γ Lq

    Dµµµµ

    In oilfield units

    =D3

    92.35 x0.87x1030

    D

    28,853=

    f = f(NRe,εεεε)

    ∆∆∆∆pf =fρρρρu2L

    2gcD=11.5x10-6

    fQ2L  γ γγ γ L

    D

    5

    Pressure Drop

    Pressure Drop in Liquid Pipeline

  • 8/16/2019 Pipeline Design.pdf

    54/436

    54

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Solution

    p q p

    Mixture’s rule

    f = f(NRe,εεεε)∆∆∆∆pf =fρρρρu2L

    2gcD=11.5x10-6

    fQ2L  γ γγ γ L

    D5

    Pressure Drop

    ∆∆∆∆pf = 11.5x10-6 f (1030)

    2x7000x 0.91

    D5

    ∆∆∆∆pf =f 77,716

    D5

    Pressure Drop in Liquid Pipeline

  • 8/16/2019 Pipeline Design.pdf

    55/436

    55

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    2 inch 4 inch 6 inch

    Re 14427 7200 4809

    εεεε/D 0.0020 0.0010 0.0007

    f (from chart) 0.032 0.034 0.038∆∆∆∆P (psi) 77.7 2.6 0.4

    Diameter

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    56/436

    56

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Single-Phase Flow: Liquid

    Pressure Drop in Liquid Pipeline

  • 8/16/2019 Pipeline Design.pdf

    57/436

    57

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    SolutionHazen-Williams

    0.015   ∆∆∆∆P =HLγ γγ γ L xρρρρw144144144144HL = C

    Q1.85

    D 1.854.87L

    2 inch 4 inch 6 inch

    HL  (ft) 192 6.6 1

    ∆∆∆∆P (psi) 75.6 2.6 0.4

    Diameter

  • 8/16/2019 Pipeline Design.pdf

    58/436

    58

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow of Fluid

    Single phase: Gas

    Flow of Fluid

    Single phase: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    59/436

    59

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    The basic energy balance on a unit mass basis:

    MW p

    ZRT

    28.97γ γγ γ g p

    ZRT=

    TTsc

    pscp

    ZRT28.97γ γγ γ gp

    dp +g

    gcsin θθθθ 8 f

    ππππ2gcD5+ qsc Z dL = 0

    (From the real gas law)

    u = 4ππππ D2

    qsc ZTTsc

    pscp

    (The velocity in terms of the volumetric flowrate at standard conditions)

    dz = sin θθθθ dL and dWs = 0 (Neglecting for the time being anykinetic energy change)

    Single-Phase Flow: Gas

    dp + udu + g dz + 2 f u2 dL + dWs= 0

    ρρρρ gc gc D gc(Energy Equation)

    ρρρρ =

    2

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    60/436

    60

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    Where: qsc : gas flow rate measured at standard conditions, Mscfd

    psc : pressure at standard conditions, psia

    Tsc : temperature at standard conditions, ºR

    p1 : upstream pressure, psia

    p2 : downstream pressure, psia

    D : diameter of pipe, in

    γ γγ γ g : gas specific gravity

    T : flowing temperature, ºR

    Z:average gas compressibility

    f : Moody friction factor

    L : length of pipe, ft

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    61/436

    61

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    To solve this equation notice that:

    a) Z, T and p are functions of position, z

    b) Rigorously solution need: T = T(z) and Z = Z(T,p) (Equation ofState)

    c) This approach will likely require numerical integration

    d) Alternatively,

    e) Average values of Z and T can be assumed

    f) Mean temperature (T1 + T2)/2 or Log-mean temperature

    Tlm = (T2 – T1)/ln(T2/T1)

    h) Solving for horizontal flow yields

    p12 – p2

    2 =(16)(28.97) γ γγ γ g f ZT

    ππππ2gcD5R(

    pscqscTsc

    ) L2

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    62/436

    62

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    For oilfield units:

    p12 – p2

    2 = 2.5175 x 10-5γ γγ γ g f ZT qsc2 L

    D5

    NRe = 20.09γ γγ γ g qscDµµµµ

    Where: p : psia

    q : Mscfd

    D : in.

    L : ft

    µµµµ : cP

    T : ºR

    Steady state flow in simple pipeline systems: Gas flow equations

    Where: f = f(NRe,εεεε) Moody diagram

    NRe =4(28.97) γ γγ γ g qsc psc

    ππππ D µµµµ R Tscand εεεε = k/D

    Single-Phase Flow: Gas

  • 8/16/2019 Pipeline Design.pdf

    63/436

  • 8/16/2019 Pipeline Design.pdf

    64/436

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    65/436

    65

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    The equation is an implicit equation in p and must be solvediteratively. It can be solved first by neglecting the kinetic energy

    term; then, if ln(p1/p2) is small compared with 6fL/D, the kinetic

    energy pressure drop is negligible.

    NRe = 20.09 D µµµµ

    γ γγ γ g qsc

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    66/436

    66

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    Example

    Gas production from a low-pressure gas well (wellhead pressure = 100

    psia) to be transported through 1000 ft of a 3.in.-I.D., line (εεεε = 0.001) to acompressor station, where the inlet pressure must be at least 20 psia.The gas has a specific gravity of 0.7, a temperature of 100 ºF and anaverage viscosity of 0.012 cP. What is the maximum flow rate possiblethrough this gas line?

    Solution:

    Solving for q:

    (p12 – p2

    2) D4

    (4.195 x 10-7) γ γγ γ g Z T [(6 f L/D) + ln(p1/p2)]qsc =

    0.5

    p12 – p2

    2 = (4.195 x 10-7)D4

    γ γγ γ g Z T qsc+ ln

    D

    6 f Lp2

    p12

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    67/436

    67

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    Assuming (1) that the friction factor depends only on the piperoughness. Then from the Moody diagram, for high Reynolds numberand a relative roughness of 0.001

    f = 0.0196

    and (2) that Z = 1 at these low pressures. Then

    4.73 x 109

    39.2 + 1.61

    Checking the Reynolds number,

    NRe = (20.09)(0.7)(10,800)/[(3)(0.012)] = 4.2 x 106

    qsc =(1002 – 202)(3)4

    (4.195 x 10-7)(0.7)(1)(560) {[(6)(0.0196)(1000)/3] + ln(100/20)}

    0.5

    qsc = = 10,800 Mscfd

    0.5

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    68/436

    68

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    So the friction factor based on fully rough wallturbulence is correct.

    It is found that this line can transport over 10

    MMscfd. Notice that even at this high flow rateand with a velocity five times higher at the pipeoutlet than at the entrance, the kinetic energycontribution to the overall pressure drop is still

    small relative to the frictional pressure drop.

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    69/436

    69

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in series pipeline systems: Gas flow equations

    Waymouth Equation

    f = 0.032/D1/2 and qsc = 1.11 D2.67

    p12 – p22

    L γ γγ γ g Z T1

    0.5

    Where:

    qsc : gas flow rate, MMscfd

    D : pipe internal diameter, in.

    p1 : inlet pressure, psia

    p2 : outlet pressure, psia

    L : length of pipe, ftγ γγ γ g : gas gravity

    T1 : temperature of gas at inlet, ºR

    Z : compressibility factor of gas

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    70/436

    70

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in series pipeline systems: Gas flow equations

    Waymouth Equation

    Comments:

    Moody friction factor is independent of the Reynoldsnumber and dependent upon the relative roughness.

    For a given roughness, εεεε, the friction factor is merely afunction of diameter.

    Industry experience indicates that Weymouth’sequation is suitable for most piping within the

    production facility.

    Good for short lengths of pipe with high pressure dropand turbulent flow

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    71/436

    71

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in series pipeline systems: Gas flow equations

    Panhandle Equation

    f =C

    NReNRe = 5 x 10

    6 to 11 x 106 n = 0.146

    NRe >>>> 11 x 106 n = 0.039

    Using this assumption and assuming a constant viscosity forthe gas,

    A) qsc = 0.020 Ep1

    2 – p22

    γ γγ γ g0.853 Z T1 Lm

    0.059

    D2.62

    qsc = 0.028 Ep1

    2 – p22

    γ γγ γ g0.961 Z T1 Lm

    0.51

    D2.53B)

    n

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    72/436

    72

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in series pipeline systems: Gas flow equations

    Panhandle Equation

    Where:

    E : efficiency factor

    = 1.0 for brand new pipe

    = 0.95 for good operating conditions= 0.92 for average operating conditions

    = 0.85 for unfavorable operating conditions

    Lm : length of pipe, miles

    In practice, Panhandle’s equations are commonly used for large

    diameter, long pipelines where the Reynolds number is on the straightline portion of the Moody diagram.

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    73/436

    73

     S  ch l   um b  er  g er P r i  v a

     t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in series pipeline systems: Gas flow equations

    Spitzglass Equation

    f = 1 + + 0.03 D

    D

    3.6 1

    100

    Assuming that:

    T = 520ºR (60ºF)

    p1 = 15 psi (near-atmospheric pressure lines)

    Z = 1.0

    ∆∆∆∆p

  • 8/16/2019 Pipeline Design.pdf

    74/436

    74

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in series pipeline systems: Gas flow equations

    Spitzglass Equation

    1 +

    ∆∆∆∆hw D5

    + 0.03 DD

    3.6γ γγ γ g L

    1/2

    qsc = 0.09Where:

    ∆∆∆∆hw : pressure loss,inches of water

    or expressing pressure drop in terms of inches of water, the Spitzglassequation can be written:

    p12 – p2

    2 = 2.5175 x 10-5γ γγ γ g f ZT qsc L

    D5

    2

    ∆∆∆∆p = 12.6γ γγ γ g qsc Z T1 f L

    p1 D5

    2

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    75/436

    75

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Example : Pressure Drop in Gas lineGiven: Gas flow rate = 23 MMscfd

    Gas viscosity = 3 cPGas specific gravity = 0.85Length = 7,000 ft

    Inlet pressure = 900 psiaTemperature = 80ºF

    Z = 0.67εεεε = 0.004 (assume old steel)

    Calculate: The pressure drop in a 4-in and 6-in I. D. line using the:

    1. General equation2. Assumption of ∆∆∆∆P

  • 8/16/2019 Pipeline Design.pdf

    76/436

    76

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    Solution:

    1. General equation

    p12 – p2

    2 = 2.5175 x 10-5γ γγ γ g f ZT qsc2 L

    D5

    NRe = 20.09γ γγ γ g qsc

    Dµµµµ

    20.09(0.85)(23000)

    D (0.013)= =

    D

    30,212,269

    p12 – p22 = 2.5175 x 10-5 f(0.85)(0.67)(540)(23,000)2

    (7,000)D5

    p12 – p2

    2 =2.87 x 1010 (f)

    D5

    Single-Phase Flow: Gas

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    77/436

    77

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    37 psi395 psi∆∆∆∆p

    863505p2

    66 x 103555 x 103p12 – p2

    2

    0.01800.0198f (from Moody

    diagram)

    0.000660.001εεεε/D

    5.0 x 1067.6 x 106NRe

    6-in.4-in.DVariable

    p1= 900 psia

    Single-Phase Flow: Gas

    Click to edit Master title style

    Moody friction factor diagram

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    78/436

    78

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    y g

    0.01980.018

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    79/436

    79

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    2. Approximate Equation

    ∆∆∆∆p = 12.6γ γγ γ g qsc2 Z T1 f L

    p1 D5

    (for ∆∆∆∆p

  • 8/16/2019 Pipeline Design.pdf

    80/436

    80

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    3. Panhandle B equation

    qsc = 0.028 Ep1

    2 – p22

    γ γγ γ g0.961 Z T1 Lm

    0.51

    D2.53Lm = 7000/5280 = 1.33 miles

    E = 0.95 (assumed)

    23 = 0.028 (0.95)

    (900)2 – p22

    (0.85)0.961(0.67)(540)(1.33)

    0.51

    D2.53

    p22 = 810 x 103 -

    D4.96

    235 x 106

    4-in. 6-in.

    p2 753 882 psi

    ∆∆∆∆p 147 18 psi

    Single Phase Flow: Gas

    Click to edit Master title style

    Flow of FluidSingle-Phase Flow: Gas

  • 8/16/2019 Pipeline Design.pdf

    81/436

    81

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    3. Weymouth equation

    qsc = 1.11 D2.67

    p12 – p2

    2

    L γ γγ γ g Z T1

    0.5

    23 = 1.11 D2.667 (900)2 – p22

    (7000)(0.85)(0.67)(540)

    1/2

    p22 = 810 x103 -

    D5.33

    9.44 x 108

    4-in. 6-in.P2 476 862 psi

    ∆∆∆∆p 424 38 psi

    Single Phase Flow: Gas

    Click to edit Master title style

    Flow of FluidSingle-Phase Flow: Gas

  • 8/16/2019 Pipeline Design.pdf

    82/436

    82

     S  ch l   um b  er  g er P r i  v a t  

     e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    86238476424WeymouthEquation

    88218753147Panhandle B

    Equation

    86337592308∆∆∆∆P

  • 8/16/2019 Pipeline Design.pdf

    83/436

    83

     S  ch l   um b  er  g er P r i  v a t  

     e

    Copyright 2006, NExT, All rights reserved

    Steady state flow in simple pipeline systems: Gas flow equations

    Application of Gas Flow Equations: Recommended guidelines

    The general gas flow equation is recommended for most general usage.If it is inconvenient to use the iterative procedure of the general equation

    and it is not known whether the Weymouth or the Panhandle equationsare applicable,

    Compute the results using both Weymouth and Panhandle equations and use

    the higher calculated pressure drop.

    Use the Weymouth equation only for small-diameter (3-6 in.)

    Use the Panhandle equation only for large-diameter (10 ≤≤≤≤ D)

    Use the Spitzglass equation for low pressure vent lines less than 12 inches in

    diameter.

    When using gas flow equations for old pipe, attempt to derive the properefficiency factor through field tests. Buildup of scale, corrosion, liquids,paraffin, etc. can have a large effect on gas flow efficiency.

    g

  • 8/16/2019 Pipeline Design.pdf

    84/436

    Click to edit Master title style

    Flow of Fluid

  • 8/16/2019 Pipeline Design.pdf

    85/436

    85

     S  ch l   um b  er  g er P r i  v a t  

     e

    Copyright 2006, NExT, All rights reserved

    Applicability of Single Phase Correlations

    Weymouth

    Hazen Williams

    Panhandle B

    Panhandle A

    AGA

    Moody

    HorizontalGas Flow

    Vertical GasFlow

    HorizontalOil Flow

    Vertical oilFlow

    Horizontal Pipeline

  • 8/16/2019 Pipeline Design.pdf

    86/436

    86

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    The pressure drop in horizontal pipe isbasically caused by friction.

    The friction factor is a function ofReynolds number and roughness.

  • 8/16/2019 Pipeline Design.pdf

    87/436

    87

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Multiphase Phase FlowMultiphase Phase Flow

    Multiphase Flow: Concepts and DefinitionsMultiphase Flow:

  • 8/16/2019 Pipeline Design.pdf

    88/436

    88

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Is the flow of several phases.

    The biphasic flow is the most simple of themultiphase flow

    There are different types of multiphase flow in theoil industry

    Gas-Liquid,

    Liquid-Liquid,

    Liquid-Solid,

    Gas-Solid,

    Gas-Liquid-Solid,

    Gas-Liquid-Liquid.

    Immiscible Liquids: Immiscible liquids are thosethat are not soluble.

    Multiphase Flow: Concepts and Definitions

  • 8/16/2019 Pipeline Design.pdf

    89/436

    89

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern or Flow Regime: is the geometricconfiguration of the phases in the pipeline. TheFlow pattern is determined by the interface

    interaction or form.

    Interface: is the surface that separates the twophases.

    Phase Inversion of the two immiscibleliquid dispersion: is the transition of a disperseto a continuous phase and vice versa.

    Phase Inversion Point: is the volumetric fractionof the disperse phase that becomes a continuousphase.

    Gas Gas - - liquid flow regimes: Horizontal Flow liquid flow regimes: Horizontal Flow 

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    90/436

    90

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Stratified Smooth

    Stratified Wavy

    Plug

    Slug

    Annular

    Bubble Flow

    Spray

       S   t  r  a

       t   i   f   i  e

       d

       I  n   t  e  r  m

       i   t   t  e  n

       t

       A  n  n  u

       l  a  r

    Gas Gas - - liquid flow regimes: Horizontal Flow liquid flow regimes: Horizontal Flow 

    S ifi d S h

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    91/436

    91

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Stratified Smooth: a distinct horizontal interfaceseparates the gas and liquid flows. This flow pattern isusually observed at relatively low rates of gas and liquidflow

    Stratified Wavy : as the airflow rate is increased, surfacewaves appear on the stratified flow interface. The smoothinterface will become rippled and wavy

    Plug : for increased airflow rates the air bubbles coalesceforming an intermittent flow pattern in which gas pocketswill develop. These pockets or plugs are entrapped in themain liquid flow and are transported alternately with theliquid flow along the top of the pipe

    Slug : wave amplitudes are large enough to seal theconduit. The wave forms a frothy slug where it touches theroof of the conduit. The slug travels with a higher velocity

    than the average liquid velocity.

    Gas Gas - - liquid flow regimes: Horizontal Flow liquid flow regimes: Horizontal Flow 

    A l

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    92/436

    92

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Annular : for high gas flow rates the liquid flows as afilm on the wall of the pipe (the annular zone), while the gasflows in a high-speed core down the central portion of the

    pipe.

    Bubble : the gas forms in bubbles at the upper surfaceof the pipe. The bubble and liquid velocities are about equal.If the bubbles are dispersed though the liquid, the flow istermed froth flow. Bubble flow pattern occurs at relatively large

    liquid flow rates, with little gas flow

    Spray: for very great gas flow rates the annular film isstripped from the pipe walls and is carried in the air as

    entrained droplets.

    Click to edit Master title style

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    93/436

    93

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquids

    Gas

    Oil + Water

    Oil/Water/Gas

    Mixture

    Most frequently encountered in:

    • Well tubing• Flowlines

    Mixing rules are used to

    predict pressure drop inpipelines

    Click to edit Master title style

    a

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    94/436

    94

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquid

    Two-phase flow variables

    Mass flow rate, w (lbm/s)

    wL: Liquid mass flow rate

    wg : Gas mass flow rate

    w : Total mass flow rate

    w : wL + wg

    a-a

    wg

    wL

    a

    wL = ρρρρLALuL wg = ρρρρg Ag ug

    a-a

    a

    a

    w

    w = ρρρρ A u   ⇒⇒⇒⇒ u = W/ρρρρA

    a

    Volumetric flow rate, q (ft3/s)

    qL : Liquid volumetric flow rate

    qg : Gas volumetric flow rate

    q : Total volumetric flow rate

    q = qL + qg

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    95/436

    95

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO PHASE FLOW: Gas Liquid

    Two-phase flow variables

    Liquid Holdup, HL, Gas void Fraction, αααα, (-)

    The liquid Holdup is the fraction of a volume element in the two-phase flowfield occupied by the liquid phase.

    HL =Liquid phase volume in pipe element

    Pipe element volume

    VL

    VL + VgHL =

    HL =AL

    AA = AL + Ag

    HL + Hg = 1

    Gas

    Líquido

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    96/436

    96

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquid

    Two-phase flow variables

    Liquid Holdup, HL, Gas void Fraction, λλλλ, (-)

    Similarly, the gas void fraction is the fraction of the volume element thatis occupied by the gas phase. For two-Phase flow 0

  • 8/16/2019 Pipeline Design.pdf

    97/436

    97

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquid

    Two-phase flow variables

    Superficial velocity (volumetric flux), (ft/s)

    The superficial velocity of a phase is the velocity which would occur ifonly that phase flows alone in the pipe. It is called also the volumetricflux, and represents the volumetric flow rate per unit area of each ofthe phases. Thus the superficial velocities of the liquid and gasphases are:

    usL =qLA

    and usg = A

    qg

    The mixture velocity is the total volumetric flow rate of both phasesper unit area, and is given by:

    uM = A

    qL + qg= usL + usg

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    98/436

    98

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO PHASE FLOW: Gas Liquid

    Two-phase flow variables

    Mass Flux, G (lbm/ft2-s)

    The mass flux is the mass flow rate per unit area, and is given by

    Gg = A

    wg

    GL = A

    wL= Liquid mass flux

    = Gas mass flux

    G = A

    wL + wg

    = Total mass flux

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    99/436

    99

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquid

    Two-phase flow variables

    Actual (in-situ) Velocity, u (ft/s)

    The superficial velocities defined above are not the actual velocities ofthe phases, as each phase occupies only a fraction of the pipe crosssection. Thus the actual velocities of the liquid and gas phase are,respectively:

    uL =qLAL

    qLA HL

    =usLHL

    =

    ug =

    qg

    Ag

    qg

    A Hg=

    usg

    1 - HL=

    g

    LA

    L

    Ag

    Click to edit Master title style

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    100/436

    100

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquid

    Two-phase flow variables

    Slip Velocity, uslip (ft/s)The actual velocities of the liquid and gas phases are usually different.The slip velocity represents the relative velocity between the twophases

    uslip = ug – uLQuality x, (-)

    The quality is the ratio of the gas mass flow rate to the total mass flowrate across a given area

    x =wg

    wg + wL

    wgw

    =

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    101/436

    101

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Two-phase flow variables

    Example No. 7

    Oil and natural gas flow in a 2” I.D. horizontal pipe. The in-situ flow ratesof the oil and the natural gas are 0.147 ft3/s and 0.5885 ft3/s, respectively.

    The corresponding liquid holdup is 0.35. Determine:

    1. The gas and liquid velocities and the mixture velocity

    2. The actual velocities of the two phases

    3. The slip velocity between de gas phase and the liquid phase

    Solution:

    A = ππππ(2/12)2/4 = 0.021821 ft2

    1.usL

    = qL

    /A = (0.147 ft3/s) /(0.021821 ft2) = 6.74 ft/s

    usg = qg/A = (0.5885 ft3/s)/(0.021821 ft2) = 27 ft/s

    uM = usL + usg = 6.74 + 27 = 33.74 ft/s

    Click to edit Master title style

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    102/436

    102

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    TWO-PHASE FLOW: Gas-Liquid

    Two-phase flow variables

    Solution (Cont.):

    2. uL = usL/HL = 6.74/0.35 = 19.26 ft/s

    ug = usg/(1 – HL) = 27/(1 – 0.35) = 41.54 ft/s

    3. Uslip = ug – uL = (41.54 – 19.26) = 22.28 ft/s

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    103/436

    103

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    q

    Fundamental phenomena in two-phase flow

    ττττi

    ug

    uL

    qg

    qLAL

    Ag

    Gas

    Liquid

    LiquidGas

    a

    a

    a - a

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    104/436

    104

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Fundamental phenomena in two-phase flow: Slippage and Holdup

    ug = uL   ∴∴∴∴ uslip = 0 (no-slip)HL = λλλλL = qL/(qg + qL) = usL/(usg + usL)

    Holdup: When gas and liquid phases flow at the same velocity….

    Ug

    ULUL

    Ug

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    105/436

    105

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Fundamental phenomena in two-phase flow: Slippage and Holdup

    ug >>>> uL   ∴∴∴∴ uslip ≠≠≠≠ 0 (slip)

    HL >>>> λλλλ

    L= q

    L/(q

    g+ q

    L)

    Holdup: The velocity of the gas is greater than that of the liquid. therebyresulting in a liquid holdup that not only affects well friction losses

    but also flowing density. Liquid holdup is defined as the in-situflowing volume fraction of liquid, It depends of the flow pattern.

    Ug

    UL

    UL

    Ug

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Flow Pattern Prediction: Baker Flow Regime Map

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    106/436

    106

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction: Baker Flow Regime Map

    Gg

    λλλλ

    Gg

    GLλφλφλφλφ

    λλλλ =ρρρρg

    0.075( )

      ρρρρL62.4

    ( )1/2

    φφφφ =( )2

    ρρρρL62.4µµµµL

    1/3

    σσσσL

    73

    Gg = ρρρρg usg

    GL = ρρρρg usL

       G

      g        λ        λλ        λ

    Gg

    GLλφλφλφλφ

    By =

    Bx =

    Baker Parameters

    Slug

    Plug

    Stratified

    AnnularWave

    Disperse

    Bubble

    102

    103

    104

    10510-1 1 10 102 103 104

    10-1 1 10 102 103 104

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    107/436

    107

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction: Beggs and Brill flow regime map

    NFr = gD

    uM2

    UM : Mixture velocity

    D : inside pipediameter

    g : gravitationalacceleration

    λλλλ: liquid inputvolume fraction

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    108/436

    108

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction: Taitel-Dukler flow regime map

    1.00

    0.10

    0.01

    10.0

    75.0

    0.1 1.0 10.0 900.0100.0

    Intermittent

    Annular

    StratifiedWavy

    StratifiedSmooth

    Bubbly

    U sL

    (ft/s)

    U sG (ft/s)

  • 8/16/2019 Pipeline Design.pdf

    109/436

    Click to edit Master title style

    TWO TWO - - PHASE FLOW: Gas PHASE FLOW: Gas - - Liquid Liquid 

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    110/436

    110

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction: Gregory -Mandhane-Aziz flow regime map

    (Plug)

    Click to edit Master title style

    TWO TWO - - PHASE FLOW: Gas PHASE FLOW: Gas - - Liquid Liquid 

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    111/436

    111

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction:

    Example: Predicting horizontal gas-liquid flowregime

    Using de Baker, Mandhane, and Beggs & Brill flow regimemaps, determine the flow regime for the flow of 2000 bbl/d

    of oil and 1 MMscfd of gas at 800 psia and 175ºF in a 2 ½in. I.D. pipe. The oil density and viscosity are 49.92 lbm/ft3

    and 2 cP, respectively. The oil-gas surface tension is 30dynes/cm and the gas density, viscosity and thecompressibility factor are 2.6 lbm/ ft3, 0.0131 cP and 0.935respectively. The pipe relative roughness is 0.0006.

    Click to edit Master title style

    TWO TWO - - PHASE FLOW: Gas PHASE FLOW: Gas - - Liquid Liquid 

    Flow Pattern Prediction:

    Multiphase Flow

    λλλλ =ρρρρg

    ( )  ρρρρL( )

    1/2

  • 8/16/2019 Pipeline Design.pdf

    112/436

    112

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction:

    Solution for Baker :

    Baker’s parameters

    Gg

    λλλλ

    GgGLλφλφλφλφ

    By =

    Bx =

    λλλλ =0.075

    ( )62.4

    ( )

    φφφφ =

    ( )2

    ρρρρL

    62.4µµµµL

    1/3

    σσσσL73

    Gg = ρρρρg usg

    GL = ρρρρg usLλλλλ = [(2.6/0.075)(49.92/62.4)]0.5 = 5.27

    φ= (73/30)[(2)(62.4/49.92)2

    ]1/3

    = 3.56

    GL

    = wL

    /A = ρρρρL

    qL

    /A = ρρρρL

    usL

    ,

    = (49.92lbm/ft3)(0.130 ft3/s)/(0.0341ft2) (3600 s/hr) = 6.85 x 105 lbm/hr-ft2

    A = ππππ (2.5/12)2 /4 = 0.0341 ft2

    qL = (2,000bbl/day)(5.615 ft3/bbl)/(86,400 day/s) = 0.130 ft3/s

    Click to edit Master title style

    TWO TWO - - PHASE FLOW: Gas PHASE FLOW: Gas - - Liquid Liquid 

    Flow Pattern Prediction:Solution for Baker :

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    113/436

    113

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Solution for Baker :

    Gg

    λλλλBy =

    qsc Z (TTsc

    ) )(p

    pscqg =

    qg = (106 ft3/day)(0.935)(635ºR/520ºR)(15psia/800psia) 1day/86400s=

    0.2478 ft3/s

    Gg = wg/A = ρρρρgqg/A = ρρρρgusg= (2.6 lbm/ ft3 x 0.2478 ft3/s)/(0.0341 ft2)x(3600s/hr)=

    Gg =6.8x 104 lbm/hr-ft2

    By = = 6.8x 104 lbm/hr-ft2/ 5.27= 1.29x104

    Bx

    GLλφλφλφλφ/G

    g= (6.85 x 105)(5.27)(3.56)/(6.8 x 104) = 188

    Flow Pattern: Bubblethough the conditions arevery near the boundaries

    with slug flow and

    annular mist flow

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Flow Pattern Prediction: Baker Flow Regime Map

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    114/436

    114

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

       G

      g        λ        λλ        λ

    Gg

    GLλφλφλφλφ

    Slug

    Plug

    Stratified

    AnnularWave

    Disperse

    Bubble

    102

    103

    104

    10510-1 1 10 102 103 104

    10-1 1 10 102 103 104

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Flow Pattern Prediction: Baker Flow Regime Map

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    115/436

    115

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Click to edit Master title style

    TWO TWO - - PHASE FLOW: Gas PHASE FLOW: Gas - - Liquid Liquid 

    Flow Pattern Prediction:

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    116/436

    116

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Flow Pattern Prediction:

    Solution for Mandhane map :

    The Mandhane map is simply a plot of superficial liquid velocity versussuperficial gas velocity. For our values usL = 3.81 ft/s and usg = 7.27 ft/s, theflow regime is predicted to be slug flow.

    UsL = qL/A = 0.130 ft3/s/(0.0341 ft2) = 3.81 ft/s

    Usg = qg/A = 0.2478 ft3/s/(0.0341 ft2) = 7.27 ft/s

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Flow Pattern Prediction: Mandhan flow regime map

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    117/436

    117

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Gas superficial velocity, USG, ft/s

       L   i  q  u   i

       d  s  u  p  e  r   f

       i  c   i  a   l  v  e   l  o  c

       i   t  y ,

       U   S   L ,

       f   t   /  s

     .

    0.1 1.0 10.0 100

    0.01

    0.1

    1.0

    10.0

    StratifiedFlow

    Dispersed Flow

    BubbleFlow

    Slug Flow

    AnnularFlow

    WavyFlow

    Click to edit Master title style

    TWO TWO 

    - - PHASE FLOW: Gas PHASE FLOW: Gas 

    - - Liquid Liquid 

    Flow Pattern Prediction: Gregory -Mandhane-Aziz flow regime map

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    118/436

    118

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    (Plug)

    Click to edit Master title style

    TWO TWO - - PHASE FLOW: Gas PHASE FLOW: Gas - - Liquid Liquid Flow Pattern Prediction:

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    119/436

    119

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Solution:

    The Beggs & Brill map. The parameters are

    uM = usL + usg = 3.81 + 7.27 = 11.08ft/s

    NFr = (11.08ft/s)/[(32.17ft2/s)(2.5in/12in/ft)] = 17.8

    λλλλL = usL/uM = 3.81/11.08 = 0.35

    From the Beggs & Brill flow regime map, the flow regime is predicted to be

    intermittent.

    Slug flow is the likely flow regime.

    NFr = gD

    uM2

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Flow Pattern Prediction: Beggs and Brill flow regime map

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    120/436

    120

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    NFr = gD

    uM2

    UM : Mixture velocityD : inside pipediameter

    g : gravitationalacceleration

    λλλλ: liquid inputvolume fraction

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Fundamental phenomena in two-phase flow: Pressure drop correlations

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    121/436

    121

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Fundamental phenomena in two phase flow: Pressure drop correlations

    Three main components for predicting pressure los are:

    1. Elevation or static component

    2. Friction component

    3. Acceleration component

    Total Loss Loss LossPressure = Caused by + Caused by + Caused byloss Elevation Friction acceleration

    General energy flow equation

    2 gc Df ρρρρ u2dp

    dz =ggc

    ρρρρ sin θθθθ + ρρρρ ugcdudz+

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-LiquidFundamental phenomena in two-phase flow: Pressure drop correlations

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    122/436

    122

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Energy equation for horizontal flow

    dp

    dz

    dp

    dzf

    dp

    dz acc= +

    or neglecting the kinetic energy effects

    dp

    dz

    dp

    dzf

    =

    dpdz = 2 gc D

    f ρρρρ u2 ρρρρ ugc

    dudz+

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Fundamental phenomena in two-phase flow: Pressure drop correlations

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    123/436

    123

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    p p p

    Pressure Loss Components

    Where:

    ρρρρ : Density, lbm/ft3

    u : velocity, ft/s

    D : pipe diameter, ft

    g : acceleration caused by gravity, ft/s2

    gc : conversion factor, lbm-ft/lbf-s2

    f : friction factor

    dp/dz : pressure gradient, psi/ft

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Horizontal Pressure Loss Prediction Methods

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    124/436

    124

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Over the years, numerous correlations have been developed tocalculate the pressure gradient in horizontal gas-liquid flow. The most

    commonly used in the oil and gas industry today are those of Beggsand Brill (1973), Eaton et al. (1967), and Dukler (1969). Thesecorrelations all include a kinetic energy contribution to the pressuregradient; however, this can be considered negligible unless the gasrate is high and the pressure is low.

    Correlations most widely used

    1. Beggs and Brill (JPT, 607-617, May 1973)

    2. Dukler (AGA, API, Vol. 1, Research Results , May 1969)

    3. Eaton et al. (Trans. AIME , 240: 815-828, 1967)

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Horizontal Pressure Loss Prediction Methods

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    125/436

    125

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Beggs and Brill correlation

    Correlating parameters:

    NFr = um2 / gD

    λλλλL = usL/um

    L1

    = 316 λλλλL

    0.302

    L2 = 0.0009252 λλλλ-2.4684

    L3 = 0.10 λλλλL- 1.4516

    L4 = 0.5 λλλλL-6.738

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Horizontal Pressure Loss Prediction Methods

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    126/436

    126

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Beggs and Brill correlation

    The flow regime transitions are given by the following:

    Segregated flow exist if

    λλλλL 

  • 8/16/2019 Pipeline Design.pdf

    127/436

    127

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Horizontal Pressure Loss Prediction Methods

    Beggs and Brill correlation

    The flow regime transitions are given by the following:

    Transition flow

    If the flow regime is transition flow, the liquid holdup is calculated

    using both the segregated and intermittent equations and interpolatedusing the following

    HL = A λλλλL(segregated) + B λλλλL(intermittent)

    Where: A =L3 - NFRL3 – L2

    and B = 1 - A

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Horizontal Pressure Loss Prediction Methods

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    128/436

    128

     S  ch l   um b  er  g er P r i  v a t   e

    Copyright 2006, NExT, All rights reserved

    Beggs and Brill correlation

    Liquid holdup, and hence, the average densityHL(φφφφ) = HL(0) x ψ ψψ ψ 

    HL(0) = a λλλλLb / NFRc

    With the constraint that HL(0)

     ≥≥≥≥ λλλλL

    and

    ψ ψψ ψ = 1 + C[sin (1.8θθθθ) – 0.333 sin3(1.8θθθθ)]

    Where

    C = (1 - λλλλL)ln(d λλλλLe NLVf NFRg)

    Where: a, b, c, d, e, f, and g depend on the flow regime and are given in thefollowing tables.

    C must be ≥≥≥≥ 0 and NLV = usL(ρρρρL/g σσσσ)1/4

    Click to edit Master title style

    TWO-PHASE FLOW: Gas-Liquid

    Horizontal Pressure Loss Prediction Methods

    Multiphase Flow

  • 8/16/2019 Pipeline Design.pdf

    129/436

    129