physiochemical and transgenic approaches to increase

17
Physiochemical and Transgenic Approaches to Increase Artemisinin Production  Prof. M. Z. Abdin Centre for Transgenic Plant Development Department of Biotechnology Jamia Hamdard New Delhi-110062 INDIA [email protected] IN COLLABORATION WITH Dr.D.C.Jain Ipca,Mumbai

Upload: others

Post on 22-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physiochemical and Transgenic Approaches to Increase

Physiochemical and Transgenic Approaches to Increase Artemisinin Production 

 

Prof. M. Z. AbdinCentre for Transgenic Plant Development

Department of BiotechnologyJamia Hamdard

New Delhi­110062INDIA

[email protected] 

IN COLLABORATION WITH Dr.D.C.JainIpca,Mumbai

Page 2: Physiochemical and Transgenic Approaches to Increase

ARTEMISININ

­Antimalarial (Li et al., 1982)

­Anti­carcinogenic   (Lai and Narendra, 1995; Efferth et al., 2001)

­Anti­hepatitis B (Romero et al., 2005)

­ Anti­leishmanial (Sen et al. 2007)

­Anti­schistosomiatic (Borrmann et al. 2001)

­Herbicidal (Chen et al., 1987; Duke and Lydon, 1987)

­Anti­HIV (Kim et al., 1993)

O

O

OO

O

H

HH

Structure of artemisinin

Page 3: Physiochemical and Transgenic Approaches to Increase

Global Demand of Artemisinin –    180 Metric Tonnes/ year

Global Production of Artemisinin­ 120 Metric Tonnes/year

Average Artemisinin Yield ­             20­25kg/ha

Average Artemisia annua leaves production – 1.5 ton/ha (India)

Average Artemisinin content in leaves ­ 0.5­0.9% (India)

Average Artemisinin Yield – 10­15 kg/ha

Artemisinin Production in India –  2 metric tonnes/Year

Artemisinin Demand in  India –  25­30 metric tonnes/year (Ipca)

NATIONAL and INTERNATIONAL 

STATUS OF ARTEMISININ

Page 4: Physiochemical and Transgenic Approaches to Increase

Cytosolic  MVA  Pathway                                     Plastidial  DXP  Pathway

3 acetyl­CoA                                                               Glyald 3p  +  Pyruvate            HMGS                                                                                  DXS          

HMG­CoA                                                                                  DXP            HMGR                                                                                  DXR

      MVA                                                                                    MEP

                                                  IPP                                                 DMAPP

                                                      GPP                                                      FPS    

    Squalene                                     FPP                 Amorpha­4,11­diene                           SQS                             ADS

                                                                                           CYP71AV1

  Sterol       Dihydroartemisinic acid              Artemisinic acid             Arteannuin B

                                                                                                                         Dihydroartemisinic acid                  Artemisinin              Dihydroarteannuin B                     hydroperoxide

Artemisinin biosynthetic pathway

Mevinolin Fosmidomycin

Planta Med  (2003)  69: 289­299 Plant Cell Rep (2007)   26: 2129­2136 

Page 5: Physiochemical and Transgenic Approaches to Increase

b

e

a. Rosetteb. Boltingc. Pre­floweringd. Floweringe. Post­flowering

A. annua L. plants in the experimental field of Jamia Hamdard

a c

d

Page 6: Physiochemical and Transgenic Approaches to Increase

S.No. Parameters Organs Stages studied

Rosette            Bolting        Pre­flowering      Flowering       Post­flowering                                                                 Mean ± SE       Mean ± SE     Mean ± SE         Mean ± SE       Mean ± SE 

Flower NA NA NA 2.24± 0.14 NA1 HMGR activity Leaf 1.02 ± 0.11 1.62 ± 0.13 2.92 ± 0.12 2.15 ± 0.14 0.74± 0.06 (nmol MVA/h/mg protein ) Stem 0.52 ± 0.04 0.83 ± 0.09 1.41 ± 0.14 0.71 ± 0.08 0.35 ± 0.02 Flower NA NA NA 0.75 ± 0.03 NA 2 Artemisinin Leaf 0.15 ± 0.01 0.56 ± 0.03 0.72 ± 0.06 0.52 ± 0.04 0.23± 0.01 (% d w) Stem 0.01 ± 0.001 0.03 ± 0.002 0.05 ± 0.004 0.04 ± 0.003 0.02± 0.001

Flower NA NA NA 0.21 ± 0.02 NA 3. Artemisinic acid Leaf 0.05 ± 0.01 0.29 ± 0.03 0.22 ± 0.06 0.20 ± 0.02 0.13± 0.01 (% d w) Stem 0.001 ± 0.0001 0.005 ± 0.0003 0.004 ± 0.0004 0.003 ± 0.0003 0.001± 0.0001

4. Mevalonate Flower NA NA NA 13.24 ± 0.015 NA (µg/g-1fw) Leaf 7.65 ± 0.006 10.50 ± 0.009 17.57 ± 0.012 12.15 ± 0.010 5..74±0.06 Stem 2.52 ± 0.004 4.83 ±0.007 7.41 ± 0.014 5.71 ± 0.008 1.85± 0.003

Relationship between HMG­CoA reductase activity, artemisinin, artemisinic acid andMevalonate content in different organs of A. annua L. plants at various phenological stages

HMGR activity expressed as nmol MVA formed/h/mg protein; artemisinin and artemisinic acid contents expressed as % d w and mevalonate expressed as µg/g­1 fw ; Each value represents mean ± SE (n = 3)NA: Not detected

Page 7: Physiochemical and Transgenic Approaches to Increase

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

% in

hibi

tion 

in th

e in

corp

orat

ion 

of la

bel (

14C

) int

o M

VA

  and

  art

emis

inin

MVA

Artemisinin 

Mevinolin concentration (µM)

Effect of mevinolin on the synthesis of MVA and artemisinin in twigs of A. annua L. plants  in the  presence of 120 µM HMG­CoA (3­14C) .

Page 8: Physiochemical and Transgenic Approaches to Increase

0

10

20

30

40

50

60

70

80

90

100

120 140 160 180 200 220 240 260 280

MVA

Artemisinin

HMG­CoA (3­14C) concentration (µM)

% in

crea

se in

 the 

inco

rpor

atio

n of

 labe

l (14

C) i

n M

VA

 and

 art

emis

inin

 

Effect of increasing concentration of HMG­CoA (3­14C) (120­280 µM) in the synthesis ofMVA and Artemisinin in twigs of A. annua L. in presence of 150 µM of mevinolin .

Page 9: Physiochemical and Transgenic Approaches to Increase

 Effect of mevinolin and fosmidomycin on  artemisinin accumulation in twigs of A. annua L. plants. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Control FOS MEV

Art

emis

inin

 acc

umul

atio

n (m

g g­1

dw)

Page 10: Physiochemical and Transgenic Approaches to Increase

Effect of growth hormones on artemisinin content and HMGR activity in the leaves of Artemisia annua L.

The hormone treatments were given to Artemisia annua L. plants as fine spray at vegetative stage. The artemisinin and enzyme activity were determined in the leaves collected at pre­flowering stage as per the protocols standardized in our laboratory (Abdin et al., 2005)

3.96 (00)

5.00 (26.2)

5.12 (29.2)

5.55 (40.1)

0.065 (00)

0.085 (30.7)

0.087 (33.8)

0.090 (38.4)

CONTROL

IAA

GA3

IAA + GA3

HMG-CoA Reductase Activity (nmol MVA

h-1mg-1 protein)

Artemisinin content (% DW)

Hormones (100 ppm)

Page 11: Physiochemical and Transgenic Approaches to Increase

pBin AR (~12.5 kb)

HMG­CoA Reductase (3 kb)

BamHI SalI

EcoRI BamHI SalI EcoRI/HindIII

CaMV35S (0.8 kb) OCS (0.2 kb)

EcoRI EcoRI/HindIII

HMG­CoA Reductase (3 kb)

Co­cultivation  of  leaf  explants  with  Agrobacterium tumefaciens (after 48 hrs)

               A. Control   B. A. tumefaciens infected 

A B

Regeneration on Kanamycin containing selection mediumE and F. Shoot regenerating from Callus  G and H. Clonal propagation of Transformed shoots I, J and K. Transgenic shoot on multiplication medium

L. Transgenic shoot on rooting medium

Genetic Manipulation of Genetic Manipulation of Artemisia annua Artemisia annua for higher for higher artemisinin contentartemisinin content

Page 12: Physiochemical and Transgenic Approaches to Increase

(B)  Southern  analysis  after  genomic DNA  was  digested  with  Sal1  and hybridized  with  HMGR­specific  gene probe.Lane 1: Plasmid DNA, Lane 2: Negativr control (DNA from wild type plant), Lanes  3­9:  DNA  samples  from transgenic lines.

(A)  PCR  analysis  in  7 kanamycin­resistant  plants for  the  presence  of  npt  IIgene: lane  1:  DNA  ladder    (1 Kb), lane 2: Positve control plasmid  DNA,  lane  3: Negative control DNA of a wild type plant, lanes 4­10:  Putative  transgenic  plant DNA. 

MOLECULAR ANALYSIS OF TRANSGENIC PLANTSMOLECULAR ANALYSIS OF TRANSGENIC PLANTS

Page 13: Physiochemical and Transgenic Approaches to Increase

TRANSGENIC PLANTSTRANSGENIC PLANTS

Page 14: Physiochemical and Transgenic Approaches to Increase

302.1 ± 37.5 (-4.13)11.2 ± 1.5 (-6.67)

TL78

318.0 ± 35.1 (0.92)12.2 ± 1.4 (1.67)TL67

371.1 ± 31.5 (17.77) 33.0 ± 1.2 (175.0)

TL56

369.0 ± 38.3 (17.11)31.1 ± 0.9 (159.17)

TL45

386.0 ± 33.2 (22.50)35.2 ± 1.0 (193.33)

TL34

318.0 ± 34.8 (0.92)13.0 ± 1.2 (8.33)TL23

320.1 ± 30.2 (1.59)13.1± 1.6 (9.17)TL12

315.1 ± 35.6 (0.0)12.0 ± 1.6 (0.0)Micro-propagated wild type

1

**Artemisinin Content (µg/g dw)

*HMGR Activity (nmol MVA mg protein-1 h-1)

Plant TypeS. No.

*Each value represents mean of 3 replicates ± SD                                 Values in paraentheses are %  

  **Each value represents mean of 5 replicates ± SD                               increase/decrease over control

    TL – Transgenic Lines                                                                                       Planta Medica  (2009)75: 1­6

Page 15: Physiochemical and Transgenic Approaches to Increase

291 (00)576 (98)

892 (207)

CONTROLSalinity (160 mM)Lead (Pb; 500 ppm)

ARTEMISINIIN CONTENT (mg/g DW)

STRESS

EFFECT OF ABIOTIC STRESSES ON ARTEMISININ CONTENT IN THE LEAVES OF Artemisia annua L.

The Salt (NaCl) and lead stress was given at bolting stage (100 DAS) and artemisinin was determined 10 days after the treatment

Environ. Exp. Bot. (2005) 53: 185-193.

Page 16: Physiochemical and Transgenic Approaches to Increase

22.70 ± 0.60 (54.38)

0.71 ± 0.01 (27.29)

0.400±0.006

7.95 ± 0.18

(14.98)

3.19 ± 0.10

(21.55)

T4 (N40+40 + P40 +

K40 + S15+15)

19.51 ± 0.73 (32.71)

0.66 ± 0.02 (17.94)

0.393 ±0.006

7.54 ± 0.24

(8.97)

2.95 ± 0.06

(12.47)

T3

(N40+40+P40+K40)

16.21 ± 0.31 (10.24)

0.59 ± 0.01 (5.35)

0.386 ±0.004

7.13 ± 0.19

(3.11)

2.75 ± 0.06

(4.94)

T2 (Organic Manure, 15 ton ha-1)

14.70 ± 0.52 (0.0)

0.56 ± 0.01 (0.0)

0.381 ±0.006

6.92 ± 0.28

(0.0)

2.62 ± 0.08

(0.0)

T1 (Control)

Artemisinin Yield (Kg ha-1)

ArtemisinnContent inLeaves (% dw)

LeafStemratio

StemBiomass(t ha-1)

LeafBiomass(t ha-1)

Treatment

   Each value represents mean ± SE (n = 9)                                        Values in parentheses are % increase over control

Effect of fertilizers  on artemisinin content  and yield in Artemisia annua L.

Page 17: Physiochemical and Transgenic Approaches to Increase

Thanks!