physics of advanced materials and nanostructures

93
Universitatea din Bucure ti ș Facultatea de Fizică Str. Atomi tilor nr. 405 ș Măgurele, Ilfov, 077125 CP MG-11 http://www.fizica.unibuc.ro MASTER PROGRAM Physics of advanced materials and nanostructures BUCUREŞTI 2013

Upload: others

Post on 27-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics of advanced materials and nanostructures

Universitatea din Bucure tiș

Facultatea de FizicăStr. Atomi tilor nr. 405șMăgurele, Ilfov, 077125

CP MG-11http://www.fizica.unibuc.ro

MASTER PROGRAM

Physics of advanced materials and

nanostructures

BUCUREŞTI

2013

Page 2: Physics of advanced materials and nanostructures

Cuprins

Ob.401 Advanced quatum mechanics. Quantum statistical physics.....................................................4

Ob.402 Solid state physics II.................................................................................................................7

Ob.403 Preparation of nanomaterials and nanostructures................................................................10

Op.I11 Introduction to quantum theory of many-body systems........................................................13

OpI12 Special topics in mathematical physics....................................................................................16

Op.I22 Linear response theory............................................................................................................22

Op.I23 Transport phenomena in disordered materials.......................................................................25

Ob.406 Magnetism. Spintronics..........................................................................................................28

Ob.407 Physics and technology of organic materials for electronics and optoelectronics................31

Ob.408 Characterization techniques for nanomaterials.....................................................................34

Op.I31 Modeling techniques for electronic and optoelectronic devices............................................37

Op.I32 Crystal growth techniques.......................................................................................................40

Op.I33 Nanostructures for electronics, optoelectronics, sensors and bio-electrochemistry..............43

Op.I41 Tehnici de măsurare a coeficienților optici și de transport ai semiconductorilor....................47

Op.I42 Physics and technology of thin solid films...............................................................................50

Ob.501 Interaction of laser radiation with matter..............................................................................53

Ob.502 Physics of liquid crystals and polymers. Applications.............................................................56

Op.II11 Nonlinear optical phenomena................................................................................................59

Op.II12 Physics of dielectrics..............................................................................................................62

Op.II21 Optoelectronic properties of liquid crystals and polymer thin films. Technological

applications.........................................................................................................................................65

Op.II22 Interface phenomena in polymer structures. Applications in nanotechnology......................68

Op.II31 Computational methods in theory of electronic structure of materials.................................71

Op.II32 Advanced numerical methods in physics of many-body systems...........................................74

2

Page 3: Physics of advanced materials and nanostructures

Op.II41 Special electronic and optoelectronic devices.......................................................................77

Op.II42 Fizica Dispozitivelor cu Semiconductori.................................................................................81

DF.II1 Tranziții de fază în starea condensată......................................................................................84

DF.II2 Metode avansate de calcul paralel...........................................................................................88

DF.II3 Instrumentaţie virtuală şi achiziţie de date..............................................................................91

3

Page 4: Physics of advanced materials and nanostructures

Ob.401 Advanced quatum mechanics. Quantum statistical physicsName Advanced quatum mechanics.

Quantum statistical physicsCode Ob.401

Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DF

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 6Total hours in curriculum 56 Total hours for

individual study94 Total hours per

semester150

Lecturer(s) Prof. Virgil BĂRAN, Assoc. Prof. Radu Paul LUNGU

Faculty Physics Total hours per semester in curriculum Department Theoretical Physics,

Mathematics, Optics, Plasma, Lasers

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Thermodynamics and

statistical physics

Recommended Algebra, Geometry and differential equations, Equations of mathematical physics

Estimated time (hours per semester) for the required individual study 1. Learning by using the course notes 7 8. Preparation of presentations. 102. Learning by using manuals, lecture notes, etc.

8 9. Preparation for exam 13

3. Study of indicated bibliography 10 10. Consultations 74. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials

9 12. Internet research 10

6. Preparation of reports, small projects, homeworks

10 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding of peculiarities of physical properties of quantum systems and of quantum transitions.- Understanding of the formalism of statistical physics of quantum systems - Ability to analyze physical phenomena based on fundamental principles

4

Page 5: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - ability to explain experimental results based on fundamental principles of quantum physics;- ability to elaborate and present scientific ideas/models.

3. Instrumental - ability to use theoretical methods in modelling various physical systems of interest.

4.Attitudinal to develop an interest for the field; to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Theory of time-dependent perturbationsSchrӧdinger, Heisenberg and interaction (Dirac) representations of quantummechanics. Time evolution operator: definition, properties, Dyson perturbative expansion.Transition amplitude. Transition probability. Fermi’s golden rule for transition rate. Transition rate in the case of a periodic perturbation. Principle of detailed balance. Physical interpretation.

Quantum statistical mechanicsQuantum states. Statistical (density) operator: defintion and properties. Timeevolution. Quantum enthropy. Boltzmann-von Neumann formula. Physical interpretation.Properties. Principle of maximum enthropy. Equilibrium distributions. Statisticaloprator in equilibrium. Boltzmann-Gibbs formula.Partition functions: definition and properties. Enthropy in thermodynamicequilibrium, natural variables. Equilibrium statistical ensembles. Ensembleaverages. Canonical, grand-canonical and microcanonical ensembles..Grand-canonical partition function for systems of independent fermions. Fermi-Dirac distribution function. Physical interpretation. Grand-canonical partition function for systems of independent bosons. Bose-Einstein distribution function. Physical interpretation.

Tutorials : Helium atom ; Scattering cross-section in Born’s approximation; Theory of time-dependent perturbations : exactly soluble models, Rabi’soscilations.Ideal gas of fermions: equation of state, heat capacity.Bose-Einstein condensation; experimental observations and physical explanation.Photons gas; Planck’s radiation law.Aplications.

Bibliography 1. J.J. Sakurai, Modern quantum mechanics, Addison-Wesley, 19902. F. Schwabl, Advanced quantum mechanics, Springer 20083. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006

5

Page 6: Physics of advanced materials and nanostructures

4. L.D. Landau, E.E. Lifsit, Fizică Statistică, Editura Tehnică5. K. Huang, Statistical Mechanics, John Wiley & sons, 19876. Note de curs în format electronic, care se vor afla pe site-ulhttp://www.unibuc.ro/prof/baran_v/

Necessary scientific infrastructure

PC workstations, CC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 55%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 25%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Correct solutions to homework problems. Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Lecturer(s) signature(s)

June 20, 2014 Professor Virgil BĂRAN,

Associate Professor Radu Paul LUNGU

6

Page 7: Physics of advanced materials and nanostructures

Ob.402 Solid state physics IIName Solid state physics II Code Ob.402Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DF

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 5Total hours in curriculum 56 Total hours for

individual study94 Total hours per

semester150

Teacher(s) Prof. Daniela DRAGOMAN

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and Biophysics Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Thermodynamics and

statistical physics, Solid state physics I

Recommended Equations of mathematical physics, Electronics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 62. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 74. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 10 12. Internet research 106. Preparation of reports, small projects, homeworks

10 13. Other activities… 0

7. Preparation for quizzes 8 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of charge transport phenomena in solids.- Understanding physical phenomena at metal-semiconductor contacts - Ability to use appropriate mathematical and numerical models in modelling physical phenomena

2. Explication and interpretation - ability to explain experimental results based on fundamental principles of quantum physics;- ability to elaborate and present scientific ideas/models.

7

Page 8: Physics of advanced materials and nanostructures

Specific competences

3. Instrumental - Ability to analyze and understand relevant experimental data and to derive rigorous conclusions- Ability to use theoretical methods in modelling various physical systems of interest.

4.Attitudinal to develop an interest for the field; to realize the importance of the field of solid state physics in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Charge transport in bulk crystals. Transport coefficients. Boltzmann’s formalism for transport.Relaxation time approximation.Scattering mechanisms. Elastic and inelastic scattering of free charge carriers. Expressions of the relaxation time for various scattering mechanisms.Galvanomagnetic, thermoelectric and thermomagnetic effects. Expressions of transport coefficients.Physics of metal-semiconductor contacts.Peculiarities of charge transport in mesoscopic structures. Quantum effects inlow dimensional systems.. Tutorials :Electrical conductivity in various materials in various temperature and doping regimes.Electrical conduction in magnetic fields.Electrical conduction in thin films. Surface effects. Ballistic charge transport.Transfer matrix and scattering matrix method in evaluating the transmission coefficient.

Bibliography 1. S.S. Li, Semiconductor Physical Electronics, 2nd edition, Springer, 20062. I. Licea, Fizica starii solide, Editura Univ. Bucuresti, 19903. M. Dragoman, D. Dragoman – Nanoelectronics: Principles and Devices, Artech House, 2nd edition, Boston, U.S.A., 20094. Note de curs in format electronic, care se vor afla pe site-ulhttp://www.unibuc.ro/prof/dragoman_d/

Necessary scientific infrastructure

PC workstations, CC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 60%

- hands-on lab test&quiz 0%

- results to periodic tests/quizzes 20%

- results to mid-term examination (oral, optional) 20%

- scientific reports, symposium etc 0%

- other activities (to be specified) ………………… 0%

8

Page 9: Physics of advanced materials and nanostructures

Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Correct solutions to homework problems. Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Lecturer(s) signature(s)

June 20, 2014 Professor Daniela DRAGOMAN,

9

Page 10: Physics of advanced materials and nanostructures

Ob.403 Preparation of nanomaterials and nanostructuresName Preparation of nanomaterials

and nanostructuresCode Ob.403

Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DG

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Prof. Ștefan ANTOHE, Assoc. Prof. Lucian ION

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and Biophysics Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electricity, Thermodynamics, Solid state physics

I, OpticsRecommended Electronics, Introduction to nanotechnology

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge of modern technologies for producing nanomaterials and nanostructures.- Understanding underlying physical phenomena - Ability to analize and understand relevant experimental data and to formulaterigorous conclusions 2. Explication and interpretation - ability to elaborate and present scientific ideas/models.

10

Page 11: Physics of advanced materials and nanostructures

Specific competences3. Instrumental - Ability to use theoretical models in solving physical problems of interest and ininterpreting experimental data.

4.Attitudinal to develop an interest for the field; to realize the importance of the field of solid state physics in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Nanostructured materials 1. Nanomaterials: relevant length scales. Specific physical properties2. Crystal growth models. Thermodynamics and kinetics of crystal growth.3. Fabrication techniques. Physical principles. - dc and rf magnetron sputtering - pulsed laser deposition - electrochemical deposition - molecular beam epitaxy4. Self-assembled materials at nanoscale 5. Applications to electronics and optoelectronics 6. Aplicații în tehnologia celulelor solare.

Nanostructures 7. Types of nanostructures 8. Top-down fabrication techniques. Lithography. 9. Bottom-up fabrication techniques; self-assembling at nanoscale.10. Production of metallic and semiconductor nanowires by template based methods. 11. Nanowires and nanotubes. Applications.

Laboratory practical work : 1. Deposition of nanostructured films by rf-sputtering 2. Electrochemical deposition3. Surface characterization by atomic force microscopy4. Nanolitography5. Software techniques for data acquisition

Bibliography 1. T. Ohji, A. Wereszczak (Eds.), Nanostructured Materials andNanotechnology (Wiley, NewYork, 2009).

2. C. Dupas, P. Houdy, and M. Lahmani, Nanoscience. Nanotechnologies andNanophysics (Springer Verlag, Berlin, 2004).

3. M. Adachi, D.J. Lockwood (Eds)., Self-Organized Nanoscale Materials(Springer Verlag, Berlin, 2006).

4. Koehler, W. Fritzsche, Nanotechnology. An Introduction to Nanostructuring Techniques (Wiley, New York, 2007).

5. Lecture notes available on http://solid.fizica.unibuc.ro/cursuri/Necessary scientific infrastructure

Experimental setups in Thin Films Laboratory and Nanotechnology Laboratoryof Materials and Devices for Electronics and Optoelectronics Research Center

11

Page 12: Physics of advanced materials and nanostructures

Final mark is given by: Weight, în %{Total=100%}

- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 10%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Prof. Ștefan ANTOHE

Assoc. Prof. Lucian ION

12

Page 13: Physics of advanced materials and nanostructures

Op.I11 Introduction to quantum theory of many-body systems Name Introduction to quantum

theory of many-body systemsCode Op.I11

Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DG

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Prof. Virgil BĂRAN, Assoc. Prof. Radu Paul LUNGU

Faculty Physics Total hours per semester in curriculum Department Theoretical Physics,

Mathematics, Optics, Plasma, Lasers

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Thermodynamics and

statistical physics, Solid state physics IRecommended Equations of mathematical physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding peculiarities of physical properties of quantum many-body systems.- Understanding occupation number representation of quantum mechanics- Knowledge and understanding of effects related to fermionic or bosonic natureof quantum particles - Ability to work with theoretical methods of quantum many-body systems

13

Page 14: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - ability to elaborate and present scientific ideas/models.- ability to use specific mathematical models in analyzing physical phenomena related to many-body systems

3. Instrumental - Ability to use theoretical models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field; to realize the importance of the field of solid state physics in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Occupation-number representation of quantum mechanicsQuantum description of many-body systems. Fock’s space. Permutation operator. Particle exchange symmetry. Symmetry postulates foridentical quantum particle systems. Completely symmetric and antisymmetricquantum states.Creation and annihilation operators. Vacuum state. Fundamental algebraicrelations for fermions and bosons creation/annihilation operators.Field operators. Definition and properties.One-body and two-body operators.

Hartree-Fock approximationHartree-Fock method in occupation-number formalism. Electron Coulomb interaction. Jellium model. Ground state energy in the first perturbation order. Hubbard’s model in occupation-number formalism. Physical properties

Pairing interaction and superconductivityExperimental observations and phenomenology of superconductivity. London’s equations. Effective interaction between electrons and pairing Hamiltonian. Barden-Cooper-Schriffer (BCS) model. Properties.Bogoliubov-Valatin transformation. Quasiparticles. Pairing equations. Properties of superconductors.

Tutorials: Fermi gas in ground state: Fermi’s sea, relationship between density and quasi-momentum. One-particle density matrix for fermion systems. Pair correlation function for fermions and bosons. Definition, properties,physical consequences. Hartree-Fock approximation: examples. Koopmans’ theorem.Superconductivity: constant coupling function. Ground state energy. Derivation of gap equation. Physical interpretation.

14

Page 15: Physics of advanced materials and nanostructures

Bibliography 1. J.W. Negele, H. Orland, Quantum Many Particle Systems (Advanced Book Program)2. P. Nozieres, Theory of Interacting Fermi systems (Advanced Book Program)3. J.F. Annett, Superconductivity, Superfluidity and Condensates (Oxford University Press)4. Fetter A.L. , J.D. Walecka Quantum theory of Many Particle systems (McGraw Hill, New-York)5. P.W. Anderson, Concepts in Solids, World Scientific, 19976. 6. W. Nolting, Fundamentals of many-body physics, Springer 2009.

Necessary scientific infrastructure

PC workstations connected to CC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 55%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 25%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Correct solution to homework problems.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Prof. Virgil BĂRAN,

Assoc. Prof. Radu Paul LUNGU

15

Page 16: Physics of advanced materials and nanostructures

OpI12 Special topics in mathematical physicsName Special topics in mathematical

physicsCode Op.I12

Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DG

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Prof. Nicolae COTFAS

Faculty Physics Total hours per semester in curriculum Department Theoretical Physics,

Mathematics, Optics, Plasma, Lasers

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Linear algebra, Mathematical analysis, Equations

of mathematical physicsRecommended Quantum mechanics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

0 13. Other activities… 0

7. Preparation for quizzes 10 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of complex functions derivatives, contour integrals and Laurent series; applications to calculus of definite integrals - Understanding of Fourier’s transform; ability to use it in applications.- Understanding tensor calculus.- Knowledge and understanding of special functions and orthogonal polynomialsfor use in physics problems.- Understanding of coherent states formalism and ability to use it in physics problems

16

Page 17: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to use mathematical models in studying physical phenomena - Ability to choose adequate representations for mathematical objects in physics problems - Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical mehods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for mathematical physics; to realize the importance of the field mathematical physics in modernphysics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Fourier transform. Convolution product and its Fourier transform. Fourier transform of generalized functions. Dirac’s distribution.

Discrete Fourier transform. Properties. Eigenfunctions and eigenvalues. Fractional Fourier transform. Fast Fourier transform.

Dual Hilbert space. Tensors on finite-dimensional vector spaces. Tensor operations. Tensor product of Hilbert spaces. Applications.

Orthogonal polynomials and special functions. Hypergeometric polynomials. Creation and annihilation operators. Factorization method for Schrödinger equation in quantum mechanics.

Standard coherent states and their properties. The resolution of the identity. Generation and annihilation operators. Quantification methods.

Tutorials :

Complex functions: derivatives and contour integrals (4 hours)

Taylor and Laurent series. Residues. Examples. Calculus of definite integrals by using residue theorem (4 hours)

Explicit calculations of Fourier transforms. Conjugate variables. Uncertainty principle. Wigner’s function. (4 ore)

Calculation of discrete Fourier transforms. Quantum systems with finite dimensional Hilbert space. Density operators.. Qubits and qutrits (4 ore)

Fourier transform: eigenvectors and eigenvalues. Properties of fractional Fourier transform. Time evolution of harmonic oscillator. (2 ore).

Tensori calculus. Tensor products. (2 ore).

Legendre’s polynomials and associated functions. Laguerre’s polynomials. Hermite’s polynomials. Factorization method. Exactly solvable Schrodinger equations. (4 ore).

Frames and orthonormal bases. The resolution of identity. Systems of coherent states. Quantification based on systems of coherent states or frames. (4 ore)

17

Page 18: Physics of advanced materials and nanostructures

Bibliography 1. R. J. Beerends et al., Fourier and Laplace Transforms, CambridgeUniversity Press, 2003

2. J. F. James, A Student’s Guide to Fourier Transforms, CambridgeUniversity Press, 2011

3. P. Hamburg, P. Mocanu, N Negoescu, Analiza Matematica (FunctiiComplexe), EDP, Bucuresti 1982

4. G. Mocica, Probleme de Functii Speciale, EDP, 19885. V. S. Vladimirov, Ecuatiile Fizicii Matematice, ESE, 19806. G. Teschl, Mathematical Methods in Quantum Mechanics with

Applications to Schrodinger Operators, AMS 20097. A. Perelomov, Generalized Coherent States and Their

Applications , Springer, Berlin, 19868. A. F. Nikiforov et al., Classical Orthogonal Polynomials of a

Discrete Variable, Springer-Verlag, Berlin, 19919. J.-P. Gazeau, Coherent States in Quantum Physics, Wiley-VCH,

Berlin, 200910. S. J. Gustafson and I. M. Sigal, Mathematical Concepts of

Quantum Mechanics, Springer, Berlin, 201111. Lecture notes available at http://fpcm5.fizica.unibuc.ro/~ncotfas/

Necessary scientific infrastructure

PC workstations connected to CC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 30%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 0%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Professor Nicolae COTFAS

18

Page 19: Physics of advanced materials and nanostructures

Op.I21 Introduction to physics of mesoscopic systems

Name Introduction to physics of mesoscopic systems

Code Op.I21

Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Lucian ION

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 24 4

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid state physics I,

Thermodynamics and statistical physics, Electrodynamics, Equations of mathematical physics

Recommended Electronics, Optics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of physical properties of mesoscopic systems - Understanding of scaling theory of localization- Understanding of quantum interference effects in mesoscopic systems - Knowledge and understanding of Landauer-Büttiker formalism- Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

19

Page 20: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to use advanced mathematical models in studying physical phenomena in mesoscopic systems- Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical mehods and models in solving physical problems of interest.- Ability to use numerical methods in modelling mesoscopic systems- Ability to use specific experimental techniques for investigating the structure, electrical and optical properties of mesoscopic systems. 4.Attitudinal to develop an interest for the rapidly growing field of mesoscopicphysics; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Mesoscopic systems: definition and properties. Fabrication techniques.

Relevant length scales. Anderson localization. Scaling theory of localization. Low dimensional electronic systems. Case d ≤ 2. Case d > 2. Metal-insulator transition.

Quantum transport. Landauer-Büttiker formalism. Applications. Ballistic transport. Adiabatic transport. Weak localization regime.

Aharonov-Bohm effect. Phase-relaxation time. Effect of electron-electron interaction.

Coulomb blockade

Transport in magnetic fields. Shubnikov-de Haas oscillations. Integral quantum Hall effect. Fractional quantum Hall effect.

Laborator:

Charge transport in disordered ultra-thin films.

Photoluminescence in quasi-2D GaxAl1-xAs/GaAs structures

Tutorials :

Electron states in mesoscopic systems. Envelope function approximation. Density of states in low dimensional electron systems. Applications.

Disorder effects in 1D electron systems.

Electron states in 2D systems in magnetic fields. Landau levels. Density of states. Disorder effects.

Electron-phonon interaction in low-dimensional electron systems. Peierls transition..

Charge transport in mesoscopic structures. R-matrix formalism.

20

Page 21: Physics of advanced materials and nanostructures

Charge transport in quantum wires. Ab initio modelling.

Bibliography 7. D.K. Ferry, S.M. Goodnick, Transport in nanostructures (CambridgeUniversity Press, Cambridge, UK, 1997).

8. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

9. H. Bouchiat, Y. Gefen, S. Gueron, G. Montambaux, J. Dalibard (Eds.),Nanophysics: Coherence and Transport (Elsevier, Amsterdam,Netherland, 2005).

10. S. Datta, Electronic transport in mesoscopic systems (CambridgeUniversity Press, Cambridge, UK, 1997)

11. Lecture notes available at http://solid.fizica.unibuc.ro/cursuri/

Necessary scientific infrastructure

- Experimental setups in Laboratory for electrical and optical characterizationof materials, Materials and Devices for Electronics and OptoelectronicsResearch Center;- PC workstations connected to HPC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 10%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date: Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Lucian ION

21

Page 22: Physics of advanced materials and nanostructures

Op.I22 Linear response theoryName Linear response theory Code Op.I22Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Lucian ION, Lecturer George Alexandru NEMNEȘ

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid state physics I,

Thermodynamics and statistical physics, Electrodynamics

Recommended Electronics, Optics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of physics of linear response of a system to an external perturbation - Understanding the properties of the linear response function, generalized susceptibility and correlation functions- Knowledge and understanding of fluctuation-dissipation theorem- Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

22

Page 23: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to use theoretical models in studying various physical (electrical, optical, etc.) phenomena related to linear response - Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical methods and models in solving physical problems of interest.- Ability to use theoretical results and methods in interpreting experimental data (electrical, optical, etc.). 4.Attitudinal to develop an interest for the field of linear response in physics; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : - Thermodynamics of non-equilibrium processes. - Thermodynamic forces and fluxes. - Linear response. Onsager’s equations. Applications: thermoeletrical effects- Kubo’s quantum theory of linear response. - Linear response function: definition, derivation and properties. - Correlation functions. - Gneralized susceptibility. - Kramers-Krönig relations. Dissipation phenomena. Relaxation phenomena. - Fluctuation-dissipation theorem. Physical consequences.- Quantum transport. Kubo’s formula. Kubo-Greenwood formula. Green’s functions.

Seminar :- Electrical conductivity of disordered electron systems.- Susceptibility of electron gas. Approximations.- Dynamical structure factor- Dielectric relaxation. Models and approximations.- Optical density of states. Critical points of energy bands in crystalline semiconductors. - Magnetic response. Magnetic resonance.

Bibliography 1. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II (Springer Verlag,Berlin, 1985).

2. L.D. Landau, E.M. Lifșiț, Fizica statistică (Editura Tehnică, București,1988).

3. U. Balucani, M. Howard-Lee, V. Tognetto, Dynamical correlations, Phys.Rep. 373, 409 (2003).

4. Lecture notes available at http://solid.fizica.unibuc.ro/cursuri/Necessary scientific infrastructure

- PC workstations connected to HPC-FSC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50%23

Page 24: Physics of advanced materials and nanostructures

- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 20%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)June 20, 2014 Assoc. Prof. Lucian ION

Lect. George Alexandru NEMNEȘ

24

Page 25: Physics of advanced materials and nanostructures

Op.I23 Transport phenomena in disordered materialsName Transport phenomena in

disordered materialsCode Op.I23

Year of study I Semester 1 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Lucian ION, Prof. Ștefan ANTOHE

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 14 14

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid state physics I,

Electricity and magnetism, ElectrodynamicsRecommended Electronics, Thermodynamics and statistical

physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 8 8. Preparation of presentations. 52. Learning by using manuals, lecture notes 7 9. Preparation for exam 83. Study of indicated bibliography 5 10. Consultations 64. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 76. Preparation of reports, small projects, homeworks

8 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding peculiarities of electron states in disordered materials - Knowledge and understanding of peculiarities of transport phenomena in disordered conductors - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions- Ability to critically analyze and compare various physical phenomena related to charge transport

25

Page 26: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to use theoretical models in studying the charge transport - Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical methods and models in solving physical problems of interest.- Ability to use appropriate experimental techniques in studying transport properties- Ability to use theoretical results and methods in interpreting experimental data (electrical, optical, etc.). 4.Attitudinal to develop an interest for the field of linear response in physics; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Localization of electron states in solids: structure of isolated impurity states; localization in Lifschitz’s model; structure of impurity bands in weakly doped semiconductors; structure of impurity bands in heavily doped semiconductors.

Hopping transport mechanism: experimental results; Miller-Abrahams model; percolation models; nearest neighbor hopping mechanism; influence of impurity centers density; activation energy; variable range hopping mechanism (Mott). Peculiarities of charge transport in organic semiconductors.

Transport mechanisms in super-ohmic regime: space charge limited currents theory; exactly solvable models; case of a single impurity level; case of a impurity band with constant density of states; case of an impurity band with exponential density of states.

Laboratory practical works:

Charge transport in polycrystalline and amorphous semiconductor thin films

Charge transport in organic semiconductors

Influence of metal-semiconductor contacts in transport

Transport in space charge limited currents regime

Tutorials :

Shallow impurity levels in semiconductors. Non-degenerate energy bands. Degenerate energy bands. Asymptotic behaviour of impurity states. Percolation theory. Structure of critical cluster. Numerical models for determining the percolation threshold. Lattice models.

Hopping transport in magnetic fields. Magnetic field dependence of magnetoresistance.

26

Page 27: Physics of advanced materials and nanostructures

Coulomb gap. Shklovskii-Efros model.

Bibliography 1. B.I. Shklovskii, A.L.Efros, Electronic properties of doped semiconductors(Springer, Heidelberg, 1984).

2. S. Antohe, Fizica semiconductorilor organici (Editura Universității dinBucurești, București, 1997).

5. N.F. Mott, E.A. Davis, Electron processes in non-crystalline materials(Clarendon Press, Oxford, 1979).

Necessary scientific infrastructure

- Experimental setups in Laboratory for electrical and optical characterizations- PC workstations connected to HPC-FSC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50%- hands-on lab test&quiz 10%- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 20%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Lecturer(s) signature(s)

June 20, 2014 Professor Ștefan ANTOHE,

Assoc. Prof. Lucian ION

27

Page 28: Physics of advanced materials and nanostructures

Ob.406 Magnetism. Spintronics.Name Magnetism. Spintronics. Code Ob.406Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 6Total hours in curriculum 56 Total hours for

individual study94 Total hours per

semester150

Lecturer(s) Lect. Dr. George Alexandru NEMNEȘ

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

and Biophysics Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 24 4

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid State I,

Thermodynamics and statistical physics

Recommended Physical Electronics, Equations of mathematical physics

Estimated time (hours per semester) for the required individual study 1. Study using the course notes 10 8. Preparation of presentations. 52. Study using manuals, lecture notes, etc. 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 64. Research in library 10 11. Field research 05. Specific preparation for practicals/tutorials

10 12. Internet research 10

6. Preparation of reports, small projects, homeworks

10 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding the origin of the magnetism from fundamental perspective.- Understanding the types of magnetism, the notion of exchange integral in thecase of electron systems subject to Coulomb interaction.- The capacity to assimilate, analyse and compare diverse physical phenomena, employing fundamental principles.2. Explication and interpretation - The capacity of analyse and interpret experimental data and formulate rigorous theoretical conclusions.- The capacity to employ mathematical and numerical models for modelling the physical phenomena.

28

Page 29: Physics of advanced materials and nanostructures

Specific competences3. Instrumental - Ability to use theoretical methods in modelling various physical systems of interest.

4.Attitudinal to develop an interest for the field; to assume an ethical conduct in scientific research; to optimally cultivate one’s own potential in scientific activities.

SYLLABUS

Lecture : - Magnetic susceptibility. Types of magnetism.- Langevin paramagnetism.- Pauli paramagnetism (for metals).- Langevin diamagnetism.- Landau levels. Pauli diamagnetism for free electrons.- Ferromagnetism. Curie-Weiss law. Stoner criterion.- Exchange integral. - Super-exchange and double-exchange interaction.- Giant magnetoresistance.- Datta-Das field effect transistor.- Rashba and Dresselhaus spin-orbit interaction.- Spin scattering of magnetic impurities. Spin filters.- Spin relaxation mechanisms. Spin Coulomb drag. D’yakonov-Perelmechanism.- Dynamics of spin systems.

Seminars :- Calculation of the susceptibility for two-level sytems.- System with two electrons with Coulomb interaction. Coulomb and exchangeintegrals. Singlet and triplet states. - Exchange interaction. Applications of the Hartree-Fock method.- Density functional theory applications for magnetic systems. The SIESTApackage.- Transport in atomic sized systems. The TRANSIESTA code. Applications tospin-filters.

Laboratory:- Measurements of the magnetic susceptibility. FORK diagrams.

Bibliography R.M. White, Quantum Theory of Magnetism (Springer, Berlin, 1983).P. Mohn, Magnetism in the solid state (Springer, Berlin, 2002)Teruya Shinjo, Nanomagnetism and Spintronics (Elsevier, Amsterdam, 2009) I. Munteanu, Fizica solidului (Editura Universității din București, 2003)

Lecture notes will be available on the website:http://solid.fizica.unibuc.ro/~nemnes/

Necessary scientific infrastructure

Magnetometer (Paleomagnetism Laboratory), PC workstations

Final mark is given by: Weight, în %{Total=100%}

29

Page 30: Physics of advanced materials and nanostructures

- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 20%- scientific reports, symposium etc 0%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Correct solutions to homework problems. Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Lecturer(s) signature(s)

June 20, 2014 Lecturer George Alexandru NEMNEȘ

30

Page 31: Physics of advanced materials and nanostructures

Ob.407 Physics and technology of organic materials for electronics and optoelectronics Name Physics and technology of

organic materials for electronics and optoelectronics

Code Ob.407

Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 6Total hours in curriculum 56 Total hours for

individual study94 Total hours per

semester150

Teacher(s) Prof. Ștefan ANTOHE, Lect. Sorina IFTIMIE

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid state physics I,

Electricity and magnetism, ElectrodynamicsRecommended Electronics, Thermodynamics and statistical

physics, Optics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 52. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 64. Research in library 10 11. Field research 05. Specific preparation for practicals/tutorials 10 12. Internet research 106. Preparation of reports, small projects, homeworks

10 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding peculiarities of electron states in organic semiconductors - Knowledge and understanding of peculiarities of transport and optical phenomena in organic semiconductors - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions- Ability to critically analyze and compare various physical phenomena

31

Page 32: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to use appropriate theoretical models in studying transport and optical properties of organic semiconductors- Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical methods and models in solving physical problems of interest.- Ability to use appropriate experimental techniques in studying transport and opticalproperties- Ability to use theoretical results and methods in interpreting experimental data (electrical, optical, etc.). 4.Attitudinal to develop an interest for the field of physics of organic semiconductors; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Structural properties of organic semiconductors: small molecules organic semiconductors; aromatic hydrocarbon ; organic dyes; donor-acceptor complexes; semiconducting polymers; correlations between chemical structure and semiconducting properties.

Crystalline structure of organic semiconductors: structure of small molecular weight organic solids; structure of large molecular weight organic solids; point-like defects; diffusion in organic solids; diffusion mechanisms; methods for determining the diffusion coefficient; doping of organic semiconductors. Electron structure of organic solids: intermolecular interactions in organic solids; molecular orbitals; molecular excited states; band structure of molecular crystals; Le Blanc’s model; Katz-Rice-Chois-Jortner model.

Energy transfer in organic solids: excitons in organic solids; Mott-Wannierexcitons; Frenkel excitons; exciton diffusion; exciton triplets; influence of lattice defects on exciton diffusion; polarons in molecular crystals.

Charge transport in organic solids: transport mechanisms of in organic solids; tunnel effect; hopping mechanism; band transport mechanism; activation energy; anisotropy of conductivity; influence of pressure on dark conductivity of organic solids.

Laboratory practical works : 1.Preparation methods for organic thin films 2. Methods for determining the thickness of organic thin films 3. Structural characterization of organic thin films by X-ray diffraction 4. Surface morphology characterization by atomic force microscopy (AFM) 5. Optical absorption, reflection and transmission spectra of organic semiconductor thin films in NIR-Vis-UV6. Super-ohmic effects in organic semiconductor thin films

32

Page 33: Physics of advanced materials and nanostructures

Bibliography 3. S. Antohe, Fizica semiconductorilor organici (Editura Universității dinBucurești, București, 1997).

4. S. Antohe, Electronic and Optoelectronic Devices Based on OrganicThin Films, in Handbook of Organic Electronics and Photonics:Electronic Materials and Devices, H. Singh-Nalwa (Ed.) (AmericanScientific Publishers, Los Angeles, California, USA, 2006), vol 1.

5. N.F. Mott, E.A. Davis, Electron processes in non-crystalline materials(Clarendon Press, Oxford, 1979).

6. H. Meier, Organic Semiconductors. Dark and Photoconductivity ofOrganic Solids (Verlag Chemie, Weinheim, 1974).

7. F. Gutman and L. E. Lyons, Organic Semiconductors (Wiley, NewYork, 1967).

8. J. Kommandeur, in “Physics and Chemistry of the Organic Solids”(eds. D. Fox, M. M. Labes and A. Weissberger) (Wiley InterscienceNew York, 1965), cap.2, pp. 1-66.

9. W. Helfrich, Physics and Chemistry of the Organic Solid State,(Wiley Interscience, New York, 1967).

Necessary scientific infrastructure

- Experimental setups in Laboratory for electrical and optical characterizations- PC workstations connected to HPC-FSC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 10%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Professor Ștefan ANTOHE,

Lect. Sorina IFTIMIE

33

Page 34: Physics of advanced materials and nanostructures

Ob.408 Characterization techniques for nanomaterialsName Characterization techniques

for nanomaterialsCode Ob.408

Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Lucian ION

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 14 14

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid state physics I,

Electricity and magnetism, ElectrodynamicsRecommended Optics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of crystalline structure of materials - Understanding symmetry properties (point and space symmetry) of crystals- Understanding the physics of electromagnetic fields (Vis-UV, X rays)-matter interaction- Ability to analize and understand relevant experimental data and to formulate rigorous conclusions- Ability to critically analyze and compare various physical phenomena

34

Page 35: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to use appropriate theoretical models in studying structural and optical properties of materials- Ability to evaluate and interpret experimental data- Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical methods and models in solving physical problems of interest.- Ability to use appropriate experimental techniques in studying structural and optical properties of materials (X-ray diffraction and X-ray reflectometry, opticalspectroscopy)- Ability to use theoretical results and methods in interpreting experimental data (electrical, optical, etc.). 4.Attitudinal to develop an interest for the field of materials characterizations; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Crystallography 1. Generation and properties of X-rays 2. Crystalline structures. Symmetry properties. Classification. Point and space groups 3. X-ray diffraction. X-ray scattering corss-section. Structure factor. Ewald’s construction. 4. Real crystals - size effects - positional disorder effects - integrated intensity of diffraction peaks 5. Structural investigation methods for thin films and nanostructures. 6. Glancing/grazing incidence X-ray diffraction7. X-ray reflectometry.

Scanning electron microscopy. Applications to nanotechnology 8. Electron microscopy: physical principles. Elastic and inelastic scattering of accelerated electron beams interacting with condensed matter. 9. Scanning electron microscops – design and operation modes 10. Quantitative determinations. Energy Dispersive X-ray analysis (EDX) 11. Aplications to nanolithography. Limitations.

Optical characterizations 11. Optical transitions in bulk materials and nanostructures. 12. Optical absorption, reflection and transmission spectroscopy. Direct band semiconductors. Indirect band semiconductors. 13. Emission spectra. Photoluminescence. 14. Excitons in bulk materials and nanostructures Practicals : 1. X-ray diffraction. Determination of crystalline phases. Determination of latticeconstants. 2. X-ray diffraction. Quantitative analysis. Williamson-Hall method. Rietveld’s

35

Page 36: Physics of advanced materials and nanostructures

method. 3. Ultra-thin films characterization. Glancing/grazing incidence X-ray diffraction4. X-ray reflectometry. 5. Surface morphology characterization by SEM. 6. Surface morphology characterization by AFM. 7. Optical absorption and transmission spectroscopy of semiconductor thin films

Tutorials :Symmetry of crystalline structures.Structural characterization by X-ray diffraction. Applications.Analysis of multilayer structures by X-ray reflectometry Optical transitions in bulk crystals. Optical density of states. Direct and indirect band structures.Energy levels in nanostructures. Optical transitions.

Bibliography 1. M.A. Krivoglaz, Theory of X-ray and Thermal Neutron Scatteringby Real Crystals (Plenum Press, NewYork, 1995).

2. M. Grundmann, The Physics of Semiconductors. An Introductionincluding Devices and Nanophysics (Springer Verlag, Berlin,Germany, 2006).

3. P. Yu, M. Cardona, Fundamentals of semiconductors – Physicsand materials properties (Springer Verlag, Berlin, Germany,2001).

4. P.F. Fewster, Rep. Prog. Phys. 59, 1339-1407 (1996).5. L.G. Parratt, Phys. Rev. 95, 359 (1954).6. Lecture notes available at http://solid.fizica.unibuc.ro/cursuri

Necessary scientific infrastructure

- Experimental setups in Laboratory for electrical and optical characterizations- PC workstations connected to HPC-FSC computer cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50%- hands-on lab test&quiz 10%- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 20%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successful presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Lucian ION

36

Page 37: Physics of advanced materials and nanostructures

Op.I31 Modeling techniques for electronic and optoelectronic devices Name Modeling techniques for

electronic and optoelectronic devices

Code Op.I31

Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Lect. Cornel Mironel NICULAE

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electronics, Solid state physics I, Electronic

devices and circuitsRecommended Electricity and magnetism,

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of physical principles of modeling of electronic devices - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions- Ability to critically analyze and compare various physical phenomena

37

Page 38: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.

3. Instrumental - Ability to use mathematical methods and models in solving physical problems of interest.- Ability to use numerical methods in modelling electronic devices.

4.Attitudinal to develop an interest for the field of solid state electronics; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Developing models based on the physics of semiconductor devices. Models used in modern software packages. Physical models versus parametric models. Determination of the parameters of a model based on experimental data.Performance limits of electronic devices imposed by technology and theirinclusion in models. Modelling of important electronic devices: MOS, BiCMOS, bipolar transistor,laser diode.

Practicals :

Semiconductor devices – basic physical parameters: mobility, resistivity, contactresistance, doping density, free carriers density, series resisitance, threshold voltage, etc.

Detailed model for p-n junction.

Detailed models for MOS, BiCMOS and bipolar transistors. Detailed model for laser diode.

Experimental determination of model parameters.

Use of open-source popular software packages for modelling and simulations of electronic devices

Bibliography 1. D.K. Schroder, Semiconductor Materials and Device Characterization. (3rdEd.) (Wiley, New Jersey, 2006).

2. M. Dragoman, D. Dragoman, Nanoelectronics. Principles and Devices (Artech House, Boston, 2009).

Lecture notes will be available at:

10. http://www.unibuc.ro/prof/niculae_c_m/Necessary scientific infrastructure

- PC workstations with appropriate software packages

Final mark is given by: Weight, în %{Total=100%}

38

Page 39: Physics of advanced materials and nanostructures

- final exam results 40%- hands-on lab test&quiz 10%- results to periodic tests/quizzes 30%- results to mid-term examination (oral, optional) 0%- scientific reports, symposium etc 20%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successful presentations of reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Lect. Cornel Mironel NICULAE

39

Page 40: Physics of advanced materials and nanostructures

Op.I32 Crystal growth techniquesName Crystal growth techniques Code Op.I32Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Ciceron BERBECARU

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Solid state physics I, Thermodynamics and

statistical physicsRecommended Materials science and technology

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 12 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 6 9. Preparation for exam 123. Study of indicated bibliography 6 10. Consultations 44. Research in library 7 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 56. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 7 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of physical processes involved in crystal growth- Understanding phenomena at growth inteface - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions- Ability to critically analyze and compare various physical phenomena

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to interpret experimental data based on physical models

40

Page 41: Physics of advanced materials and nanostructures

Specific competences 3. Instrumental - Ability to use mathematical or numerical methods and models in solving physical problems of interest.- Ability to use and control crystal growth techniques (Czochralski, etc.)

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Crystal growth from the melt. Natural (constitutive) supercooling.Methods for crystal growth from vapor. Hydrothermal crystal growth..Methods for crystal growth from solutions.One-directional solidification.Zone melting.Nucleation processes. Homogeneous nucleation. Heterogeneous nucleation. Nucleation rate. Variation of free energy in nucleation processes. PBC theory.Growth interfaces. Configuration of growth interfaces. Kinks statistics. Jackson’s growth criterium. Temkin’s model. Burton-Cabrera-Franck (BCF) theory. Growth rate. Role of dislocations.Wilson-Frenkel model for crystal growth from the melt.Crystalization phenomena in low-dimensional systems.

Practicals:Purification methods for crystals. One-directional solidification. Czochralski KCl growth.Crystal growth from solutions. SR monocrystal.

Ultrapure crystals. Zone melting.

Bibliography 1. F.Rosemberger, “Fundamentals of Crystal Growth”, Springer-Verlag, 1979.2. P.Hartman, in “Crystal Growth: An Introduction”, ed. P.Hartman, North-Holland, 1973.3. G.H.Gilmer, R.Ghez, N.Cabrera, J.Crystal Growth, 8 (1971) 79.4. W.K.Burton, N.Cabrera, F.C.Frank, Philos.Trans.Roy.Soc.London A 243 (1951) 299-358.5. Alexandru H.V., Berbecaru C.,”Stiinta Materialelor – Cresterea cristalelor”, Ed. Univ. din Buc.,(2003).6. C. Berbecaru, H. Alexandru, “Metode experimentale in stiinta materialelor –cresterea cristalelor”, Ed. Univ. Buc., (2008),

Lecture notes will be available at http://solid.fizica.unibuc.ro/cursuri/Necessary scientific infrastructure

- Experimental setups in Crystal Growth and Characterization Laboratory

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50 %- hands-on lab test&quiz 30 %

41

Page 42: Physics of advanced materials and nanostructures

- results to periodic tests/quizzes 10 %- results to mid-term examination (oral, optional) 10 %- scientific reports, symposium etc 0 %- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Ciceron BERBECARU

42

Page 43: Physics of advanced materials and nanostructures

Op.I33 Nanostructures for electronics, optoelectronics, sensors and bio-electrochemistry Name Nanostructures for

electronics, optoelectronics, sensors and bio-electrochemistry

Code Op.I33

Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Lucian ION, Lect. Adrian RADU

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electricity and magnetism, Mechanics, Solid

state physics I, OpticsRecommended Preparation of nanomaterials and nanostructures,

Electronics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of modern technologies for fabrication of nanostructures and devices at nanoscale - Understanding physical processes involved in nanostructures fabrication- Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

43

Page 44: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to interpret experimental data based on physical models

3. Instrumental - Ability to use template methods for nanowire growth- Ability to use top-down lithographic methods for fabricating nanostructures- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Nanolocalization and geometry control of nanostructures1. Clean rooms. Classification2. Top-Down and Bottom-Up fabrication techniques3. Importance of nanostructures in fabricating devices with improved functionality - Single nanostructure based devices - Multiple nanostructures based dievices

Nanostructures for electronics and optoelectronics1. Field effect transistors (FET) - Nanowire based FETs - Graphene based FETs - Mesoscopic FETs 2. Light emission diodes (LEDs) based on nanodot arrays4. Spintronic devices based on segmented magnetic nanowire arrays

Nanostructured sensors and bio-electrochemical detection systems 1. Sensors. Definitions. Classification. Detection principles - physical sensors: for measuring the pressure, temperature, stress, position or force - bio-electrochemical sensors: for measuring humidity, chemicals concentration, pH, detection of bio-molecular species or micro-organisms

2. Nanostructures physical and electrochemical sensors. Detection principles - Resistive type detection based on single nanowires/nanotubes - Capacitive detection based on nanowire/nanotube arrays - Optical detection, based on localized surface plasmons - Electrochemical sensors for pH monitoring ; high sensitivity sensors based on arrays of functionalized metalic nanowires 3. Capacitive sensors : data acquisition and conditioning - Electrochemical impedance spectroscopy (EIS) - Methods for analysis in frequency domain of the output signal - Methods for analysis in time domain of the output signal

Integration and miniaturization of nanostructured electrochemical devices. 1. Integration of nanostructured devices with signal processing electronics 2. Organic/inorganic interfaces and bio-chemical systems

44

Page 45: Physics of advanced materials and nanostructures

3. Detection and real-time signal processing. Examples.

Practicals:

1. Fabrication of interdigitated microelectrodes by optical lithography 2. Fabrication of nanoporous alumina templates onto interdigitated electrodes obtained by photolithography. 3. Localized growth of metallic and semiconductor nanowire arrays by using nanoporous alumina templates. Application to high sensitivity capacitive detection4. Growth of segmented magnetic nanowire arays for spintronic devices 5. Template-free growth and control of zinc oxide semiconductor nanowires/nanotubes. Applications to solar cells technology

Bibliography 1. T. Ohji, A. Wereszczak (Eds.), Nanostructured Materials andNanotechnology (Wiley, NewYork, 2009).

2. C. Dupas, P. Houdy, and M. Lahmani, Nanoscience.Nanotechnologies and Nanophysics (Springer Verlag, Berlin, 2004).

3. M. Adachi, D.J. Lockwood (Eds)., Self-Organized NanoscaleMaterials (Springer Verlag, Berlin, 2006).

4. M. Koehler, W. Fritzsche, Nanotechnology. An Introduction toNanostructuring Techniques (Wiley, New York, 2007).

5. M. Di Ventra, S. Evoy, and J. R. Heflin Jr., Introduction to NanoscaleScience and Technology (Kluwer Academic Publishers, 2004, ISBN:1-402-07757-2).

6. Vlad Andrei Antohe, Quantum Rings Produced by Nanolithographywith an Atomic Force Microscope, Dissertation Thesis (HannoverUniv., Germany, 2004).

7. Vlad Andrei Antohe, pH Sensitive Capacitive Detectors Based onLocalized Nanowire Arrays, PhD Thesis (UCL, Belgium, 2012).

8. Alexandru Vlad, Advanced Fabrication of Nanowire Arrays andThree-Dimensional Nanostructures, PhD Thesis (UCL, Belgium,2009).

9. S. Mátéfi-Tempfli, Leading Edge Nanotechnology ResearchDevelopments: Nanostructures Grown Via Electrochemical TemplateMethods, ch. 10 (Nova Science, New York, 2008).

10. Dieter Vollath, Nanomaterials: An Introduction to Synthesis,Properties and Applications, (Wiley, July 2008, ISBN: 978-3-527-31531-4).

11. Bharat Bhushan, Springer Handbook of Nanotechnology, Springer-New York, 2nd edition, 2004).

12. C. Dupas, P. Houdy, and M. Lahmani, Nanoscience. Nanotechnologiesand Nanophysics (Springer-New York, 2004, ISBN: 3-540-28616).

13. Thomas Heinzel, Mesoscopic Electronics in Solid StateNanostructures, (Wiley, New York, 2003).

Necessary scientific infrastructure

- Experimental setups in Nanotechnology Lab

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50%- hands-on lab test&quiz 10%

45

Page 46: Physics of advanced materials and nanostructures

- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 10%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successful presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Lucian ION

Lect. Adrian RADU

46

Page 47: Physics of advanced materials and nanostructures

Op.I41 Tehnici de măsurare a coeficienților optici iș de transport ai semiconductorilorName Measurement techniques for

optical and transport coefficients of semiconductors

Code Op.I41

Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Lect. Florin STĂNCULESCU

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electricity and magnetism, Mechanics, Solid

state physics I, Thermodynamics and statistical physics, Optics

Recommended Numerical methods and data processing in physics, Electronics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge of characterization methods for semiconductors - Understanding of physical processes involved in characterization methods for semiconductors- Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

47

Page 48: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to interpret experimental data based on physical models

3. Instrumental - Ability to use specific techniques for electrical and optical characterization of semiconductors - Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : 1. Introduction. Motivation.2. Statistical methods for analysis of experimental results.3. Noise in physical measurements.4. Measurement of electrical resistivity. Temperature dependence of electrical

resistivity.5. Resistivity measurement by two-probe and 4-probe methods. Kelvin’s

method. 6. Van de Pauw’s technique;7. Measurement of electrical mobility of free carriers. Hall effect. 8. Determination of conduction type of semiconductors. Determination of free

carriers density. CV method. 9. Measurement of life-time and diffusion length of non-equilibrium free

carriers in semiconductors. 10. Spectroscopic ellipsometry.11. Techniques for investigating the surface morphology.

Practicals:1. Experimental techniques for noise measurements2. Resistivity measurements by 2-probe and 4-probe techniques 3. Resistivity measurement techniques for semiconductor thin films4. Determination of conduction type of semiconductors. Seebeck effect.

Hall effect.5. Determination of Hall coefficient and mobility of free carriers;6. Measurements of carriers density by C-V method. 7. Measurement of optical coefficients by optical transmission

spectroscopy 8. Photoconduction relaxation. Measurements of excess free-carriers

life-time and diffusion length9. Surface morphology analysis by electron microscopy

Bibliography 1. K. Schroder, Semiconductor Materials And Device Characterization(Wiley, New York, 2006).

2. W.R.Runyan, T.J.Shaffner, Semiconductor Measurements and

48

Page 49: Physics of advanced materials and nanostructures

Instrumentation, (McGraw-Hill, New York, 1997).3. H. Czichos, T. Sait, Leslie Smith, Springer Handbook of Materials

Measurement Methods, (Springer, Berlin, 2006).4. W. Boyes, Instrumentation Reference Book, (Elsevier, Amsterdam,

2003).5. S.G. Rabinovich, Evaluating Measurement Accuracy, (Springer,

Berlin, 2010).6. F. Pavese, A.B. Forbes, Data Modeling for Metrology and Testing in

Measurement Science, (Birkhäuser, Berlin, 2009).7. A. Horn, Ultra-fast Material Metrology, (Wiley, New York, 2009).8. T. Yoshizawa, "Handbook of Optical Metrology", (CRC Press Taylor

& Francis, London, UK, 2009).9. P. Fornasini, The Uncertainty in Physical Measurements, (Springer,

Berlin, 2008).14. A.E. Fridman, The Quality of Measurements (Springer, Berlin, 2012)

Necessary scientific infrastructure

- Experimental setups in Electrical and optical characterizations Lab

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50%- hands-on lab test&quiz 30%- results to periodic tests/quizzes 0%- results to mid-term examination (oral, optional) 0%- scientific reports, symposium etc 20%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written and oral exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successful presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Lect. Florin STĂNCULESCU

49

Page 50: Physics of advanced materials and nanostructures

Op.I42 Physics and technology of thin solid filmsName Physics and technology of thin

solid filmsCode Op.I42

Year of study I Semester 2 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Prof. Ștefan ANTOHE

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electricity and magnetism, Mechanics, Solid

state physics I, OpticsRecommended Electrodynamics, Electronics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 8 8. Preparation of presentations. 52. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 8 10. Consultations 54. Research in library 6 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 46. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of peculiarities of physical properties of thin films - Understanding of physical processes involved in fabrication of thin films- Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to interpret experimental data based on physical models

50

Page 51: Physics of advanced materials and nanostructures

Specific competences 3. Instrumental - Ability to use specific techniques for electrical and optical characterization of thin films- Ability to use and control specific physical methods for fabricating thin films - Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Thin films: physical properties and applications

Deposition of thin films by thermal evaporation in vacuum: evaporation and transport of atomic/molecular species towards substrate; adsorption; condensation kinetics; advantages and limitations of the method.

Thin films deposition by sputtering methods: magnetrons (dc and rf) ; sputter yield; influence of atmosphere in the growth chamber; transport and condensation at substrate.

Chemical vapour deposition: transport in gaseous phase; diffusion; thermodynamics of chemical processes; kinetics of processes in gaseous phase and at the surface of the substrate; plasma enhanced chemical vapour deposition; advantages and limitations.

Physical properties of semiconductor thin films: electrical properties; transparent conductors; optical properties; characterization of thin films by ellipsometry; peculiarities of magnetic properties; magneto-optical Kerr effect (MOKE).

Practicals:

The complex character of practical activities require an unconventional approach. The duration of the proposed experiments is very long; consequently the time allocated to practical work (28 hours) is divided in 4-6 hours intervals for each work team.

Deposition of organic and inorganic semiconductor thin films by thermalevaporation in vacuum and rf-sputtering. Electrical and optical characterizations of thin films.

Bibliography 1. M. Ohring, Materials Science of Thin Films (Academic Press, London,UK, 2002).

2. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura.Universității din București, București, 1996).

3. S. Antohe, Electronic and Optoelectronic Devices Based on OrganicThin Films, in Handbook of Organic Electronics and Photonics:

51

Page 52: Physics of advanced materials and nanostructures

Electronic Materials and Devices, H. Singh-Nalwa (Ed.) (AmericanScientific Publishers, Los Angeles, California, USA, 2006), vol 1.

Necessary scientific infrastructure

- Experimental setups in Thin films Lab and in Electrical and opticalcharacterizations Lab

Final mark is given by: Weight, în %{Total=100%}

- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 10%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successful presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Professor Ștefan ANTOHE

52

Page 53: Physics of advanced materials and nanostructures

Ob.501 Interaction of laser radiation with matterName Interaction of laser radiation

with matterCode Ob.501

Year of study II Semester 3 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DF

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 6Total hours in curriculum 56 Total hours for

individual study94 Total hours per

semester150

Teacher(s) Assoc. Prof. Mihai DONDERA, Lect. Mădălina BOCA

Faculty Physics Total hours per semester in curriculum Department Theoretical Physics,

Mathematics, Optics, Plasma and Lasers

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum Mechanics, Electrodynamics, Solid

state physics I and II, OpticsRecommended Equations of Matehematical Physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 52. Learning by using manuals, lecture notes 15 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 10 11. Field research 05. Specific preparation for practicals/tutorials 10 12. Internet research 106. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding of quantum theory of interaction of electromagnetic radiation with matter - Knowledge and understanding of radiative processes - Understanding of time-evolution of atomic systems in interaction with electromagnetic fields- Ability to use mathematical and numerical models in analyzing the interaction of electromagnetic radiation with matter

53

Page 54: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability analyze data based on physical models

3. Instrumental - Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of quantum optics and materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Physical processes in electromagnetic fields: general presentation.Radiation fields. Electromagnetic waves and photons. Intense radiation sources. Lasers: physical principles, parameters.Free particle in electromagnetic fields: clasical/quantum description.Interaction of radiation with atomic systems: transition amplitude/rates, interaction cross-sections. Multi-photon processes. Perturbative/non-perturbativedescription.Resolvent operator method.DFT/TDDFT methods for description of interaction of microscopic systems (atoms, molecules, clusters) pentru studiul interacţiei sistemelor microscopice (atomi/molecule/clusteri) with laser fields.Radiation scattering (Rayleigh , Raman, Compton).Laser assisted electron-ion/atom. Introduction to scattering theory in laser fields.Density matrix method: evolution equation. Applications to atom-laser field interaction. Stochastic differential equations for multi-photon transitions.Quantum electrodynamics in intense laser fields: radiation scattering, pairs creation, Bremsstrahlung. Structure of differential cross-sections.

Tutorials:Clasical/quantum description of electromagnetic field.Gauge symmetry in quantum mechanicsRadiation reaction. Electron acceleration in electromagnetic fields.Photoexcitation, photoionization, photodissociation of atomic/molecular species : numerical methods, exactly solvable models.Numerical methods for the description of laser assisted electron-ion/atom scattering.Density matrix method. Application to a two-level system.Quantum control with laser pulses.

Bibliography 1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions, Wiley-VCH Verlag, 2004.

2. F.H.M. Faisal, Theory of multiphotonic processes,Plenum Press, 1987

3. C. J. Joachain, N. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012.

4. F. Grosmann, Theoretical Femtosecond Physics: Atoms and

54

Page 55: Physics of advanced materials and nanostructures

Molecules in Strong Laser Fields, Springer Series on Atomic, Optical, and Plasma Physics, 2008.

5. W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998

6. M. Dondera, V. Florescu. Capitole de fizica atomica teoretica, Ed.UB, 2005.

7. M. Gavrila (ed) Atoms in intense laser fields, Academic Press, 1992.

8. V. Krainov, H. Reiss, B. Smirnov, “Radiative processes in atomic physics”, J.Wiley&Sons, 1998.

9. Time dependent density functional theory. Series: LectureNotes in Physics , Vol. 706 , 2006.

Necessary scientific infrastructure

- PC workstations connected to CC cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 55%- hands-on lab test&quiz- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 25%- other activities (to be specified) …………………Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Successful presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Mihai DONDERA

Lect. Mădălina BOCA

55

Page 56: Physics of advanced materials and nanostructures

Ob.502 Physics of liquid crystals and polymers. Applications.Name Physics of liquid crystals and

polymers. Applications.Code Ob.502

Year of study II Semester 3 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Ob ECTS 6Total hours in curriculum 56 Total hours for

individual study94 Total hours per

semester150

Teacher(s) Assoc. Prof. Valentin BARNA

Faculty Physics Total hours per semester in curriculum Department Structure of matter,

Atmospehere and Earth’s Physics, Astrophysics

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Solid state physics I and II, Optics, Electricity

and magnetism, Thermodynamics and statistical physics

Recommended Numerical methods and data processing in physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 52. Learning by using manuals, lecture notes 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 64. Research in library 10 11. Field research 05. Specific preparation for practicals/tutorials 10 12. Internet research 106. Preparation of reports, small projects, homeworks

10 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge of structure of polymers and liquid crystals- Knowledge and understanding of physical properties of polymers and liquid crystals - Knowledge and understanding of phase transitions in liquid crystals - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

56

Page 57: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability analyze experimental data based on physical models

3. Instrumental - Ability to use and control fabrication techniques for polymeric thin films- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Introduction to physics of liquid crystals: states of aggregation, classification,general properties, applicationsNematic liquid crystals: phase transitions, nematic-isotrop phase transition,order parameter, phase transition theories (Maier-Saupe, Onsager, DFT,phenomenological Landau-de Gennes theory), nematic-isotrop interface,interface stability and kinetics (time-dependent Ginzburg-Landau equation).Continuum theory of liquid crystals: Frank-Oseen free energy, surface effects,extrapolation length, effects of external electrical and magnetic fields, coherencelengths (electrical and magnetic), Fredericks effect in various geometries,determination of critical field. Liquid crystals displays: clasical displays, classification, characteristics,adressing, parameters, limitations, improvements.Mixtures: binary mixture liquid crystal lichid-impurities (non-nematogenicfluid), free energy of the mixture (Flory’s model).Introduction to polymer physics: Definitions. Classification. Aplications.Physical properties. Configurations of macromolecular chains. Configurational structure of polymers. Regularity of macromolecular chains.Stereoizomers. Investigations methods for polymers stereoregularity. Supermolecular structures in polymers. Crystalline structure. Structure ofcopolymers. Structure of copolimers in solution. Structure of copolimers in solidstate. Applications of liquid crystals and polymers.

Practicals:Fabrication of liquid crystal cells in various geometries and anchoring Aligned nematic cell Chiral nematic cellElectro-optical response of a liquid crystal cellLiquid crystal cells. Control of surface alignment. Homeotropic alignment.Planar alignment.Polimerization in cold plasmas. AFM and optical microscopy analyses ofpolymeric thin films.Liquid crystal displays - electro-optic behavior. Pixels and optical filtersAnizotropy of response functions (dielectric constant and refraction index).Determination of Stokes’ parameters for symmetrical cells

57

Page 58: Physics of advanced materials and nanostructures

Nucleation models and liquid-solid phase transitions. Charateristic physical parameters.

Bibliography 1. L. Georgescu, V. Popa-Nita, E. Barna si C. Berlic, Fizica cristalelor lichide (Ed. Univ. Buc. 2002)2. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Univ.Press, 1993)3. S. Chandrasekhar, Liquid Crystals, Cambridge University Press, 1994.4. C. Motoc, G. Iacobescu, Cristale lichide - proprietati fizice si aplicatii, Ed.Univ. Craiova, 2004.5. L. Constantinescu, C. Berlic, "Structura polimerilor. Metode de studiu", Ed.Univ. din Bucureşti, 2003;6. L. Georgescu, L. Constantinescu, E. Barna, C. Miron, C. Berlic,"Introducere in fizica polimerilor.", Ed. Credis, Bucureşti, 2004;7. L.M.Constantinescu, E.Barna, S.Fianu, V.Barna, "Breviar de fizicapolimerilor", Editura Universităţii din Piteşti, 2005.8. L.M.Constantinescu, C.Berlic, V.Barna, "Fizico-chimia polimerilor.Aplicaţii", Editura Universităţii din Bucureşti, 2006.

Necessary scientific infrastructure

- PC workstations connected to CC cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 40%

- hands-on lab test&quiz 20%

- results to periodic tests/quizzes 20%

- results to mid-term examination (oral, optional) 0%

- scientific reports, symposium etc 20%

- other activities (to be specified) ………………… 0%

Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.Scientific reports for all practical works

Correct solutions to all subjects in final exam.Successful presentations of scientific reports.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Valentin BARNA

58

Page 59: Physics of advanced materials and nanostructures

Op.II11 Nonlinear optical phenomena Name Nonlinear optical phenomena Code Op.II11Year of study II Semester 3 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Ana IOANID, Assoc. Prof. Ciceron BERBECARU

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Solid state physics I and II, Optics, Electricity

and magnetismRecommended Electrodynamics, Numerical methods and data

processing in physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 6 9. Preparation for exam 103. Study of indicated bibliography 6 10. Consultations 44. Research in library 9 11. Field research 05. Specific preparation for practicals/tutorials 8 12. Internet research 56. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 6 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of nonlinear optical phenomena - Knowledge and understanding of physical processes involved in nonlinear optical phenomena - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to analyze and compare different physical phenomena based on fundamental principles- Ability to analyze experimental data based on physical models

59

Page 60: Physics of advanced materials and nanostructures

Specific competences 3. Instrumental - Ability to use characterization techniques specific for nonlinear optical phenomena- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Active laser media. Population inversion, stimulated emission of radiation, threeand four level systems, materials characteristics. Threshold emission and Q-switching. YAG:Nd monocrystals. Growth methods: Verneuille, Czochralski,Bridgman-Stokbarger, zone melting, etc. Segregation in one-directional normalsolidification. Phase diagrams. Doping of active laser media. Processing of laserrods.Materials for nonlinear optics. Growth from solutions of KDP monocrystals.Homogeneous and heterogeneous nucleation. Control parameters and growthkinetics of doped crystals. Cabrera-Vermilyea mechanism. Laser destructionthreshold.Electro-optical effect and harmonic generation. Structure and properties ofmonocrystals with 42m point symmetry. Electro-optical coefficients matrix.Longitudinal and transverse electro-optic effect. Q-switch electro-opticalobturators, amplitude and frequency modulation. Maxwell’s equations innonlinear media. SHG tensor, coherence length, phase matching angle. Typicalsections in KDP crystals for harmonic generation.

Practicals:1. Electro-optical effect in monocrystals. Study of KDP crystal. (8 hours)2. Piroelectric effect. TGS monocrystal. PZT ceramics (10 hours)4. Crystal growth kinetics from solutions (10 hours).

Bibliography 1. AMNON YARIV, „Quantum Electronics”, Ed. John-Wiley and Sons, (1989).2. ZERNIKE F., MIDWINTER J.E., ”Applied Nonlinear Optics”, John Wiley & Sons, (1973).3. SIROTIN. I.I., ŞASKOLSKAIA M.P., “Fizica cristalelor”, trad. din lb. rusă,Ed. Ştiinţifică şi Enciclopedică, Bucureşti, (1981).4. NEMES G.,”Introducere in optica neliniara”, Ed. Academiei R.S.R.,(1972).5. H.V. ALEXANDRU, C. BERBECARU, „Stiinţa materialelor–creşterea cristalelor”, Editura Universităţii din Bucureşti, (2003).

6. Lecture notes available at http://solid.fizica.unibuc.ro/cursuri/. Necessary scientific infrastructure

- experimental setups in Materials Science Lab- PC workstations

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50 %- hands-on lab test&quiz 30 %

60

Page 61: Physics of advanced materials and nanostructures

- results to periodic tests/quizzes 10 %- results to mid-term examination (oral, optional) 10 %- scientific reports, symposium etc 0%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written and oral exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Ana IOANID

Assoc. Prof. Ciceron BERBECARU

61

Page 62: Physics of advanced materials and nanostructures

Op.II12 Physics of dielectricsName Physics of dielectrics Code Op.II.12Year of study II Semester 3 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Ana IOANID

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

Physics and BiophysicsMain domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Solid state physics I and II, Electricity and

magnetism, Quantum mechanics, Thermodynamics and statistical physics

Recommended Electrodynamics, Numerical methods and data processing in physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 02. Learning by using manuals, lecture notes 10 9. Preparation for exam 103. Study of indicated bibliography 8 10. Consultations 44. Research in library 4 11. Field research 05. Specific preparation for practicals/tutorials 10 12. Internet research 106. Preparation of reports, small projects, homeworks

3 13. Other activities… 0

7. Preparation for quizzes 3 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of peculiarities of physical properties of dielectric materials - Knowledge of applications of dielectrics in modern technology - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to analyze and compare different physical phenomena based on fundamental principles- Ability to analyze experimental data based on physical models

62

Page 63: Physics of advanced materials and nanostructures

Specific competences 3. Instrumental - Ability to use characterization techniques specific for dielectric materials- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Electrical polarization of materials. Electrical field in dielectrics. Linear response. The main electrical polarization mechanisms: electronic, ionic, orientation polarization, space charge. Dispersion of optical polarization. Optical properties of dielectrics.Relationships between optical coefficients: refraction index, dielectric permittivity, optical absorption coefficient, conductivityElectron plasma frequency. Dynamical properties of dielectrics. Dielectric loss.Dielectric spectroscopy: complex impedance, equivalent electric circuit. Nyquist diagrams

Practicals:Experiments on various dielectric materials. Use of Langevin-Debye model in interpreting experimental dataExperiments on various dielectric materials. Analysis of experimental data by the method of Hilbert’s transform. Kramers-Kronig equations. Dispersion analysis. Determination of optical coefficients of dielectric materials.Measurements and modelling of reflectance spectrumImpedance spectrum. Analysis of complex impedance. Equivalent electric circuitOptical properties of nanoparticles. Influence of shape and dimension.

Bibliography 1. I.Bunget, M.Popescu, Physics of solid dielectrics (Elsevier, Amsterdam 1984)2. A.Jonsker, Dielectric relaxation in solids, (Chelsea Dielectric Press,

London, 1983).3. A.Ioanid, Probleme de fizica dielectricilor, (Ed.Univ.Bucuresti, 2002)http://physics.info/dielectrics/

4. Lecture notes available at http://solid.fizica.unibuc.ro/cursuri/. Necessary scientific infrastructure

- experimental setups in Materials Science Lab- PC workstations

Final mark is given by: Weight, în %{Total=100%}

- final exam results 30%

- hands-on lab test&quiz 30%

- results to periodic tests/quizzes 20%

- results to mid-term examination (oral, optional) 20%

63

Page 64: Physics of advanced materials and nanostructures

- scientific reports, symposium etc 0%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Ana IOANID

64

Page 65: Physics of advanced materials and nanostructures

Op.II21 Optoelectronic properties of liquid crystals and polymer thin films. Technological applications Name Optoelectronic properties of

liquid crystals and polymer thin films. Technological applications

Code Op.II21

Year of study II Semester 3 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Valentin BARNA

Faculty Physics Total hours per semester in curriculum Department Structure of matter,

Atmosphere and Earth’s Physics, Astrophysics

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electricity and magnetism, Quantum mechanics,

Optics, Thermodynamics and statistical physicsRecommended Electrodynamics, Numerical methods and data

processing in physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 62. Learning by using manuals, lecture notes 7 9. Preparation for exam 93. Study of indicated bibliography 7 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 56. Preparation of reports, small projects, homeworks

6 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 6TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of advanced modelling techniques for polymer thin films - Knowledge of applications of liquid crystals and polymer films in modern technology - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

65

Page 66: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to analyze and compare different physical phenomena based on fundamental principles- Ability to analyze experimental data based on physical models

3. Instrumental - Ability to use characterization techniques specific for liquid crustals/polymers- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : 1. Liquid-crystalline materials. Classification. Characterization methods. Aplications. 2. Structural and physico-chemical peculiarities of liquid-crystalline materials. Natural and synthetic polymers. Physical properties. 3. Thin polymer films. Fabrication methods. 4. UV photopolymerization at micro and nano scale. Photoresists. 5. Polymerization in low-twmperature plasmas. Glancing Angle Deposition (GLAD).6. Nanoparticles, coloids. Applications.7. Interface phenomena. Surface tension. Adsorption. Wetting processes.8. Electronic/ionic transport phenomena in soft matter. 9. Experimental techniques for studying liquid crystals and polymeric films. 10. Interaction of ordered liquid-crystalline materials at nano-scale. Physical properties11. Experimental methods for the characterization of molecular alignment at micro/nano-scale.12. Micro/nanolithography techniques.13. Liquid crystal displays. Technology and applications.14. Optical devices based on liquid crystals. Tunable lasers. Random lasers. Optical filters. Optical detectors.

Practicals 1. Physico-structural characterization of liquid-crystalline materials. 2. Nanoparticles and impurities effects on the orientation of liquid crystals.3. Deposition of polymer thin films by low-temperature plasma polymerization and GLAD.4. Computational simulations of solid-liquid crystal phase transitions.5. Rapid electro-optical response in nematic liquid crystals cells. Special anchoring at surfaces.6. Study of the morphology of the surface of thin polymer films by AFM, SEM, TEM, SNOM.7. Liquid crystals displays – electro-optical study.8. Electro-optical properties of fluorescent liquid crystals doped with dyes. Spontaneous emission and light amplification. 9. Determination of physical parameters relevant for the design of liquid crystals

66

Page 67: Physics of advanced materials and nanostructures

based tunable lasers.

Bibliography 1. L. Georgescu, V. Popa-Nita, E. Barna si C. Berlic, Fizica cristalelorlichide (Ed. Univ. Buc. 2002)

2. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (OxfordUniv. Press, 1993)

3. C. Motoc, G. Iacobescu, Cristale lichide - proprietati fizice si aplicatii,Ed. Univ. Craiova, 2004.

4. S. Chandrasekhar, Liquid Crystals, Cambridge University Press, 1994.5. L.M.Constantinescu, E.Barna, S.Fianu, V.Barna, "Breviar de fizica

polimerilor", Editura Universităţii din Piteşti, 2005.6. L.M.Constantinescu, C.Berlic, V.Barna, "Fizico-chimia polimerilor.

Aplicaţii", Editura Universităţii din Bucureşti, 2006.L. Georgescu, L.Constantinescu, E. Barna, C. Miron, C. Berlic, "Introducere in fizicapolimerilor.", Ed. Credis, Bucureşti, 2004;

7. Topics in polymer physics, R.S. Stein, J. Powers, Imperial CollegePress, 2006

8. Handbook of microscopy for nanotechnology / edited by Nan Yao.Zhong Lin Wang, Springer, 2005.

9. "Liquid Crystal Microlasers” - Chapter:Strangi G., Barna V., De LucaA., Ferjani S., Versace C., Ed. Transworld Research Network, ISBN978-81-7895-469-1, 04/ 2010, India.

10. "Photonic Crystals: Molding the Flow of Light" John D. Joannopoulos,Robert D. Meade, & Joshua N. Winn, Princeton University Press(2008).

Necessary scientific infrastructure

- experimental setups in Materials Science Lab- PC workstations

Final mark is given by: Weight, în %{Total=100%}

- final exam results 40%- hands-on lab test&quiz 25%- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 0%- scientific reports, symposium etc 25%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testingReports to all practicals

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.Reports to all practicals

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Valentin BARNA

67

Page 68: Physics of advanced materials and nanostructures

Op.II22 Interface phenomena in polymer structures. Applications in nanotechnologyName Interface phenomena in polymer

structures. Applications in nanotechnology

Code Op.II22

Year of study II Semester 3 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Assoc. Prof. Valentin BARNA

Faculty Physics Total hours per semester in curriculum Department Structure of matter,

Atmosphere and Earth’s Physics, Astrophysics

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Electricity and magnetism, Quantum mechanics,

Optics, Thermodynamics and statistical physicsRecommended Electrodynamics, Numerical methods and data

processing in physics

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 10 8. Preparation of presentations. 62. Learning by using manuals, lecture notes 8 9. Preparation for exam 83. Study of indicated bibliography 5 10. Consultations 44. Research in library 4 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 86. Preparation of reports, small projects, homeworks

6 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of advanced modelling techniques for soft matter - Knowledge of design techniques for materials with special properties - Ability to analize and understand relevant experimental data and to formulate rigorous conclusions

68

Page 69: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to analyze and compare different physical phenomena based on fundamental principles- Ability to analyze experimental data based on physical models

3. Instrumental - Ability to use characterization techniques specific for soft matter- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of materials science; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : 1. Structural and physico-chemical peculiarities of polymers. Natural and synthetic polymers. Chemical structure of macromolecular chains. 2. Fabrication methods for polymers. 3. UV photopolymerization at micro and nano scale. 4. Self-assembling. Langmuir-Blodgett films.5. Fabrication methods for polymer thin films.6. Surfactants and molecular order/orientation at nano-scale7. Modeling of polymers. Computational techniques 8. Micro and nanstructures. Fabrication and applications. 9. Periodic and quasi-periodic structures. Photonic crystals. Light transmission. 10. Molecular alignment at micro/nano-scale.11. Micro/nanolithography techniques.12. Applications in nanotechnology

Practicals:1. Study of structural properties of polymers. Polymer membranes.2. Computational modeling of the dynamics of polymer chains.3. Nucleation and growth phenomena. Avrami’ theory.4. Deposition of polymer films by plasma assisted polymerization. 5. Experimental characterization techniques. AFM, TEM, SNOM.6. Fast-switching electro-optical processes in polymer cells deposited by plasmapolymerization.7. UV nanolithography. Mechanical etching and nano-patterning. 8. Analysis and characterization of a liquid crystals display. Physical parameters.

Bibliography 1. Handbook of Organic Conductive Molecules and Polymers, Vol. 1-4(Ed: H. S. Nalwa), Wiley, New York, 1996.

2. L. Constantinescu, C. Berlic, "Structura polimerilor. Metode destudiu", Ed. Univ. din Bucureşti, 2003;

3. L. Georgescu, L. Constantinescu, E. Barna, C. Miron, C. Berlic,"Introducere in fizica polimerilor.", Ed. Credis, Bucureşti, 2004;

4. T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds.), Handbook ofConducting Polymers, Marcel Dekker, New York, 1998.

5. Chandrasekhar, Prasanna, Conducting Polymers, Fundamentals andApplications, A Practical Approach, 1999

6. Macromolecules, J, Willey, 2000-2007

69

Page 70: Physics of advanced materials and nanostructures

7. Topics in polymer physics, R.S. Stein, J. Powers, Imperial CollegePress, 2006

8. Polymer physics, U.W. Gedde, Chapman&Hall Ed., 1995.9. Nanofluidics. Nanoscience and Nanotechnology, J. Edel, A. J.

deMello, RSC Publishing, 200810. Springer Handbook of Nanotechnology, Springer Ed., 200711. Handbook of microscopy for nanotechnology / edited by Nan Yao.

Zhong Lin Wang, Springer, 2005.12. NANOFABRICATION, Fundamentals and Applications, Ampere A

Tseng, World Scientific Publishing, 2008.13. Nanostructured Soft Matter. Experiment, Theory, Simulation and

Perspectives. A.V. Zvelindovsky, Springer, 2007.14. Nanotechnology for microelectronics and optoelectronics, J.M.

Martínez-Duart, Elsevier, 2006.15. Nanophysics and Nanotechnology, Edward L Wolf, WILEY-VCH

Verlag, 2004.Necessary scientific infrastructure

- experimental setups in Materials Science Lab- PC workstations

Final mark is given by: Weight, în %{Total=100%}

- final exam results 50%

- hands-on lab test&quiz 20%

- results to periodic tests/quizzes 10%

- results to mid-term examination (oral, optional) 0%

- scientific reports, symposium etc 20%

- other activities (to be specified) ………………… 0%

Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Oral exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testingReports to all practicals

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.Reports to all practicals

Date Teacher(s) signature(s)

June 20, 2014 Assoc. Prof. Valentin BARNA

70

Page 71: Physics of advanced materials and nanostructures

Op.II31 Computational methods in theory of electronic structure of materialsName Computational methods in the

theory of electronic structures of materials

Code Ob. II31

Year of study II Semester 4 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Lecturer(s) Assoc. Prof. Lucian ION, Lect. George Alexandru NEMNEȘ

Faculty Physics Total hours per semester in curriculum Department Electricity, Solid State

and Biophysics Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Solid State Physics I and II,

Thermodynamics and statistical physics, Electrodynamics

Recommended Physical Electronics, Equations of mathematical physics

Estimated time (hours per semester) for the required individual study 1. Study using the course notes 7 8. Preparation of presentations. 02. Study using manuals, lecture notes, etc. 8 9. Preparation for exam 103. Study of indicated bibliography 10 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials

5 12. Internet research 10

6. Preparation of reports, small projects, homeworks

5 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 94

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Understanding the approximate methods for many-body systems – perturbative and variational based methods.- Understanding the density functional theory method.- Ability to assimilate, analyse and compare diverse physical phenomena, employing fundamental principles.

71

Page 72: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability of analyse and interpret numerical data, especially concerning band structure calculations and optical properties on the bases of DFT codes and to formulate rigorous theoretical conclusions.- Ability to employ mathematical and numerical models for modelling the physical phenomena.3. Instrumental - Ability to use theoretical methods in modelling various physical systems of interest.- Ability to develop computer programs for modelling electronic structure of materials

4.Attitudinal to develop an interest for the field; to assume an ethical conduct in scientific research; to optimally cultivate one’s own potential in scientific activities.

SYLLABUS

Lecture : - Classification of many-body approximate methods.- The problem of electron correlations.- The density functional theory (DFT). Hohenberg-Kohn theorems.- Kohn-Sham method. Kohn-Sham equations. - Functionals for the exchange and correlation terms. The local densityapproximation (LDA) and local spin density approximation (LSDA). The GGAapproximation.- Orbital dependent functionals: self-interaction correction (SIC) and LDA+Uapproximation. Hybrid functionals.- Ab initio numerical techniques. Pseudopotentials.- Semilocal pseudopotentials. Ultrasoft pseudopotentials.- Extensions: time dependent density functional theory.- GW approximation. Applications.

Seminars :- Elaboration of a numerical code to implement the Hartree-Fock method.- SIESTA method: presentation. Advantages and disadvantages of the method.- SIESTA method for band structure calculations in bulk semiconductors andnanostructures.- SIESTA method for investigating defects in semiconductor systems.- Ab initio techniques for magnetic materials.

Bibliography 1. H. Bruus, K. Flensberg, Many-Body Quantum Theory in CondensedMatter Physics: An Introduction (Oxford University Press, Oxford 2004).

2. R.M. Martin, Electronic structure: basic theory and practical methods(Cambridge University Press, Cambridge, 2004).

3. W. Nolting, Fundamentals of Many-body Physics (Springer Verlag,Berlin, 2009).

4. SIESTA 3.0 Manual, http://icmab.cat/leem/siesta/Lecture notes will be available on the website:

http://solid.fizica.unibuc.ro/cursuri/Necessary scientific infrastructure

PC workstations connected to HPC-FSC computing cluster

Final mark is given by: Weight, în %

72

Page 73: Physics of advanced materials and nanostructures

{Total=100%}- final exam results 60%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 20%- results to mid-term examination (oral, optional) 20%- scientific reports, symposium etc 0%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 10(10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testing.

Correct solutions to all subjects in final exam.Correct solutions to homework problems. Successfull presentations of scientific reports.Good results to periodic/continuous testing.

Date Lecturer(s) signature(s)June 20, 2014 Assoc. Prof. Lucian ION

Lect. George Alexandru NEMNEȘ

73

Page 74: Physics of advanced materials and nanostructures

Op.II32 Advanced numerical methods in physics of many-body systemsName Advanced numerical methods in

physics of many-body systemsCode Op.II32

Year of study II Semester 4 Assessment (E/V/C) EFormative category: DF – fundamental, DG – general, DS – special, DE – economics/managerial, DU- humanities

DS

Type{Ob – compulsory, Op- elective, F – optional} Op ECTS 5Total hours in curriculum 56 Total hours for

individual study69 Total hours per

semester125

Teacher(s) Prof. Virgil BĂRAN, Lect. Roxana ZUS

Faculty Physics Total hours per semester in curriculum Department Theoretical Physics,

Mathematics, Optics, Plasma, Lasers

Main domain(sciences, art, culture)

Exact Sciences

Domain of master program

Physics Total C S L P

Program name Physics of advanced materials and nanostructures

56 28 28

** C-lecture, S-practicals/tutorials, L-laboratory practical activity, P-scientific project

PrerequisitesRequired Quantum mechanics, Thermodynamics and

statistical physics, Solid state physics I and II, Numerical methods and data processing in physics

Recommended Equations of mathematical physics, Programming languages

Estimated time (hours per semester) for the required individual study 1. Learning by using one’s own course notes 7 8. Preparation of presentations. 52. Learning by using manuals, lecture notes 5 9. Preparation for exam 103. Study of indicated bibliography 5 10. Consultations 44. Research in library 5 11. Field research 05. Specific preparation for practicals/tutorials 5 12. Internet research 86. Preparation of reports, small projects, homeworks

10 13. Other activities… 0

7. Preparation for quizzes 5 14. Other activities…. 0TOTAL hours of individual study (per semester) = 69

General competences (mentioned in MSc program sheet)1.Knowledge and understanding - Knowledge and understanding of peculiarities of physical properties of many-body systems - Understanding of effects related to fermion or boson nature of constituent particles - Knowledge of numerical methods appropriate for the study of many-body systems- Understanding of advanced mathematical models for many-body systems

74

Page 75: Physics of advanced materials and nanostructures

Specific competences

2. Explication and interpretation - Ability to elaborate and present scientific ideas/models.- Ability to analyze and compare different physical phenomena based on fundamental principles- Ability to analyze experimental data based on physical models

3. Instrumental - Ability to use theoretical techniques specific for many-body systems- Ability to use mathematical or numerical methods and models in solving physical problems of interest.

4.Attitudinal to develop an interest for the field of physics of many-body systems; to realize the importance of the field in modern physics to assume an ethical conduct in scientific research; to optimally valorize one’s own potential in scientific activities.

SYLLABUS

Lecture : Molecular dynamicsFundamental ideas in molecular dynamics simulations. Interatomic potentials.Numerical integration techniques. Verlet, leap-frog, Beeman alghorithms. Gear predictor-corrector method. Determination of physical quantities of interest (energy, pair correlation function, time correlation function, diffusion coefficient).Car-Parrinello method.

Molecular dynamics for quantum systems. Wigner’s functionWigner’s distribution function. Effective potential. Semiclassical molecular dynamics.

Monte Carlo method in classical statistical physics Metropolis alghorithm.Thermal annealling method.Glauber’s alghorithm.

Semiclassical description of the dynamics of many-body systemsMean field theory. Vlasov’s equations. Test-particles method. Applications: metallic clusters. Determination of ground state by using atomic pseudopotentials. Collective dynamics of electrons in metallic clusters and fullerenes.

Tutorials/Practicals:Molecular dynamicsNumerical integration. Comparison of the results obtained by using various alghorithms.

Molecular dynamics for quantum systems. Wigner’s functionApplications. Dense gaseous systems.

Monte Carlo method in classical statistical physics Applications (lattice methods, discrete or continuous systems, systems with long/short range interactions).

75

Page 76: Physics of advanced materials and nanostructures

Semiclassical description of the dynamics of many-body systemsElectron emission. Dipole moment of metallic clusters in external electromagnetic fields.

Bibliography 1. H. Fehske, R. Schneider, A. Weiβe (Eds.), Computational Many-Particle Physics, Lect. Notes Phys. 739 (Springer, Berlin Heidelberg 2008)2. K. Binder, G. Ciccotti (eds.), Monte Carlo and Molecular Dynamics of Condensed Matter Systems (Editrice Compositori, Bologna, Italy, 1996)3. P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley-VCH 2004)4. D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press 2004)5. W.G. Hoover, Molecular Dynamics (Springer 1986)6. K. Binder, D.W. Heermann, Monte Carlo Simulations in Statistical Physics – An Introduction (Springer 2002)

Necessary scientific infrastructure

- PC workstations connected to CC computing cluster

Final mark is given by: Weight, în %{Total=100%}

- final exam results 45%- hands-on lab test&quiz 0%- results to periodic tests/quizzes 10%- results to mid-term examination (oral, optional) 10%- scientific reports, symposium etc 35%- other activities (to be specified) ………………… 0%Final evaluation methods, E/V. { ex: Written test, Oral examination on topics covered by lectures, Individual Colloquium, or Group Project, etc.}.

Written exam

Minimal requirements for mark 5( 10 point scale)

Requirements for mark 10 (10 point scale)

Correct solutions to indicated subjects (for mark 5) in final examAverage results to periodic/continuous testingOne scientific report

Correct solutions to all subjects in final exam.Good results to periodic/continuous testing.Successful presentation of all scientific reports

Date Teacher(s) signature(s)

June 20, 2014 Prof. Virgil BĂRAN

Lect. Roxana ZUS

76

Page 77: Physics of advanced materials and nanostructures

Op.II41 Special electronic and optoelectronic devicesDenumirea disciplinei

Dispozitive electronice și optoelectronice special

Codul disciplinei

Op.II41

Anul de studiu II Semestrul II Tipul de evaluare (E/V/C) E

Categoria formativa a disciplinei

DF – fundamentala, DG – generala, DS – de specialitate, DE – economica/manageriala, DU- umanista

DS

Regimul disciplinei{Ob – obligatorie, Op- opţionala, F – facultativa}

Op Număr de credite 5

Total ore din planul de învăţământ

56 Total ore studiu individual

69 Total ore semestru 125

Titularul disciplinei Prof. Dr. Ștefan Antohe

*dacă disciplina are mai multe semestre de studiu, se completează câte o fişă pentru fiecare semestru

Facultatea de Fizică Numărul total de ore ( pe semestru) din

Departamentul Electricitate, Fizica solidului şi Biofizică

planul de învăţământ

Domeniul fundamentalde ştiinţa, arta, cultura

Ştiinţe exacte (Ex:28 la C daca disciplina are curs de 14_saptamanix2_ h_curs pe săptămâna)

Domeniul pentru studii de masterat

Fizica Total C S L P

Programul de studii de masterat

Materiale avansate si nanostructuri

56 28 14 14

** C-curs, S-seminar, L-activităţi de laborator, P-proiect sau lucrări practice

Discipline anterioareObligatorii(condiţionate)

Mecanica cuantică, Fizica solidului I, Termodinamica și Fizică statistică, Electrodinamică, Electricitate

Recomandate Electronica fizică, Ecuațiile Fizicii matematice

Estimaţi timpul total ( ore pe semestru) al activităţilor de studiu individual pretinse studentului( completaţi cu zero activităţile care nu sunt cerute)1. Descifrarea şi studiul notiţelor de curs 8 8. Pregătire prezentări orale. 5

2. Studiul după manual, suport de curs 8 9. Pregătire examinare finala 10

3. Studiul bibliografiei minimale indicate 8 10. Consultaţii 5

4. Documentare suplimentară în bibliotecă

6 11. Documentare pe teren

77

Page 78: Physics of advanced materials and nanostructures

5. Activitate specifică de pregătire

SEMINAR şi/sau LABORATOR

5 12. Documentare pe INTERNET 4

6. Realizarea teme, referate, eseuri, traduceri

5 13. Alte activităţi …

7.Pregatire lucrări de control 5 14. Alte activităţi….

TOTAL ore studiu individual ( pe semestru) = 69

Competențe generale ( competenţele generale sunt menţionate în fişa programului de studiu)

Competenţe specifice disciplinei

1.Cunoaştere şi înţelegere (cunoaşterea şi utilizarea adecvata a noţiunilor specifice disciplinei)

Obiectivele urmărite în cadrul acestui curs si seminar în sensul cunoaşterii şi înţelegerii noţiunilor specifice sunt:

- descrierea și înțelegerea particularităților efectului fotovoltaic în diverse tipuri de structuri.

- dezvoltarea capacităţii de a asimila, analiza și compara fenomene fizice diverse, apelând la principii fundamentale;

- dezvoltarea abilităţii de a analiza si interpreta datele experimentale relevante și de a formula concluzii teoretice riguroase;

- dezvoltarea abilităţii de a aplica modele matematice si numerice adecvate pentru modelarea fenomenelor fizice;

- dezvoltarea abilităţilor computaţionale

şi dobândirea unei profunde înţelegeri teoretice a problemelor studiate.

2. Explicare şi interpretare (explicarea şi interpretarea unor idei, proiecte, procese, precum şi a conţinuturilor teoretice şi practice ale disciplinei)

Se urmărește formarea la studenţi a:

- abilităţii de a elabora şi susţine o expunere bine structurată şi riguros fundamentată ştiinţific;

- capacităţii de modelare matematică a fenomenelor fizice.

3. Instrumental–aplicative (proiectarea, conducerea şi evaluarea activităţilor practice specifice; utilizarea unor metode, tehnici, şi instrumente de investigare şi de aplicare)

Se urmăreşte formarea la studenţi a capacităţii de a utiliza cunoştinţele teoretice dobândite pentru rezolvarea unor probleme fizice de interes şi pentru modelarea diferitelor procese fizice.

78

Page 79: Physics of advanced materials and nanostructures

4.Atitudinale

cultivarea interesului şi pasiunii pentru disciplina studiată;

conştientizarea importanţei aplicative a disciplinei în cauză pentru profesiade fizician;

cultivarea unei conduite etice în activitatea educaţională şi de cercetare;

valorificarea optimă și creativă a propriului potenţial în activităţile ştiinţifice.

CONȚINUT

( tabla de materii)

Curs:

Procese fizice la interfața Metal/Semiconductor: tipuri de contact (ohmic, de blocare); elemente de teoria stratului de baraj; mecanisme de transport al purtătorilor de sarcină prin contactul Metal/Semicopnductor; teoria emisiei termice peste barieră (Bethe) cu corecția Schottky; modelul difuziei (Schottky); teoria mixtă a emisiei termice și difuziei (Krowel-Sze).

Proprietatile electrice ale Diodelor Organic-Anorganic (OA) : transportul purtătorilor de sarcină în diodele OA; caracteristicile I-V ambipolare ale doidelor OA; caracteristicile de admitanță într-o plajă largă de frecvențe ale diodelor OA; modelul de analiza spectroscopică a stărilor de suprafață în echilibru cu semiconductorul anorganic pe baza caracteristicilor I-V și de admitanță ale diodelor OA(SOISAS)

Structuri fotovoltaice: efectul fotovoltaic; celule fotovoltaice pe bază de siliciu; celule fotovoltaice pe bază de filme subțiri; celule fotovoltaice organice (semiconductori organici cu molecule mici și polimeri); structuri fotvoltaice cu heterojoncțiune de volum; structure fotovoltaice hibride;

Laborator:

Efecte neohmice în structurile M1/Semiconductor organic/M2 Determinarea parametrilor de transport ai purtătorilor de sarcină într-un stratsubțire de semiconductor organic Determinarea profilului de dopaj din caracteristicile C-V ale diodelorp-Si/PTCDI si p-Si/CuPc Studiul caracteristicilor I-V la polarizare directă și inversă ale diodelor Ag/p-Si/PTCDI/In și Ag/p-Si/CuPc/Cu Determinarea parametrilor stratului de baraj de la interfața Si/PTCDI sau Si/CuPc pe baza caracteristicilor I-V într-o plajă largă de temperaturiDeterminarea densității de stări de suprafață în echilibru cu Si pe bazacaracteristicilor de admitanta

Bibliografia4. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura.

Universității din București, București, 1996)5. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York,

1969).

79

Page 80: Physics of advanced materials and nanostructures

6. S. Antohe, Electronic and Optoelectronic Devices Based on OrganicThin Films, in Handbook of Organic Electronics and Photonics:Electronic Materials and Devices, H. Singh-Nalwa (Ed.) (AmericanScientific Publishers, Los Angeles, California, USA, 2006), vol 1.

Lista materialelor

didactice necesare

- Aranjamentele experimentale din Laboratorul de caracterizări electriceși optice al Centrului C&D pentru Materiale și Dispozitive Electroniceși Optoelectronice

La stabilirea notei finale se iau în considerare Ponderea în notare, exprimata în %

{Total=100%}

- răspunsurile la examen/colocviu ( evaluarea finală) 60%

- răspunsurile finale la lucrările practice de laborator

- testarea periodică prin lucrări de control 20%

- testarea continuă pe parcursul semestrului 10%

- activităţile gen teme/referate/eseuri/traduceri/proiecte etc 10%

- alte activităţi ( precizaţi)………Prezenţă…………………

Descrieţi modalitatea practică de evaluare finală, E/V. { de exemplu: lucrare scrisa (descriptiva şi /sau test grila şi /sau probleme etc.), examinare orala cu bilete, colocviu individual ori în grup, proiect etc.}

Evaluarea finală constă într-o lucrare scrisă, care conţine mai multe subiecte teoretice şi mai multe probleme cu grad de dificultate diferit.

Cerinţe minime pentru nota 5

( sau cum se acordă nota 5)

Cerinţe pentru nota 10

(sau cum se acordă nota 10)

Rezolvarea corectă a subiectelor indicate pentru acordarea notei 5, la examenul final.

Rezultate medii la verificarea periodică.

Rezultate medii la verificarea continuă.

Rezolvarea corectă a tuturor subiectelor la examenul final.

Rezolvarea temelor/prezentarea referatelor indicate pe parcursul semestrului.

Rezultate bune la verificarea periodică.

Rezultate bune la verificarea continuă.

Data completării Semnătura titularului

07/02/ 2013 Prof. dr. Ștefan ANTOHE

80

Page 81: Physics of advanced materials and nanostructures

Op.II42 Fizica Dispozitivelor cu SemiconductoriDenumirea disciplinei

Fizica Dispozitivelor cuSemiconductori

Codul disciplinei

Op.II42

Anul de studiu Tipul de evaluare (E/V/C) ECategoria formativa a disciplinei DF – fundamentala, DG – generala, DS – de specialitate, DE – economica/manageriala, DU- umanista

DS

Regimul disciplinei{Ob – obligatorie, Op- opţionala, F – facultativa}

Op Număr de credite 5

Total ore din planul de învăţământ 56

Total ore studiu individual

69 Total ore semestru125

Titularul disciplinei Conf. Dr. Petrica Cristea*dacă disciplina are mai multe semestre de studiu, se completează câte o fişă pentru fiecare semestru

Facultatea Fizica Numărul total de ore ( pe semestru) dinDepartamentul Electricitate, Fizica solidului

şi Biofizicăplanul de învăţământ

Domeniul fundamentalde ştiinţa, arta, cultura

Ştiinţe exacte

(Ex:28 la C daca disciplina are curs de 14_saptamanix2_ h_curs pe săptămâna)

Domeniul pentru studii de masterat

Fizica Total C S L P

Programul de studii de masterat

Materiale Avansate și Nanostructuri 56 28 28

** C-curs, S-seminar, L-activităţi de laborator, P-proiect sau lucrări practice

Discipline anterioare

Obligatorii(condiţionate) Electricitate si Magnetism, Mecanica Cuantica, Fizica Stării Solide I,

Termodinamica si Fizica statistica,

RecomandateDispozitive Electronice

Estimaţi timpul total ( ore pe semestru) al activităţilor de studiu individual pretinse studentului( completaţi cu zero activităţile care nu sunt cerute)1. Descifrarea şi studiul notiţelor de curs 7 8. Pregătire prezentări orale. 02. Studiul după manual, suport de curs 10 9. Pregătire examinare finala 103. Studiul bibliografiei minimale indicate 10 10. Consultaţii 44. Documentare suplimentara în biblioteca

4 11. Documentare pe teren

5. Activitate specifica de pregătireSEMINAR şi/sau LABORATOR

7 12.Documentare pe INTERNET 10

6. Realizarea teme, referate, eseuri, traduceri

7 13. Alte activităţi …

7.Pregatire lucrări de control 14. Alte activităţi….TOTAL ore studiu individual ( pe semestru) = 69

81

Page 82: Physics of advanced materials and nanostructures

CONTINUT( tabla de materii)

Curs:1. Tipuri de materiale semiconductoare. 2. Principalele tehnologii utilizate. 3. Jonctiuni p-n. 4. Tranzistoare bipolare. 5. Structuri MOSFET. 6. Structuri MESFET si MODFET. 7. Diode tunel. 8.Diode rezonante. 9. Dispozitive fotonice. Seminar si Laborator :

1. Studiul numeric al influentei dopajului asupra proprietatilor electrice(1 sedinta)

2. Studiul numeric al jonctiunilor p-n si al dipozitivelor multi-jonctiune.Influenta reducerii dimensiunilor (2 sedinte)

3. Studiul numeric al tranzistoarelor bipolare. (4 sedinte)4. Simularea si proiectarea structurilor MOSFET(3 sedinte)5. Simularea si proiectarea structurilor MODFET (2 sedinte)6. Simularea si proiectarea structurilor rezonante (2 sedinte)

Bibliografia 1. S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, WileyInterscience 2007

2. S. M. Sze, Semiconductor Devices, Physics and Technology, JohnWiley&Sons 2002

3. M. Dragoman, D. Dragoman – Nanoelectronics: Principles andDevices, Artech House, 2nd edition, Boston, U.S.A., 2009

4. I. Licea, Fizica starii solide, Editura Univ. Bucuresti, 19905. I. Munteanu, Fizica solidului, Editura Univ. Bucuresti, 19936. P. Cristea, Dispozitive Electronice Speciale, Vol. 1, Editura Univ.

Bucuresti, 1999Lista materialelor didactice necesare

- Calculatoare electronice (OS Windows 2000 , XP, Linux) (4 statii). Acces lareteaua Internet. Software: Mathcad, Origin, Maple, FlexPDE, Scilab, Octave, Turbo PASCAL, C++, Visual Basic.- Programe de simulare si modelare dedicate cursului: WinGreen, RTD, HEMT, SelfHEMT.- Software pentru pregatirea referatelor si a prezentarilor: Microsoft Word, Microsoft PowerPoint.- Retroproiector sau proiector electronic.

La stabilirea notei finale se iau în considerarePonderea în notare, exprimata în %{Total=100%}

- răspunsurile la examen/colocviu ( evaluarea finala) 60%- răspunsurile temele practice de laborator 20%- testarea periodica prin lucrări de control- testarea continua pe parcursul semestrului 10%- activităţile gen teme/referate/eseuri/traduceri/proiecte etc 10%- alte activităţi ( precizaţi)………Prezenţă…………………Descrieţi modalitatea practica de evaluare finala, E/V. { de exemplu: lucrare scrisa (descriptiva şi /sau test grila şi /sau probleme etc.), examinare orala cu bilete, colocviu individual ori în grup, proiect etc.}Evaluarea finala se face pe baza corectării unei lucrări scrise, care conţine mai multe subiecte teoretice şi mai multe probleme cu grad de dificultate diferit.

82

Page 83: Physics of advanced materials and nanostructures

Cerinţe minime pentru nota 5( sau cum se acorda nota 5)

Cerinţe pentru nota 10(sau cum se acorda nota 10)

Prezenta la intreaga activitate de laborator.Rezolvarea corecta a temelor practice de laborator.Rezolvarea unei probleme la proba scrisa.Rezultate medii la verificarea continua.

Prezenta la intreaga activitate de laborator. Rezolvarea corecta a temelor practice de laborator.Cunoasterea temeinica a notiunilor teoretice. Rezolvarea corecta a tuturor problemelor la examenul final.Rezultate bune la verificarea continua

Data completării Semnătura titularului09. 02. 2013 Conf. dr. Petrica Cristea

83

Page 84: Physics of advanced materials and nanostructures

DF.II1 Tranziții de fază în starea condensatăDenumirea disciplinei

Tranziții de fază în stareacondensată

Codul disciplinei

DF.II1

Anul de studiu I Tipul de evaluare (E/V/C) ECategoria formativa a disciplinei DF – fundamentala, DG – generala, DS – de specialitate, DE – economica/manageriala, DU- umanista

DS

Regimul disciplinei{Ob – obligatorie, Op- opţionala, F – facultativa}

Op Număr de credite 3

Total ore din planul de învăţământ

42 Total ore studiu individual

33 Total ore semestru 75

Titularul disciplinei Con. Dr. Lucian ION, Conf. Dr. Ciceron BERBECARU*dacă disciplina are mai multe semestre de studiu, se completează câte o fişă pentru fiecare semestru

Facultatea Fizica Numărul total de ore ( pe semestru) dinDepartamentul Electricitate, Fizica

Solidului și Biofizicăplanul de învăţământ

Domeniul fundamentalde ştiinţa, arta, cultura

Ştiinţe exacte (Ex:28 la C daca disciplina are curs de 14_saptamanix2_ h_curs pe săptămâna)

Domeniul de studii universitare de masterat

Fizica Total C S L P

Programul de studii universitare de masterat

Materiale avansate și nanostructuri

42 28 14

** C-curs, S-seminar, L-activităţi de laborator, P-proiect sau lucrări practice

Discipline anterioare

Obligatorii(condiţionate)

Fizica corpului solid, Stiinte matematice (analiza, geometrie, algebra), Termodinamica si Fizica statistica, Fizica Atomica, Prelucrari date fizice, metode numerice

Recomandate Ecuatiile fizicii matematice, Mecanica analitica, Mecanica Cuantica, Stiinta si tehnologia materialelor

Estimaţi timpul total ( ore pe semestru) al activităţilor de studiu individual pretinse studentului( completaţi cu zero activităţile care nu sunt cerute)1. Descifrarea şi studiul notiţelor de curs 7 8. Pregătire prezentări orale. 02. Studiul după manual, suport de curs 5 9. Pregătire examinare finala 53. Studiul bibliografiei minimale indicate 3 10. Consultaţii 44. Documentare suplimentara în biblioteca

3 11. Documentare pe teren 0

5. Activitate specifica de pregătireSEMINAR şi/sau LABORATOR

3 12. Documentare pe INTERNET 3

6. Realizarea teme, referate, eseuri, traduceri

13. Alte activităţi … 0

7.Pregatire lucrări de control 14. Alte activităţi…. 0TOTAL ore studiu individual ( pe semestru) = 33

84

Page 85: Physics of advanced materials and nanostructures

Competențe generale ( competenţele generale sunt menţionate în fişa programului de studiu)

Competenţe specifice disciplinei

1.Cunoaştere şi înţelegere (cunoaşterea şi utilizarea adecvata a noţiunilor specifice disciplinei)

Obiectivele urmărite în cadrul acestui curs si seminar în sensul cunoaşterii şi înţelegerii noţiunilor specifice sunt:

- Descrierea și înțelegerea fenomenelor fizice asociate tranzițiilor de fază.

- Înțelegerea noțiunii de parametru de ordine.

De asemenea se urmăreşte:

- dezvoltarea capacităţii de a asimila, analiza și compara fenomene fizice diverse, apelând la principii fundamentale;

- dezvoltarea abilităţii de a analiza si interpreta datele experimentale relevante și de a formula concluzii teoretice riguroase;

- dezvoltarea abilităţii de a aplica modele matematice si numerice adecvate pentru modelarea fenomenelor fizice;

şi dobândirea unei profunde înţelegeri teoretice a problemelor studiate.

2. Explicare şi interpretare (explicarea şi interpretarea unor idei, proiecte, procese, precum şi a conţinuturilor teoretice şi practice ale disciplinei)

Se urmărește formarea la studenţi a:

- abilităţii de a elabora şi susţine o expunere bine structurată şi riguros fundamentată ştiinţific;

- capacităţii de modelare matematică a fenomenelor fizice.

3. Instrumental–aplicative (proiectarea, conducerea şi evaluarea activităţilor practice specifice; utilizarea unor metode, tehnici, şi instrumente de investigare şi de aplicare)

Se urmăreşte formarea la studenţi a capacităţii de a utiliza cunoştinţele teoretice dobândite pentru rezolvarea unor probleme fizice de interes şi pentru modelarea diferitelor procese fizice.

4.Atitudinale

cultivarea interesului şi pasiunii pentru disciplina studiată;

conştientizarea importanţei aplicative a disciplinei în cauză pentru profesiade fizician;

cultivarea unei conduite etice în activitatea educaţională şi de cercetare;

valorificarea optimă și creativă a propriului potenţial în activităţile ştiinţifice.

** C-curs, S-seminar, L- activităţi de laborator, P-proiect sau lucrări practice

Curs:Teoria Landau a tranzițiilor de fază Noțiunea de rupere de simetrie. Parametrude ordine. Teoria termodinamică a lui Landau. Teoria lui Ornstein și Zernike –aproximația gaussiană. Criteriul Landau-Ginzburg. Fenomene critice -

85

Page 86: Physics of advanced materials and nanostructures

CONTINUT( tabla de materii)

introducereMateriale dielectrice- tranziții de fază. Permitivitatea și pierderile dielectrice.Mecanisme de polarizare. Polarizarea dipolară de orientare. Teoria Debye apermitivității statice. Pierderi prin conducție. Semicercul Debye și diagramavectorială. Dependența de frecvență și temperatură a constantei dielectricecomplexe. Dispersia dielectrică, timp de relaxare, arcul Cole-Cole. Materialenepolare și polare de utilitate tehnologică. Tranziții de fază în materiale feroelectrice. Definiție, clasificare, structură,proprietăți. Tranziții de faza. Polarizarea spontană și funcția dielectrică întranzițiile de fază de ordinul unu. Domenii feroelectrice. Emisia electronicăprin repolarizare. Monocristale piroelectrice cu câmp intern. Polarizareaspontană și funcția dielectrică în tranzițiile de fază de ordinul doi.Cristale feroelectrice. Structura de domenii. Influența factorilor externi(temperatură, presiune, câmp electric) asupra parametrilor caracteristici,polarizare, constantă dielectrică, etc. Metode de investigare a proprietățilorferoelectrice. Ceramici feroelectrice pentru electronică. Ceramici tip PZT,diagrame de faza, preparare, proprietăți, aplicații. Ceramici feroelectrice pentrumicrounde. Materiale piroelectrice pentru detecția în infraroșu. Materialeceramice fără Pb- Relaxori. Multiferoici.

Laborator:1. Dependenta polarizarii spontane de temperatura pentru tranzitii de faza de speta I si II.2. Dependenta constantei dielectrice de temperatura pentru tranzitii de faza de speta I si II.3. Dependenta constantei dielectrice de frecventa. Spectroscopie dielectrica.4. Obtinerea unui material cu proprietati feroelectrice. Cresterea monocristalului TGS.

Bibliografia 1. JONA F., SHIRANE G.,“Ferroelectric Crystals”,Pergamon Press,(1962).2. M. E. Lines, A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials”, Oxford University Press, 19773. B. A. Strukov, A. P. Levaniuk, “Ferroelectric phenomena in crystals: physical foundations, Springer, 19984. Note de curs in format electronic, care vor fi date studentilor pe e-mail.

Lista materialelor didactice necesare

Aparatura și materiale din dotarea laboratorului, Calculatoare, VideoProiector

La stabilirea notei finale se iau în considerare Ponderea în notare, exprimata în %{Total=100%}

- răspunsurile la examen/colocviu ( evaluarea finala) 50 %- răspunsurile finale la lucrările practice de laborator 30 %- testarea periodica prin lucrări de control 10 %- testarea continua pe parcursul semestrului 10 %- activităţile gen teme/referate/eseuri/traduceri/proiecte etc- alte activităţi ( precizaţi)………Prezenţă…………………

86

Page 87: Physics of advanced materials and nanostructures

Descrieţi modalitatea practica de evaluare finala, E/V. { de exemplu: lucrare scrisa (descriptiva şi /sau test grila şi /sau probleme etc.), examinare orala cu bilete, colocviu individual ori în grup, proiect etc.}Evaluarea finala se face pe baza corectării unei lucrări scrise, care conţine subiecte (intrebari si probleme) din tematica de curs si laborator, cu grad de dificultate diferit.

Cerinţe minime pentru nota 5( sau cum se acorda nota 5)

Cerinţe pentru nota 10(sau cum se acorda nota 10)

Expunerea corecta a cel putin jumatate dintre subiectele prevazute in testarile pentru stabilireanotei finale.

Expunerea corecta a tuturor subiectelelor prevazute in testarile pentru stabilirea notei finale.

Data completării Semnătura titularului06. 02. 2013 Conf. dr. Lucian ION

Conf. Dr. Ciceron BERBECARU

87

Page 88: Physics of advanced materials and nanostructures

DF.II2 Metode avansate de calcul paralelDenumirea disciplinei

Metode avansate de calcul paralel

Codul disciplinei

DF.II2

Anul de studiu II Semestrul I Tipul de evaluare (E/V/C) ECategoria formativa a disciplinei ( DF – fundamentala, DG – generala, DS – de specialitate, DE – economica/manageriala, DU- umanista)

DF

Regimul disciplinei{Ob – obligatorie, Op- opţionala, F – facultativa}

Op Număr de credite 5

Total ore din planul de învăţământ

56 Total ore studiu individual

69 Total ore semestru 125

Titularul disciplinei Lect. Dr. George Alexandru NEMNES*dacă disciplina are mai multe semestre de studiu, se completează câte o fişă pentru fiecare semestru

Facultatea Fizica Numărul total de ore ( pe semestru) din planul de învăţământ

Departamentul Electricitate, fizica solidului şi biofizică

Domeniul fundamentalde ştiinţa, arta, cultura

Ştiinţe exacte

(Ex:28 la C daca disciplina are curs de 14_saptamanix2_ h_curs pe săptămâna)

Domeniul de studii de masterat

Fizica Total C S L P

Programul de studii demasterat

Materiale avansate și nanostructuri

56 28 28

** C-curs, S-seminar, L-activităţi de laborator, P-proiect sau lucrări practice

Discipline anterioare

Obligatorii(condiţionate)

Mecanica cuantica, Fizica stării solide I, Termodinamica si Fizica statistica,

Recomandate Electronica fizica, Ecuatiile Fizicii matematice

Estimaţi timpul total ( ore pe semestru) al activităţilor de studiu individual pretinse studentului( completaţi cu zero activităţile care nu sunt cerute)1. Descifrarea şi studiul notiţelor de curs 7 8. Pregătire prezentări orale.2. Studiul după manual, suport de curs 8 9. Pregătire examinare finala 53. Studiul bibliografiei minimale indicate 3 10. Consultaţii 44. Documentare suplimentara în biblioteca

3 11. Documentare pe teren

5. Activitate specifica de pregătireSEMINAR şi/sau LABORATOR

12. Documentare pe INTERNET 3

6. Realizarea teme, referate, eseuri, traduceri

13. Alte activităţi …

7.Pregatire lucrări de control 14. Alte activităţi….TOTAL ore studiu individual ( pe semestru) = 33

88

Page 89: Physics of advanced materials and nanostructures

Competenţe specifice disciplinei

1.Cunoaştere şi înţelegere (cunoaşterea şi utilizarea adecvata a noţiunilor specifice disciplinei)Obiectivele urmărite în cadrul acestui curs si seminar în sensul cunoaşterii şi înţelegerii noţiunilor specifice sunt:- Descrierea și înțelegerea metodei de calcul paralel folosind MPI.- Intelegerea notiunilor de tipul sincronizare, comunicatii intre noduri, dependenta a datelor, granularitate. - Dezvoltarea programelor de calcul paralel. De asemenea se urmăreşte:- dezvoltarea abilităţii de a analiza si interpreta datele obtinute numeric, cu precadere in descrierea fenomenelor de difuzie in fractali, automate celulare, precum și de a formula concluzii teoretice riguroase;- dezvoltarea abilităţii de a aplica modele numerice adecvate pentru modelarea fenomenelor fizice;- dezvoltarea unui cod de calcul paralel ce utilizeaza librarii de algebra lineara, precum şi dobândirea unei profunde înţelegeri teoretice a problemelor studiate.2. Explicare şi interpretare (explicarea şi interpretarea unor idei, proiecte, procese, precum şi a conţinuturilor teoretice şi practice ale disciplinei)Se urmărește formarea la studenţi a:- abilităţii de a elabora şi susţine o expunere bine structurată şi riguros fundamentată ştiinţific; - capacităţii de modelare cu ajutorul librariilor de calcul paralel (BLACS, SCALAPACK) in coduri de calcul elaborate individual, a fenomenelor fizice discutate.3. Instrumental–aplicative (proiectarea, conducerea şi evaluarea activităţilor practice specifice; utilizarea unor metode, tehnici, şi instrumente de investigare şide aplicare)Se urmăreşte formarea la studenţi a capacităţii de a utiliza cunoştinţele de calcul numeric dobândite pentru rezolvarea unor probleme fizice de interes şi pentru modelarea diferitelor procese fizice.4.Atitudinale

□cultivarea interesului şi pasiunii pentru disciplina studiată;

□conştientizarea importanţei aplicative a disciplinei în cauză pentru profesia defizician;

□cultivarea unei conduite etice în activitatea educaţională şi de cercetare;

□valorificarea optimă și creativă a propriului potenţial în activităţile ştiinţifice.

CONȚINUT( tabla de materii)

Curs:- Concepte și taxonomie. Taxonomia clasică a lui Flynn.- Arhitecturi de memorie pentru calcul paralel: memorie comună, memorie distribuită, memorie hibridă distribuită-comună. - Modele de programare paralelă. Modelul memoriei comune. Model bazat pe thread-uri. Model bazat pe memorie distribuita (MPI).- Dezvoltarea programelor paralele. Partiționarea problemei. Comunicații. Sincronizare. Dependențele datelor. Echilibrarea încărcării pe nodurile de calcul. Granularitatea.- Utilizarea librăriilor de calcul paralel pentru algebra lineară (BLACS, SCALAPACK)

89

Page 90: Physics of advanced materials and nanostructures

- Sisteme Ising. Metode de eșantionare în spațiul stărilor.- Automate celulare. Metode de tip LGA (Lattice Gas Automata).- Difuzie anomală pe (quasi) fractali.- Ecuația căldurii.

Seminar :- Aplicatii MPI în algebra lineară.- Integrale efectuate prin metoda Monte-Carlo.- Elaborarea unui cod de calcul paralel în vederea studiului difuziei anomale în quasi-fractali.

Bibliografia 1. MPI: A Message-Passing Interface Standard (Version 3.0), MessagePassing Interface Forum, September 21, 2012

2. Manualele care însotesc pachetele LAPACK, SCALAPACK.Note de curs în format electronic, care se vor afla pe site-ulhttp://solid.fizica.unibuc.ro/~nemnes/

Lista materialelor didactice necesare

Sisteme PC

La stabilirea notei finale se iau în considerare Ponderea în notare, exprimata în %{Total=100%}

- răspunsurile la examen/colocviu ( evaluarea finala) 60%- răspunsurile finale la lucrările practice de laborator- testarea periodica prin lucrări de control 20%- testarea continua pe parcursul semestrului 20%- activităţile gen teme/referate/eseuri/traduceri/proiecte etc- alte activităţi ( precizaţi)………Prezenţă…………………Descrieţi modalitatea practica de evaluare finala, E/V. { de exemplu: lucrare scrisa (descriptiva şi /sau test grila şi /sau probleme etc.), examinare orala cu bilete, colocviu individual ori în grup, proiect etc.}Evaluarea finala se face pe baza corectării unei lucrări scrise, care conţine mai multe subiecte teoretice şi mai multe probleme cu grad de dificultate diferit.

Cerinţe minime pentru nota 5( sau cum se acorda nota 5)

Cerinţe pentru nota 10(sau cum se acorda nota 10)

Expunerea corecta a unui subiect teoretic la examenul final.Rezolvarea corecta a unei probleme la examenul final.Rezultate medii la verificarea periodica.Rezultate medii la verificarea continua.

Expunerea corecta a tuturor subiectelor teoretice la examenul final.Rezolvarea corecta a tuturor problemelor la examenul final.Rezultate bune la verificarea periodica.Rezultate bune la verificarea continua.

Data completării Semnătura titularului04. 02. 2013 Lect. dr. George Alexandru Nemneș

90

Page 91: Physics of advanced materials and nanostructures

DF.II3 Instrumentaţie virtuală şi achiziţie de dateDenumirea disciplinei

Instrumentaţie virtuală şi achiziţie de date

Codul disciplinei

DF.II3

Anul de studiu II Semestrul I Tipul de evaluare (E/V/C) CCategoria formativa a disciplinei DF – fundamentala, DG – generala, DS – de specialitate, DE – economica/manageriala, DU- umanista

DS

Regimul disciplinei{Ob – obligatorie, Op- opţionala, F – facultativa}

F Număr decredite

3

Total ore din planul de învăţământ

42 Total ore studiu individual

33 Total ore semestru

75

Titularul disciplinei Conf. dr. Lucian ION

*dacă disciplina are mai multe semestre de studiu, se completează câte o fişă pentru fiecare semestru

Facultatea Fizică Numărul total de ore ( pe semestru) dinDepartamentul Electricitate, Fizica

Solidului și Biofizicăplanul de învăţământ

Domeniul fundamentalde ştiinţa, arta, cultura

Ştiinţe exacte (Ex:28 la C daca disciplina are curs de 14_saptamanix2_ h_curs pe săptămâna)

Domeniul pentru studiide masterat

Fizica Total C S L P

Programul de studii demasterat

Materiale avansate și nanostructuri

42 28 14

** C-curs, S-seminar, L- activităţi de laborator, P-proiect sau lucrări practice

Discipline anterioare

Obligatorii(condiţionate)

Electricitate, Limbaje de programare

Recomandate Fizica Solidului, Prelucrarea datelor în fizică

Estimati timpul total ( ore pe semestru) al activitatilor de studiu individual pretinse studentului( completati cu zero activitatile care nu sunt cerute) 1. Descifrarea si studiul notitelor de curs 7 8. Pregătire prezentări orale.2. Studiul după manual, suport de curs 5 9. Pregătire examinare finala 53. Studiul bibliografiei minimale indicate 4 10. Consultaţii 44. Documentare suplimentara in biblioteca

2 11. Documentare pe teren

5. Activitate specifica de pregatireSEMINAR si/sau LABORATOR

3 12. Documentare pe INTERNET 3

6. Relizarea teme, referate, eseuri, traduceri etc.

13. Alte activităţi…

7.Pregatire lucrări de control 14. Alte activităţi….TOTAL ore studiu individual ( pe semestru) =33

Competente generale ( competentele generale sunt mentionate in fisa specializarii)

91

Page 92: Physics of advanced materials and nanostructures

Competente specifice disciplineiInțelegere teoretică dezvoltată pe cunostințele obținute la disciplinele anterioare.Formarea de deprinderi în achiziția, prelucrarea și interpretarea datelor experimentale Aprofundarea cunoaşterii în domeniul de specializare abordat

1.Cunoaştere şi înţelegere ( cunoaşterea şi utilizarea adecvata a noţiunilor specifice disciplinei)■ Capacitate de sinteza si analiza■ Cunostinte generale■ Cunostinte de baza ale specializarii (limbaj, modele, analiza de procese)

2. Explicare si interpretare (explicare a si interpretarea unor idei, proiecte, procese, precum si a conţinuturilor teoretice si practice ale disciplinei)■ Dezvoltarea unor abilitati de colectare si prelucrare a informatiei■ Capacitatea de a propune si a rezolva probleme specificedisciplinei

3. Instrumental – aplicative ( proiectarea, conducerea si evaluarea activitatilor practice specifice; utilizarea unor metode, tehnici, si instrumente de investigare si de aplicare)■ Abilitati experimentale dobandite in laboratorul aferent■ Abilitati de operare pe PC in programare, prelucrarea si analiza datelor experimentale

4. Atitudinale ( manifestarea unei atitudini pozitive si responsabile fata de domeniul stiintific/cultivarea unui mediu stiiintific centrat pe valori si relatii democratice/ promovarea unui sistem de valori culturale, morale si civice/ valorificarea optima si creativa a propriului potential in activitatile stiintifice/ implicarea in dezvoltarea institutionala si promovarea inovatiilor stiintifice/angajarea in relatii de parteneriat cu alte persoane- institutii cu responsabilitati similare/participarea la propria dezvoltare profesionala)■ Capacitatea de a avea un comportament etic■ Preocuparea pentru obtinerea si imbunatatirea permanenta a calitatii

CONŢINUT( tabla de materii)

Curs:1.Structura mediului de programare LabView

Instrumente virtuale Panoul frontal. Controale şi indicatori Diagrama. Structura unui cod în limbaj G

2. Limbajul G Tipuri de date Structuri (bucle, elemente de ramificare a firului de execuţie,

secvenţe) Şiruri de date Clusteri Operaţiuni I/O

3. Programarea şi controlul unei plăci de achiziţie Busul de date RS485. Structura. Configurare Apelarea unei funcţii de bibliotecă Module de configurare

92

Page 93: Physics of advanced materials and nanostructures

Module de achiziţie şi tratare de date

4.Programarea şi controlul unui instrument Busul GPIB Interfaţa de programare a aplicaţiilor VISA

Laborator :- Dezvoltarea de aplicații

Bibliografia 1. Note de curs , format electronic.

Lista materialelor didactice necesare

Sisteme PCEchipamente din laboratoarele de caracterizare ale centrului MDEO 

La stabilirea notei finale se iau in considerare Ponderea in notare, exprimată în %{Total=100%}

- răspunsurile la examen/colocviu ( evaluarea finala) 50%- răspunsurile finale la lucrările practice de laborator 20%- testarea periodica prin lucrări de control 5%- testarea continua pe parcursul semestrului 20%- activităţile gen teme/referate/eseuri/traduceri/proiecte etc 5%- alte activităţi ( precizaţi)…………………………Descrieţi modalitatea practica de evaluare finala, E/V. { de exemplu: lucrare scrisa (descriptiva si /sau test grila si /sau probleme etc.), examinare orala cu bilete, colocviu individual ori in grup, proiect etc.}Evaluarea finala se face pe baza corectării unei lucrări scrise , lucrare ce conţine atât subiecte teoretice,cât şi aplicaţii la proprietăţi ale solidului.

Cerinţe minime pentru nota 5( sau cum se acorda nota 5)

Cerinţe pentru nota 10(sau cum se acorda nota 10)

Expunerea corecta a subiectelor indicate.Rezultate medii la verificarea continua.Crearea unei aplicații funcționale indicate

Rezultate excelente la verificarea finala.Participare foarte buna la activităţile de la laborator.Rezultate bune la verificarea continua.

Data completării Semnătura titularului

6/02/2013 Conf. dr. Ion Lucian

93