physics 7a – lecture 4 winter 2008 prof. robin d. erbacher 343 phy/geo bldg...

49
Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg [email protected]

Upload: florence-shaw

Post on 26-Dec-2015

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Physics 7A – Lecture 4

Winter 2008

Physics 7A – Lecture 4

Winter 2008

Prof. Robin D. Erbacher343 Phy/Geo Bldg

[email protected]

Prof. Robin D. Erbacher343 Phy/Geo Bldg

[email protected]

Page 2: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Join this Class Session with your PRS clicker!

• Quiz 2 being graded; Quiz 1 Rubric is posted and grading scale is linked.

• My office hours moved: 10-11:30 am Tuesdays.

• Check Physics 7 website frequently for calendar &Announcements.

• Turn off cell phones and pagers during lecture.

Page 3: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Three New Energy Systems

Three New Energy Systems

Page 4: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

EEmovementmovement

(KE)(KE)

EEgravitgravit

yy

EEsprinsprin

gg

Rear shock absorber and spring of

BMW R75/5Motorcycle

Page 5: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Kinetic energy is simply Emoving.

• For translational energy, the indicator is speed; the faster an object moves, the more KE it has.

• There is a quantitative relationship between KE and speed. Also, it is proportional to the mass of the object:

• The direction of motion of the object is unimportant.

KEtrans = ½ m v2KEtrans = ½ m v2

Baseball

WorkKEKE

SpeedSpeed

Page 6: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

E total = ΔE1 + ΔE 2 + ΔE 3 + ... = Q + WRemember this equation for an open system?

You have worked a lot with Q, Heat. Now we introduce Work:

Work: A transfer of energy that takes place from a physical system to another physical system due to an interaction that involves a Force.

KEKESpeedSpeed

Baseball

Work

1) The pitcher’s hand “pushed” the baseball.2) The pitcher’s hand exerted force on the baseball.3) As a result, the baseball started moving (its KE increased).

Page 7: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

May the Force Be With You!May the Force Be With You!

"an energy field, created by all living things, that surrounds us, penetrates us, and binds the galaxy together."

Page 8: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

To be more precise, we need the concept of “Force” : “Push” or “Pull”

An overall push (or pull!) in the direction the object is travelling

has the effect of speeding it up.

1) Block is already moving, you push in same direction:

direction of travel

direction of Force

KEKESpeedSpeed

Work

Consider a block being pushed by you on a level surface with no friction:

Page 9: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

To be more precise, we need the concept of “Force” : “Push” or “Pull”

Consider a block being pushed by you on a level surface with no friction:

2) Block is already moving, you push in opposite direction:

direction of travel

direction of Force

KEKESpeedSpeed

Work

An overall push (or pull!) in against the direction the object

is travelling has the effect of slowing it down.

Page 10: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What’s force got to do with work?

WorkWork Transfer of energy into or out of a physical system by a force exerted by another physical system.

The change in energy results from an interaction in which an object moves through a distance parallel to the force exerted on it.

Work = Fparallel ∆x = F|| ∆x

[Joule] = [Newton] [m]=[Nm]

Page 11: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Conservation of Energy says…

∆PEgrav = Work

= Fyou on mass ∆height= mg(hfinal - hinitial)

mm

mm vf=0

Pull

vi=0

Work was done on the mass:Work = F||∆x

Where did the energy go??

∆x PEgrav

HeightWork

What is the indicator of the object change?

Temperature? Phase? Speed?

Page 12: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Potential energy due to gravity: Eheight. (There are other

types of PE, such as PE in a spring, or chemical PE.)

• For gravitational PE, the indicator is height; a higher object (with respect to something else) has more PEgravity.

• The quantitative relationship between PE and height:

(g~10 m/s2 is the acceleration due to gravity on Earth.)

PEgravity = mghPEgravity = mgh

Page 13: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

PEgrav

Height

PEgravity = mghPEgravity = mgh

• Gravitational potential energy-system exists for each pair of objects interacting by the gravitational force

• ∆PEgravity depends on two quantities: the change in vertical distance that the object moved, and the mass of the object.

• Usually, we focus on the gravitational potential energy due to the interaction between an object and the Earth.

Crumpled PaperKE

SpeedNote: we are neglecting friction

Page 14: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

1) You throw a ball to the height of the first floor window.2) Now you want to throw a ball to the height of the 4th floor.

Question: How much faster do you need to throw it?

a) 2 times as fastb) Twice as fast• Thrice as fast• 4 times as fast• 16 times as fast

Answer: b, twice as fast!

Page 15: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the height of the bowling ball after one full swing?

(a) Same

(b) Higher

(c) Lower

Page 16: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

(a) Starting point

(b) When rope is vertical

(c) After reaches point c.

When is the speed of the bowling ball maximum?

ab

c

Page 17: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

(a) Starting point

(b) When rope is vertical

(c) After reaches point c.

When is the PEgravity of the bowling ball maximum?

ab

c

Page 18: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

PEgravity = KEtranslational

mgh = ½ m v2

Consider a simple pendulum:• At the height (peak) of the amplitude, the object is at rest. Egravity = mgh (define h above the low point)

• At the bottom of the motion, the object is moving quickly, and h=0. Etrans = ½ m v2

Conservation of Energy dictates that:

All of the PE goes into KE, and then back again!

Page 19: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

mm

mm v=0

Pull

v=0

Mass is pulled part way up a well (like in FNT).

This time work is done but there is no change in KE when v=0.

Work entering or leaving does NOT automatically mean KE is increasing or decreasing.

Similar to how heat entering or leaving does NOT automatically mean the temperature is changing.

Page 20: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

InitialFinal(Still in motion)PEgrav

Height

KESpeed

Page 21: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

PEgrav

Height

KESpeed

Final

Initial

(In motion)

Page 22: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

PEgrav

Height

KESpeed

Initial

Final (Still in motion)

Page 23: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Springs contain energy when you stretch or compress them. We will use them a lot in Physics 7.

• The indicator is how much the spring is stretched or compressed, x, from its equilibrium (rest) state.

• k is a measure of the “stiffness” of the spring, with units [k] = kg/s2.

• x: Much easier to stretch a spring a little bit than a lot!

PEspring = ½ kx2PEspring = ½ kx2

x

Page 24: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Clicker Question:

The “equilibrium position” of a mass-spring system is:

A)The “center” of the oscillatory motionB)The position where a spring has no stored PEC)The position where the mass will be at when it eventually stops movingD)The position of maximum kinetic energyE)All of the above

Page 25: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Clicker Question:Consider a mass on a vertical spring.At which point is the potential energy the greatest?

A)The “equilibrium” position (center of oscillations).B)The highest point the mass goes.C)In between the center and the top position.D)When the kinetic energy is the greatest, too.E)None of the above.

Page 26: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• k is a property of the spring only• PEmass-spring does not depend on mass• PE = 0 arbitrary

PEvertical spring = ½ ky2 +CPEvertical spring = ½ ky2 +C

Page 27: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Clicker Question: Is the KE (kinetic energy) of a mass-spring system a function of position?

a) No, in this case the potential energy is a function of position.

b) The kinetic energy can be treated as a function of position provided the system is open.

c) The kinetic energy can always be treated as a function of position in a mass-spring system.

d) The kinetic energy can be treated as a function of position provided the system is closed.

e) Not enough information is given.

Page 28: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Sometimes from the conservation of energy:

• We can express KE in terms of position (h, y, etc).KE can never be negative!

• KE = KEf – KEi = ½ mvf2 – ½ mvi

2

PEgravity = KEtranslational

mgh = ½ m v2)

KEtrans = ½ m v2 KEtrans = ½ m v2

Page 29: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• What are the x-axis, y axis? Units?x axis (independent variable: height)y axis (dependent variable: PEgrav)

• Which quantity (energy) is the easiest to graph?

Etot ? PEgrav? What about KE?

• Where should the origin (0) be placed? Where does it most make sense?

Should the floor be 0m?

Page 30: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

PEmass-spring

Page 31: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

direction of force

y

PEmass-spring

Page 32: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

direction of force

PEmass-spring

Page 33: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

PEmass-spring

On this side force pushes up

On this side force pushes down

Equilibrium

Forces from potentials point in direction

that (locally) lowers PE

Page 34: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

PEmass-spring

Equilibrium

Potential Energy curve of a spring:

PE = ½ k (x)2

W (work) = PE = -F║ x

Force = -PE / x = - k x

Putting work into the system increases the energy. Here, work is force through a distance

Page 35: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

PEmass-spring

Equilibrium

Potential Energy curve of a spring:

PE = ½ k (x)2

W (work) = PE = -F║ x

Force ≈ -PE / x ≈ - k x

• Force is always in direction that decreases PE• Force is related to the slope -- NOT the value of PE• The steeper the PE vs r graph, the larger the force

~Force

Page 36: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Why does it take more energy to vaporize than

to melt?What is Ebond?

We will model real atoms of liquids and solids as oscillating masses and springs

Particle Model of Matter

• Three-phase model of matter

• Energy-interaction model

• Mass-spring oscillator

• Particle model of matter Particle model of bond energy Particle model of thermal energy

•Thermodynamics• Ideal gas model• Statistical model of thermodynamics

r

Page 37: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Particle Model of Matter

Particle Model of Matter

Page 38: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Fermilab BubbleChamber Photo

Atoms in DNA Subatomic particles

Page 39: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Atom 1(anchored)

Atom 2(bonded)

Page 40: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

r

PE

Distance between the atoms

Clicker: True or False?

Atoms at large distances from each other attract or repel each other.

Page 41: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

r

PE

Distance between the atoms

Clicker: True or False?

It is not possible to squash one atom completely into the other one.

Page 42: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

Flattening: atoms have negligible forces at large separation.

r

PE

Distance between the atoms

Repulsive: Atoms push apart as they get too close

Page 43: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

r

PE

Distance between the atoms

The bond is an abstraction: Atoms that don’t have enough energy cannot escape the potential (force), so we treat them as bound until we add enough energy to free them.

Potentialenergy betweenatoms

Page 44: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu
Page 45: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Particle: atomic sized object.

Attractive forces, Repulsive forces…obvious, but need specifics. (bowl and ball)

Center-to-center: here is ‘r’, not surface to surface. (studs)

Equilibrium: same as spring, pendulum, ball-in-bowl…

Pair-wise Potential Energy: between 2 particles (see above).

Single Particle Potential Energy: sum from all interactions with neighbors.

Page 46: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

ro

* ‘Not to scale’

Can you see the forces and energy systems?

= atomic radius

Page 47: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

ro

Atoms bound together?

Bonds Formed?

Squeezing?

Bonds breaking?

Page 48: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Liquid: Molecules can move around, but are loosely held together by molecular bonds. Nearly incompressible.

Gas: Molecules move freely through space. Compressible.

Solid: Rigid, definite shape. Nearly incompressible.

Page 49: Physics 7A – Lecture 4 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Next Time: Molecular Models

Next Time: Molecular Models