physics 7a – lecture 6 winter 2008 prof. robin d. erbacher 343 phy/geo bldg...

54
Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg [email protected]

Upload: justina-sims

Post on 12-Jan-2016

237 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Physics 7A – Lecture 6

Winter 2008

Physics 7A – Lecture 6

Winter 2008

Prof. Robin D. Erbacher343 Phy/Geo Bldg

[email protected]

Prof. Robin D. Erbacher343 Phy/Geo Bldg

[email protected]

Page 2: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Quiz 4 is today, focused on material from DLMs 9-12.

• Join this Class Session with your PRS clicker!

• Website has moved: power outages fried the mac:http://www.physics.ucdavis.edu/physics7/

• Check Physics 7 website frequently for updates.

• Turn off cell phones and pagers during lecture.

Page 3: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Particle Model of Matter

Particle Model of Matter

Page 4: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Understand the particulate nature of matter

Page 5: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

We are modeling real atoms of liquids and solids as oscillating masses and springs. r

Goal : To understand macroscopic phenomena (e.g. melting, vaporizing) and macroscopic properties of matter such as phases, temperature, heat capacities, in terms of microscopic constituents and its behavior.

Page 6: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Atom 1(anchored)

Atom 2(bonded)

~ two atomic size particles interacting via “pair-wise potential” a.k.a. Lennard-Jones Potential

Page 7: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

r

Distance between the atoms (r) (units of – atomic diameter)

Equilibrium separation

ro

Po

ten

tial

En

erg

y

Page 8: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

r

Distance between the atoms, r

Equilibrium separation

ro

Po

ten

tial

En

erg

y

As the atom-atom separation increases from equilibrium, force from the potential increases. ~ attracting each other when

they are a small distance apart

Page 9: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

Flattening: atoms have negligible forces at large separation.

r

Distance between the atoms, r

Repulsive: Atoms push apart as they get too close.

Equilibrium separation

ro

Po

ten

tial

En

erg

y

Page 10: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

PE

KE

Etot

Separation (10-10 m)

En

erg

y (1

0-21 J

)

Page 11: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

This is what is meant by a “bond” - the particles cannot escape from one another

Page 12: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

The bond is an abstraction: Atoms that don’t have enough energy cannot escape the potential (force), so we treat them as bound until we add enough energy to free them.

Page 13: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Energy

r (atomic diameters)

r

is the atomic diameter

ro

is the well depth

ro is the equilibrium separation

pair-wise

~ 10-21 J

~ 10-10m = 1Å

Potential Energy between two atomsPotential Energy between two atoms“pair-wise potential” a.k.a. Lennard-Jones “pair-wise potential” a.k.a. Lennard-Jones

PotentialPotential

Potential Energy between two atomsPotential Energy between two atoms“pair-wise potential” a.k.a. Lennard-Jones “pair-wise potential” a.k.a. Lennard-Jones

PotentialPotential

Page 14: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

If a bond is “broken” in an atom-atom potential, which of the following must be true:

A. Etot 0

B. Etot 0

C. PE 0

D. PE 0

E. KE 0

Page 15: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

If a bond is considered stronger, it means that:

A. A greater well depth and a greater

B. A smaller well depth and a greater

A. A smaller well depth and

no constraint on

D. A smaller well depth and a smaller

E. A greater well depth and no constraint on

Page 16: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Multiple- Atom Systems:

Particle Model of Ebond ,Particle Model of Ethermal

Multiple- Atom Systems:

Particle Model of Ebond ,Particle Model of Ethermal

Page 17: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• If the atoms in the molecule do not move too far, the forces between them can be modeled as if there were springs between the atoms.

• The potential energy acts similar to that of a simple oscillator.

Page 18: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Liquid: Molecules can move around, but are loosely held together by molecular bonds. Nearly incompressible.

Gas: Molecules move freely through space. Compressible.

Solid: Rigid, definite shape. Nearly incompressible.

Page 19: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: H2O

What is Ebond in terms of KE and PE of individual atom (atom pair)?

What is Ethermal in terms of KE and PE of individual atom (atom pair)?

Page 20: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Typically every pair of atoms interacts

• Magnitude of Ebond for a substance is the amountof energy required to break apart “all” the bonds i.e. we define Ebond = 0 when all the atoms are separated

• We treat bonds as “broken” or “formed”. Bond energy (per bond) exists as long as the bond exists.

• The bond energy of a large substance comes from adding all the potential energies of particles at their equilibrium positions.

Ebond = ∑all pairs(PEpair-wise)

Page 21: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the change in bond energy (∆Ebond) by removing the red atom?

2.2 A

4.4 A

6.6 A

-8 x 10-21J

-0.5 x 10-21J

~ 0 J8.8 A

11 A~ 0 J

~ 0 J

Bond energy

Separation (10-10m)

Page 22: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the bond energy Ebond for the entire molecule?

-8 x 10-21J

Separation (10-10m)

-8.5 x 10-21J

-8.5 x 10-21J -8.5 x 10-21J

-8.5 x 10-21J

Ebond = -42 x 10-21 Joules

Page 23: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the bond energy Ebond for the entire molecule?Separation (10-10m)

Ebond ≈ -40 x 10-21 Joules

Energy required to break a single pair of atoms apart: +8x10-21 J

=5 bonds.

Page 24: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Ebond for a substance: amount of energy requiredto break apart “all” the bonds (magnitude only) i.e. we define Ebond = 0 when all the atoms are separated

• The bond energy of a substance comes from adding all the potential energies of particles at their equilibrium positions. Ebond = ∑all pairs(PEpair-wise)

A useful approximation of the above relation is:Ebond~ - (total number of nearest neighbor pairs) x ()

Ebond of the system is negative, determined by:1) the depth of the pair-wise potential well (positive) 2) the number of nearest-neighbors.

Page 25: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Etot greater?

a) Situation A has a greater Etot

b) Situation B has a greater Etot

c) Both have the same Etot

d) Impossible to tell

A

B

Page 26: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Ebond greater?a) Situation A has a greater Ebond

b) Situation B has a greater Ebond

c) Both have the same Ebond

d) Impossible to tell

A

B

Page 27: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Ebond greater?a) Situation A has a greater Ebond

b) Situation B has a greater Ebond

c) Both have the same Ebond

d) Impossible to tell

A

B

We did not break a bond - Ebond did not change!

Page 28: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Ethermal greater?a) Situation A has a greater Ethermal

b) Situation B has a greater Ethermal

c) Both have the same Ethermal

d) Impossible to tell

A

B

Page 29: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A

BKE

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Ethermal greater?a) Situation A has a greater Ethermal

b) Situation B has a greater Ethermal

c) Both have the same Ethermal

d) Impossible to tell

KE

We increased Ethermal by putting more energy into the system

Page 30: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Initial

Final

Okay. Now let us look at the same problem from the perspective of the KE and PE of individual atoms.

Which situation is correct in going from initial to final states?

Page 31: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Initial

Final

Okay. Now let us look at the same problem from the perspective of the KE and PE of individual atoms.

Which situation is correct in going from initial to final states?

Page 32: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Initial

Final

Okay. Now let us look at the same problem from the perspective of the KE and PE of individual atoms.

Which situation is correct in going from initial to final states?

Page 33: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Ethermal is the energy associated with the random microscopic motions and vibrations of the particles.

• We increased Ethermal by putting more energy into the system.

• KE and PE keep changing into one another as the atoms vibrate, just like in the mass-spring system, so we cannot make meaningful statements about instantaneous KE and PE.

• We can make statements about average KE and PE.

• Increasing Ethermal increases both KEaverage and PEaverage .

Page 34: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

QuestionQuestion

What is TemperatureWhat is Temperature

in terms of Ein terms of Ethermalthermal??

??

Answer: Answer:

Temperature IS Thermal Energy!Temperature IS Thermal Energy!

Page 35: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

The energy associated with the random motion of particles is split

between PEoscillation and KE .

Page 36: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

As we increase Etot we increase PEavg and KEavg

PEavg = KEavg = Etot/2

En

erg

y

position

Etot

PE

KE

Page 37: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• The energy associated with the randommotion of particles is split between PEoscillation , KE.

• For particles in liquids and solids, let’s not forgetthe part that corresponds to Ebond of the system.

• Ebond of the system is determined by both the depth of the pair-wise potential well and the number of nearest neighbors (# NN) .

Page 38: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu
Page 39: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Equipartition of Energy

Equipartition of Energy

Page 40: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• If the atoms in the molecule do not move too far, the forces between them can be modeled as if there were springs between the atoms.

• Each particle in a solid or liquid oscillates in 3 dimensions about its equilibrium positions as determined by its single-particle potential.

Page 41: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Another way of stating: Each particle has six “ways” to store the energy associated with its random thermal motion.

• We call this “way” for a system to have thermal energy a “mode”.

Page 42: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

QuestionQuestion

What is TemperatureWhat is Temperature

in terms of Ein terms of Ethermalthermal??

??

Answer: Answer:

Temperature IS Thermal Energy!Temperature IS Thermal Energy!

Page 43: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

But Wait a Minute…But Wait a Minute…

Answer revised: Answer revised:

Temperature is Temperature is proportionalproportional to to

Thermal Energy EThermal Energy Ethermalthermal..

The constant of proportionality is The constant of proportionality is kkBB: Boltzman’s Constant: Boltzman’s Constant

[Energy] = [Joule] [Temperature] = [Kelvin]

kB = 1.38 10-23 Joule per degree Kelvin

Page 44: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

To be precise, energy associated with the To be precise, energy associated with the component of motions/vibrations component of motions/vibrations (“modes”) in any particular direction is (“modes”) in any particular direction is (1/2)k(1/2)kBBT :T :

EEthermal per modethermal per mode = (1/2) k = (1/2) kBBTT

a.k.a. Equipartition of Energya.k.a. Equipartition of Energy

GasLiquids and Solids

Page 45: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Modes : Ways each particle has of storing energy.

Ex. Mass-spring has one KE mode

and one PE mode.

Page 46: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Equipartition of Energy RestatedEquipartition of Energy Restated

In thermal equilibrium, EIn thermal equilibrium, Ethermal thermal is shared equally is shared equally among all the “active” modes available to the among all the “active” modes available to the particle. In other words,each “active” mode has particle. In other words,each “active” mode has the same amount of energy given by :the same amount of energy given by :

EEthermal per modethermal per mode = (1/2) k = (1/2) kBBTT

Gas

Liquids and Solids

Page 47: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

3 KEtranslational modesEvery atom can move in three directions

Page 48: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

3 KEtranslational modesEvery atom can move in three directions

Plus 3 potential energy modes along three

directions

3 PE modes

Total number of modes is 3PE + 3KE = 6

Ethermal = 6(1/2)kBT

Page 49: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

3 KEtranslational modesEvery atom can move in three directions

0 PE modes(no bonds)

Gas:

No bonds, i.e. no springsTotal number of

modes is 3KE = 3:Ethermal = 3(1/2)kBT

Page 50: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

3 KEtranslational modes

2 KErotational modes

Page 51: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

3 KEtranslational modes

2 KErotational modes

2 vibrational modes (1 KE, 1PE)(associated with atom-atom interaction

within the molecule)

Page 52: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

3 KEtranslational modes

2 KErotational modes

2 vibrational modes (1 KE, 1PE)(associated with atom-atom interaction

within the molecule)

Total number of modes is 6KE + 1PE = 7Ethermal = 7(1/2)kBT

•Sometimes (at lower temperatures), however, not all the modes are

“active”. (Freezing out of modes)

Page 53: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

KE KE modemode

PE PE modemode

TotalTotal

Solids 3 3 6Liquids 3 3 6

Monatomic gases

3 0 3

Diatomic gases

3+2+1 1 7

Page 54: Physics 7A – Lecture 6 Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Next Time: From Molecular

Models to Macroscopic Properties

Next Time: From Molecular

Models to Macroscopic Properties