phenotypic and genetic dissection of water stress adaptations in pearl millet (pennisetum glaucum)...

1
Feb 2017 Phenotypic and genetic dissection of water stress adaptations in pearl millet (Pennisetum glaucum) using QTL co-localization approach Murugesan Tharanya 1 , 2 , Jana Kholova 1 , Kaliamoorthy Sivasakthi 1 , 2 , Deepmala Seghal 3 , Charles Tom Hash 4 , Basker Raj 1 , Rekha Baddam 1 , Thiyagarajan Thirunalasundari 2 , Rattan Yadav 3 , Vincent Vadez 1 * 1 International Crops Research Institute for the Semi–Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru 502324, Telangana, India. 2 Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India. 3 Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, AberystwythSY23 3EB, UK. 4 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT Sahelian Center, Pearl Millet Breeding, BP 1204, Niamey, Niger. About ICRISAT: www.icrisat.org ICRISAT’s scienfic informaon: hp://EXPLOREit.icrisat.org Introduction Crop yield is a consequence of several plant biological funcons and its interacons with environment. Here we focus on some of basic plant funcons related to i) water-use ii) canopy development and iii) agronomic traits and invesgate on the relaonship of these traits for crop producon in different water-stress scenarios using the QTL co-localizaon approach. Figure 1. APSIM generic template model developed by Graeme L. Hammer Figure 2. Different phenotypic environments: a) Pot culture, b) High throughput phenotyping plaorm (LeasyScan), c) Lysimeter and d) Field Figure 3. Range of variaon obtained – Transpiraon rate (Tr), 3dimensional leaf area (3DLA), transpiraon (T) and grain yield (GY) from various phenotyping environments. Figure 5 Selecve principal component analysis (PCA) done for a) Grain yield (GY) from field under well-watered (WW) condions and traits (canopy development and water-use related) from LeasyScan under WW b) GY from field under WW and traits (water-use and biomass related) from pot culture under WW c) GY from field under severe stress (SS) and traits (water- use and yield related) from Lysimeter under SS d) early water extracon from Lysimeter (SS) and canopy development related traits from LeasyScan (SS). CS represents canopy structure; RDW represents root dry weight; T represents transpiraon and DAS represents days aſter sowing. Grain Yield Grain Number Grain Size D Biomass Radiation Transpiration Efficiency Transpiration Radiation use efficiency Radiation intercept (R int ) Vapour pressure deficit Leaf hydraulic conductance (kl) Leaf area index Specific leaf nitrogen Roots Extinction Coefficient (k) “building blocks” =CAUSE of GxE Yield = CONSEQUENCE Of Genotype x Environment (GxE) Nitrogen content Leaf number Objectives i) Mapping of QTLs underlying traits related to i) water use ii) canopy development and iii) agronomy which have been assessed at various phenotyping systems. ii) Infer the associaons between the invesgated traits and its importance for crop producon through QTL co-localizaon approach and principal component analysis (PCA). Materials and Methods A fine mapping populaon (FMP) populaon (162 lines) based on the cross between ICMR01004 x ICMR01029 segregang within LG02 for terminal water stress adaptaon (Yadav et al., 2010). Genotypic data included of 17 polymorphic markers on LG02 (gene-based markers, RFLP, SNP, Seghal et al., 2012) Phenotyping was done at different levels of plant organizaon using four different environments Pot culture (water-use related traits) High throughput phenotyping plaorm: LeasyScan (canopy development related traits) Lysimeter (water-use, agronomy-related traits) Precision field (agronomy-related traits) a) Pot culture b) High throughput phenotyping system: LeasyScan c) Lysimeter d) Field Conclusion The phenotyping facilies at ICRISAT are highly relevant to idenfy the traits underlying agronomic performance of crops in environments with various in-season water availability and so support the crop-improvement program. The gained knowledge provides the power to combine the alleles from LG02 and construct the plant ideotype for specific regions according to the prevailing condions. Selected reference Vadez et al (2015). J. Exp. Bot. (2015) 66 (18): 5581-5593. Kholova et al (2012). Mol Breed. 30, 1337-1353. 0 200 400 600 800 1000 1200 1400 1600 1800 1036 1071 1067 1040 1018 1082 1069 1151 1094 1139 1092 1116 1009 1162 1052 1061 1078 1101 Transpiration at 64 DAS (gweek -1 ) High Resolution Cross (HRC) 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 1002 1024 1006 1093 1100 1141 1059 1134 1016 1037 1042 1146 1107 1081 1077 1136 1157 Transpiration rate (gcm -2 hr -1 ) High Resolution Cross (HRC) 400 500 600 700 800 900 1000 1100 1100 1049 1132 1093 1015 1128 1009 1099 1149 1021 1008 1050 1153 1133 1019 1148 1146 1031 3D leaf area (cm 2 ) High resolution cross (HRC) 9 11 13 15 17 19 21 23 1032 1116 1124 1020 1101 1027 1109 1130 1096 1108 1040 1041 1031 1131 1033 1051 1113 1037 Grain yield (g plant -1 ) High Resolution Cross (HRC) POT CULTURE LeasyScan Lysimeter Field LSD = 154** LSD = 0.0005** LSD = 532* LSD = 4.1** Figure 4. Colocalisaon of water-use, canopy development and agronomy related traits within 191-254cM of LG02. Water-use and agronomy related traits Water-use related traits Canopy development related traits Agronomy related traits Colocalisation of grain yield, water-use & canopy development related traits within 191-254cM (R1,R2,R3&R4) of LG02 R1 R4 R1 R4 R3 R4 R3 R3 R2 R3 R2 -8 -6 -4 -2 0 2 4 -8 -6 -4 -2 0 2 4 PC1 (23.29%) PC2 (17.27%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 -0.6 -0.4 -0.2 0.0 0.2 0.4 -0.6 -0.4 -0.2 0.0 0.2 0.4 PLA ET_LS2016WW ETr_LS2016WW T_LS2016WW Tr_LS2016WW X3DGR_LS20 X3DLA_ ShDW_LS2 SLW_LS2016WW TNO_LS2016WW CS_LS2016WW PH_LS2016WW PGR_LS2016WW GY_F2010WW GY_F2011WW -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 PC1 (38.54%) PC2 (20.09%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 TrM_P2010WW TrE_P2010WW LA_P2010WW LDW_P2010WW RDW_P2010WW ShDW_P2010WW TOTDW_P2010WW SLA_P2010WW GY_F2010SS GY_F2011SS -4 -2 0 2 4 -4 -2 0 2 4 PC1 (22.83%) PC2 (19.24%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 GY_F2010SS TNO_L2010WS TOTDW_L2010SS GY_L2010SS T36DAS_L2010SS T41DAS_L2010SS T50DAS_L2010SS T57DAS_L T64DAS_L2 TE_L2010SS GY_F2011SS GY (Field; WW) CS (LeasyScan; WW) GY (Field; SS) RDW (Pot; WW) GY (Field; SS) Late water extraction (T50-64DAS; Lysimeter; SS) -2 0 2 4 -2 0 2 4 PC1 (27.88%) PC2 (16.88%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 T36DAS_L2010SS T41DAS_L2010SS PLA_LS2016WW X3DGR_LS2016WW X3DLA_LS2016WW CS_LS2016WW PH_LS2016WW PGR_LS2016WW Early water extraction (T36-41DAS; Lysimeter; SS) CS (LeasyScan; WW) d) Results Terminal water stress adaptaon locus (LG02; 191-254cM) was further dissected into four separate QTL regions - R1 (191-205cM), R2 (229-233cM), R3 (236-239cM) and R4 (251-259cM) associated with water-use, canopy development and agronomy related traits. The loci harboring water-use and canopy development related traits co-localized with agronomic traits assessed in the field poinng out their funconal linkages. These relaons were also confirmed by PCA analysis across phenotyping environments. Acknowledgements The authors thank for the funds from the USAID grant -Feed the Future Innovaon Lab – Development of Abioc Stress Tolerant Millet for Africa and South Asia For more details contact [email protected]

Upload: icrisat

Post on 08-Apr-2017

39 views

Category:

Government & Nonprofit


0 download

TRANSCRIPT

Page 1: Phenotypic and genetic dissection of water stress adaptations in pearl millet (Pennisetum glaucum) using QTL co-localization approach

Feb 2017

Phenotypic and genetic dissection of water stress adaptations in pearl millet (Pennisetum glaucum) using QTL co-localization approachMurugesan Tharanya1,2, Jana Kholova1, Kaliamoorthy Sivasakthi1,2, Deepmala Seghal3, Charles Tom Hash4, Basker Raj1, Rekha Baddam1, Thiyagarajan Thirunalasundari2, Rattan Yadav3, Vincent Vadez1*1International Crops Research Institute for the Semi–Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru 502324, Telangana, India.2Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India.3Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, AberystwythSY23 3EB, UK.4International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT Sahelian Center, Pearl Millet Breeding, BP 1204, Niamey, Niger.

About ICRISAT: www.icrisat.orgICRISAT’s scientific information: http://EXPLOREit.icrisat.org

IntroductionCrop yield is a consequence of several plant biological functions and its interactions with environment. Here we focus on some of basic plant functions related to i) water-use ii) canopy development and iii) agronomic traits and investigate on the relationship of these traits for crop production in different water-stress scenarios using the QTL co-localization approach.

Figure 1. APSIM generic template model developed by Graeme L. Hammer

Figure 2. Different phenotypic environments: a) Pot culture, b) High throughput phenotyping platform (LeasyScan), c) Lysimeter and d) Field

Figure 3. Range of variation obtained – Transpiration rate (Tr), 3dimensional leaf area (3DLA), transpiration (T) and grain yield (GY) from various phenotyping environments.

Figure 5 Selective principal component analysis (PCA) done for a) Grain yield (GY) from field under well-watered (WW) conditions and traits (canopy development and water-use related) from LeasyScan under WW b) GY from field under WW and traits (water-use and biomass related) from pot culture under WW c) GY from field under severe stress (SS) and traits (water-use and yield related) from Lysimeter under SS d) early water extraction from Lysimeter (SS) and canopy development related traits from LeasyScan (SS). CS represents canopy structure; RDW represents root dry weight; T represents transpiration and DAS represents days after sowing.

APSIM Generic Crop Template from Graeme L. Hammer

Grain Yield

Grain Number Grain Size

D BiomassRadiation

Transpiration Efficiency

Transpiration Radiation use efficiency

Radiation intercept (Rint)

Vapour pressure deficit

Leaf hydraulic conductance (kl)

Leaf area indexSpecific leaf nitrogen

Roots ExtinctionCoefficient (k)

“building blocks”=CAUSE of GxE

Yield = CONSEQUENCEOf Genotype x Environment (GxE)

Fig. 1

Nitrogen content

Leaf number

Objectivesi) Mapping of QTLs underlying traits related to i) water use ii) canopy development and iii) agronomy

which have been assessed at various phenotyping systems.ii) Infer the associations between the investigated traits and its importance for crop production through

QTL co-localization approach and principal component analysis (PCA).

Materials and MethodsA fine mapping population (FMP) population (162 lines) based on the cross between ICMR01004 x ICMR01029 segregating within LG02 for terminal water stress adaptation (Yadav et al., 2010). Genotypic data included of 17 polymorphic markers on LG02 (gene-based markers, RFLP, SNP, Seghal et al., 2012)Phenotyping was done at different levels of plant organization using four different environments • Pot culture (water-use related traits)• High throughput phenotyping platform: LeasyScan (canopy development related traits)• Lysimeter (water-use, agronomy-related traits)• Precision field (agronomy-related traits)

a) Pot culture b) High throughput phenotyping system: LeasyScan

c) Lysimeter d) Field

Conclusion• The phenotyping facilities at ICRISAT are highly relevant to identify the traits underlying agronomic

performance of crops in environments with various in-season water availability and so support the crop-improvement program.

• The gained knowledge provides the power to combine the alleles from LG02 and construct the plant ideotype for specific regions according to the prevailing conditions.

Selected referenceVadez et al (2015). J. Exp. Bot. (2015) 66 (18): 5581-5593.Kholova et al (2012). Mol Breed. 30, 1337-1353.

0200400600800

10001200140016001800

1036

1071

1067

1040

1018

1082

1069

1151

1094

1139

1092

1116

1009

1162

1052

1061

1078

1101

Tran

spira

tion

at 6

4 DA

S (g

wee

k-1)

High Resolution Cross (HRC)

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

1002

1024

1006

1093

1100

1141

1059

1134

1016

1037

1042

1146

1107

1081

1077

1136

1157

Tran

spira

tion

rate

(gcm

-2hr

-1)

High Resolution Cross (HRC)

400

500

600

700

800

900

1000

1100

1100

1049

1132

1093

1015

1128

1009

1099

1149

1021

1008

1050

1153

1133

1019

1148

1146

1031

3D le

af a

rea

(cm

2 )

High resolution cross (HRC)

9

11

13

15

17

19

21

23

1032

1116

1124

1020

1101

1027

1109

1130

1096

1108

1040

1041

1031

1131

1033

1051

1113

1037

Gra

in y

ield

(g p

lant

-1)

High Resolution Cross (HRC)

POT CULTURE LeasyScan

Lysimeter Field

LSD = 154**LSD = 0.0005**

LSD = 532* LSD = 4.1**

Fig. 3

Figure 4. Colocalisation of water-use, canopy development and agronomy related traits within 191-254cM of LG02.

Water-use and agronomy related traits

Water-use related traits Canopy development related traits

Agronomy related traits

Colocalisation of grain yield, water-use & canopy

development related traits within 191-254cM

(R1,R2,R3&R4) of LG02

Fig. 4R1 R4

R1

R4

R3

R4

R3

R3

R2

R3

R2

Fig. 5a)

c)

b)

-8 -6 -4 -2 0 2 4

-8-6

-4-2

02

4

PC1 (23.29%)

PC2 (

17.27

%)

1

2

3 45

6

7

8

910

11

12

13

14

15

1617

18

19

20

21 22

23

24

2526

27

28

29

30

31

32

33

3435

36 37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

6566

67

68

6970

7172

73

7475 767778

79

80

81

8283 84

85

86

87

88

89

9091

92

93

94

95

96

97

9899

100

101102

103

104

105106

107

108

109110

111

112 113

114

115

116117

118

119

120

121

122

123

124125

126

127

128

129

130

131

132

133

134

135

136 137

138

139

140

141

142143

144

-0.6 -0.4 -0.2 0.0 0.2 0.4

-0.6

-0.4

-0.2

0.00.2

0.4

PLA

ET_LS2016WW

ETr_LS2016WW

T_LS2016WW

Tr_LS2016WW

X3DGR_LS20

X3DLA_ShDW_LS2

SLW_LS2016WW

TNO_LS2016WW

CS_LS2016WW

PH_LS2016WW

PGR_LS2016WW

GY_F2010WW

GY_F2011WW

-6 -4 -2 0 2 4

-6-4

-20

24

PC1 (38.54%)

PC2 (

20.09

%)

1

2

3

45

67

8

9

10

11

12

1314

15

16

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

3435

36

3738

39

40

41

42

43

44

45

46

47

48

49

5051

52

53

54

55

5657

58

59

60

61

62

63

6465

66

67

68

697071

72

7374

75

7677

7879

8081

82

83

8485

86 87

88

89

90

91

92

93

9495

96

97

98

99100

101102

103104

105

106

107

108

109110

111

112

113

114

115

116117

118

119

120

121122

123124

125126

127128129

130

131

132133

134

135

136

137138

139

140

141

142

143 144

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.00.2

0.4

TrM_P2010WW

TrE_P2010WW

LA_P2010WW

LDW_P2010WW

RDW_P2010WW

ShDW_P2010WW

TOTDW_P2010WW

SLA_P2010WW

GY_F2010SS

GY_F2011SS

-4 -2 0 2 4

-4-2

02

4

PC1 (22.83%)

PC2 (

19.24

%)

1

23

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

212223

24

25

2627

28

29

30

31

3233

34

35

36

3738

39

40

41

4243

44

45

46

47

48

49

50

5152

53

54

55

56

57

58

59

60

61

62

63

64

65

6667

68

69

70

71

72

73

74

75

76

77

7879

80

81

82

83

84 85

86

87

88

89

90

91

92

93

94 95

96

97

98

99100 101 102103

104105

106

107108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126127

128

129

130

131

132

133

134

135

136

137

138

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.00.2

0.40.6

GY_F2010SS

TNO_L2010WS

TOTDW_L2010SS

GY_L2010SS

T36DAS_L2010SS

T41DAS_L2010SS

T50DAS_L2010SS

T57DAS_L

T64DAS_L2

TE_L2010SS

GY_F2011SS

GY (Field; WW) CS (LeasyScan; WW) GY (Field; SS) RDW (Pot; WW)

GY (Field; SS) Late water extraction (T50-64DAS; Lysimeter; SS)

-2 0 2 4

-20

24

PC1 (27.88%)

PC2 (

16.88

%)

1

2

34

5

6

7

8 9

1011

1213

14

15

16

17

1819

20 21

22

23

24

25 2627

2829

30

3132

33

34

35

36

37

38

39

40

41

4243

4445

46

47

48

49

50

5152

53

54

5556

5758

59

60

61

62

63

64

65

66

67

68

69

7071

72

73

74

75

76

77

78

79

80

81

82

838485

86

8788

89

90

91

92

93

94 9596

97

98

99

100

101102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117118

119

120

121

122

123

124

125

126

127128129

130

131132

133134135 136

137

138

139

140 141

142

143

144145

146

147

148149

150

151152

153

154

155

156157

158

159160161

162

-0.5 0.0 0.5 1.0

-0.5

0.00.5

1.0

T36DAS_L2010SST41DAS_L2010SS

PLA_LS2016WWX3DGR_LS2016WWX3DLA_LS2016WW

CS_LS2016WW

PH_LS2016WW

PGR_LS2016WW

Early water extraction (T36-41DAS; Lysimeter; SS) CS (LeasyScan; WW)

d)

Results• Terminal water stress adaptation locus (LG02; 191-254cM) was further dissected into four separate

QTL regions - R1 (191-205cM), R2 (229-233cM), R3 (236-239cM) and R4 (251-259cM) associated with water-use, canopy development and agronomy related traits.

• The loci harboring water-use and canopy development related traits co-localized with agronomic traits assessed in the field pointing out their functional linkages. These relations were also confirmed by PCA analysis across phenotyping environments.

AcknowledgementsThe authors thank for the funds from the USAID grant -Feed the Future Innovation Lab – Development of Abiotic Stress Tolerant Millet for Africa and South Asia

For more details contact [email protected]