peter lohmander professor slu umea, se-901 83, sweden, lohmander

113
1 A Stochastic Differential (Difference) Game Model With an LP Subroutine for Mixed and Pure Strategy Optimization INFORMS International Meeting 2007, Puerto Rico Peter Lohmander Professor SLU Umea, SE-901 83, Sweden, http://www.Lohmander.com Version 2007-09-29

Upload: muriel

Post on 01-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

A Stochastic Differential (Difference) Game Model With an LP Subroutine for Mixed and Pure Strategy Optimization INFORMS International Meeting 2007, Puerto Rico. Peter Lohmander Professor SLU Umea, SE-901 83, Sweden, http://www.Lohmander.com Version 2007-09-29. Abstract:  - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

1

A Stochastic Differential (Difference) Game Model With an LP Subroutine for Mixed and Pure Strategy OptimizationINFORMS International Meeting 2007, Puerto Rico

Peter LohmanderProfessor

SLU Umea, SE-901 83, Sweden, http://www.Lohmander.com

Version 2007-09-29

Page 2: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

2

Abstract: This paper presents a stochastic two person differential (difference)

game model with a linear programming subroutine that is used to optimize pure and/or mixed strategies as a function of state and time.

In ”classical dynamic models”, ”pure strategies” are often assumed to be optimal and deterministic continuous path equations can be derived. In such models, scale and timing effects in operations are however usually not considered.

When ”strictly convex scale effects” in operations with defence and attack (”counter air” or ”ground support”) are taken into consideration, dynamic mixed OR pure strategies are optimal in different states.

The optimal decision frequences are also functions of the relative importance of the results from operations in different periods.

The expected cost of forcing one participant in the conflict to use only pure strategies is determined.

The optimal responses of the opposition in case one participant in the conflict is forced to use only pure strategies are calculated.

Dynamic models of the presented type, that include mixed strategies, are highly relevant and must be used to determine the optimal strategies. Otherwise, considerable and quite unnecessary losses should be expected.

Page 3: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

3

Inspiration:

• Isaacs R. (1965) Differential Games – A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (Also Dover, 1999)

• Washburn, A.R. (2003) Two-person zero-sum games, 3 ed., INFORMS, Military applications society, Topics in operations research

Page 4: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

4

Flexibility

Some resources may be used in different ways.

This is true and important in the air force, in the army and in the enterprises in the economy.

Page 5: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

5

Our Plan to Win

This plan is focused on continuously increasing McDonald's relevance to consumers' everyday lives through multiple initiatives surrounding the five key drivers of great restaurant experiences.

Our efforts, complemented with financial discipline, have delivered for shareholders some of the strongest results in our history.

Page 6: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

6

W-lanMax Hamburger restaurants is the only national restaurant chain to offer free Internet access for all guests. Connection is offered via W-Lan.

The most satisfied guestsFor the fith year in a row Max Hamburger Restaurants has Sweden's most satisfied customers among the national hamburger restaurants according to a new survey by SIFO/ISI Wissing.

Page 7: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

7

BoeingB-52 StratofortressIntercontinental Strategic Bomber

Page 8: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

8

JAS 39 Gripen

Multirole fighter

Page 9: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

9

Page 10: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

10

1t T

1 1( , ) 0T TV x y

1

1

0,1,...,

0,1,...,

T x

T y

x N

y N

Page 11: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

11

t T

( , )T T T TV x y x y

0,1,...,

0,1,...,

T x

T y

x N

y N

Page 12: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

12

t Tt

2 21 11 1

1 1 1 1,,

( , ) max min ( ) ( , ) ( , )t tt t

t t

t t t t t t tGS CAGS CA

x y

V x y R d x y V x y

1 1 1

2 2 2

( , ) ( )

( , ) ( )t t

t t

t

t

GS CA x

GS CA y

0,1,..., 1

0,1,...,

0,1,...,

t x

t y

t T

x N t

y N t

Page 13: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

13

1 1 2 2( ) ( , , , , , )t t t tt t t tR R GS CA GS CA x y

1 1 1 1 1 1 2 2( , ) ( , , , , , , )t t t tt t t t t tx y x y GS CA GS CA x y

Page 14: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

14

Special case 1:

1 1

2 2

t t

t t

t

t

GS CA x

GS CA y

Special case 2:

1 1

2 2

t t

t t

t

t

GS CA x

GS CA y

Page 15: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

15

In Model 1:

1 2

2 1

( )1 1

t t

t t

t

GS GSR

CA CA

Page 16: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

16

In Model 2:

22

1

2 22 1

5( ) 3( )1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 17: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

17

In Model 3 and Model 4:

22

1

2 22 1

5( )3 3( )

2 1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 18: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

18

Model 1

Page 19: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

19

Page 20: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

20

Model 1!TAW_070611;!Peter Lohmander;Model:

sets:xset/1..3/:;yset/1..3/:;nset/1..3/:;D1set/1..3/:;D2set/1..3/:;xyset(xset,yset):;xynset(xset,yset,nset):V;xyD1set(xset,yset,D1set):GS1, CA1;xyD2set(xset,yset,D2set):GS2, CA2;xynD1s(xset,yset,nset,D1set):xdec;xD1D2s(xset, D1set, D2set):;xD1D2Xs(xset,D1set, D2set, xset):TPX;yD2D1s(yset,D2set,D1set):;yD2D1yset(yset,D2set,D1set,yset):TPY;endsets

Page 21: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

21

max = Z;Z = @sum(xyset(x,y):V(x,y,3));

!Terminal condition: No more activities occur when n <= 1 . ;@for(xyset(x,y):V(x,y,1) = 0);

Page 22: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

22

! The last day when activities occur, n=2, all resources should be used for GS. ;

@for(xyset(x,y):V(x,y,2) = x-y);

Page 23: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

23

! Day n >= 3, you may use some resources for GS and some for CA. The rows and columns represent the resources used for GS. ; @for(xyD1set(x,y,D1)|D1 #LE# x: GS1(x,y,D1) = D1-1 );@for(xyD1set(x,y,D1)|D1 #GT# x: GS1(x,y,D1) = 0 );

@for(xyD1set(x,y,D1): CA1(x,y,D1) = x - 1 - GS1(x,y,D1) );

@for(xyD2set(x,y,D2)|D2 #LE# y: GS2(x,y,D2) = D2-1 );@for(xyD2set(x,y,D2)|D2 #GT# y: GS2(x,y,D2) = 0 );

@for(xyD2set(x,y,D2): CA2(x,y,D2) = y - 1 - GS2(x,y,D2));

Page 24: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

24

@for(xynset(x,y,n): @sum(D1set(D1):xdec(x,y,n,D1)) = 1);

@for(xynD1s(x,y,n,D1)| D1#GT#x: xdec(x,y,n,D1) = 0);

Page 25: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

25

!Sum (Transition probability) = 1;

@for(xD1D2s(x1,GS1,CA2): @sum(xset(x2): TPX(x1,GS1,CA2,x2) ) = 1 );

@for(yD2D1s(y1,GS2,CA1): @sum(yset(y2): TPY(y1,GS2,CA1,y2) ) = 1 );

Page 26: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

26

!********************************************;! Transition probability calculations for x ;!********************************************;

! Transition probabilities for x if x1 = 0;@for(xD1D2s(x1,GS1P1,CA2P1)|x1#EQ#1 : TPX(x1,GS1P1,CA2P1,x1) = 1 );

! Transition probabilities for x if CA2 = 0;@for(xD1D2s(x1,GS1P1,CA2P1)|CA2P1 #EQ# 1 : TPX(x1,GS1P1,CA2P1,x1) = 1 );

! Transition probabilities for x if GS1 = 0;@for(xD1D2s(x1,GS1P1,CA2P1)|GS1P1 #EQ# 1 : TPX(x1,GS1P1,CA2P1,x1) = 1 );

Page 27: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

27

! Transition probabilities for x if GS1 >= 1 and CA2 = 1;

@for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#2 #AND# GS1P1#GE#2 #AND# CA2P1#EQ#2 : TPX(x1,GS1P1,CA2P1,x1) = 1/2 );

@for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#2 #AND# GS1P1#GE#2 #AND# CA2P1#EQ#2 : TPX(x1,GS1P1,CA2P1,x1-1) = 1/2 );

Page 28: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

28

! Transition probabilities for x if GS1 = 1 and CA2 = 2; @for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#2 #AND# GS1P1#EQ#2 #AND# CA2P1 #EQ# 3 : TPX(x1,GS1P1,CA2P1,x1) = 1/4 );

@for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#2 #AND# GS1P1#EQ#2 #AND# CA2P1 #EQ# 3 : TPX(x1,GS1P1,CA2P1,x1-1) = 3/4 );

Page 29: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

29

! Transition probabilities for x if GS1 >= 2 and CA2 = 2; @for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#3 #AND# GS1P1#GE#3 #AND# CA2P1 #EQ# 3 : TPX(x1,GS1P1,CA2P1,x1) = 1/4 );

@for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#3 #AND# GS1P1#GE#3 #AND# CA2P1 #EQ# 3 : TPX(x1,GS1P1,CA2P1,x1-1) = 1/2 );

@for(xD1D2s(x1,GS1P1,CA2P1)|x1#GE#3 #AND# GS1P1#GE#3 #AND# CA2P1 #EQ# 3 : TPX(x1,GS1P1,CA2P1,x1-2) = 1/4 );

Page 30: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

30

!*******************************************;! Transition probability calculations for y ;!*******************************************;

! Transition probabilities for y if y1 = 0;@for(yD2D1s(y1,GS2P1,CA1P1)|y1#EQ#1 : TPY(y1,GS2P1,CA1P1,y1) = 1 );

! Transition probabilities for y if CA1 = 0;@for(yD2D1s(y1,GS2P1,CA1P1)|CA1P1 #EQ# 1 : TPY(y1,GS2P1,CA1P1,y1) = 1 );

! Transition probabilities for y if GS2 = 0;@for(yD2D1s(y1,GS2P1,CA1P1)|GS2P1 #EQ# 1 : TPY(y1,GS2P1,CA1P1,y1) = 1 );

Page 31: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

31

! Transition probabilities for y if GS2 >= 1 and CA1 = 1;

@for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#2 #AND# GS2P1#GE#2 #AND# CA1P1#EQ#2 : TPY(y1,GS2P1,CA1P1,y1) = 1/2 );

@for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#2 #AND# GS2P1#GE#2 #AND# CA1P1#EQ#2 : TPY(y1,GS2P1,CA1P1,y1-1) = 1/2 );

Page 32: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

32

! Transition probabilities for y if GS2 = 1 and CA1 = 2;

@for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#2 #AND# GS2P1#EQ#2 #AND# CA1P1#EQ#3 : TPY(y1,GS2P1,CA1P1,y1) = 1/4 );

@for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#2 #AND# GS2P1#EQ#2 #AND# CA1P1#EQ#3 : TPY(y1,GS2P1,CA1P1,y1-1) = 3/4 );

Page 33: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

33

! Transition probabilities for y if GS2 >= 2 and CA1 = 2; @for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#3 #AND# GS2P1#GE#3 #AND# CA1P1 #EQ# 3 : TPY(y1,GS2P1,CA1P1,y1) = 1/4 );

@for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#3 #AND# GS2P1#GE#3 #AND# CA1P1 #EQ# 3 : TPY(y1,GS2P1,CA1P1,y1-1) = 1/2 );

@for(yD2D1s(y1,GS2P1,CA1P1)|y1#GE#3 #AND# GS2P1#GE#3 #AND# CA1P1 #EQ# 3 : TPY(y1,GS2P1,CA1P1,y1-2) = 1/4 );

Page 34: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

34

In Model 1:

1 2

2 1

( )1 1

t t

t t

t

GS GSR

CA CA

Page 35: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

35

In Model 3 and Model 4:

22

1

2 22 1

5( )3 3( )

2 1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 36: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

36

!**********************;! The game problems ;!**********************;

@for(xyset(x,y): @for(D2set(D2)|D2 #LE# y:

[ydec] V(x,y,3) <= @sum(D1set(D1): (GS1(x,y,D1)/(1+CA2(x,y,D2)) - GS2(x,y,D2)/(1+CA1(x,y,D1)) + @sum(xyset(x2,y2): TPX(x,GS1(x,y,D1)+1,CA2(x,y,D2)+1,x2)*TPY(y,GS2(x,y,D2)+1,CA1(x,y,D1)+1,y2)* V(x2,y2,2) )) * xdec(x,y,3,D1) ) ););

Page 37: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

37

@for(xynset(x,y,n): @FREE(V(x,y,n)));

end

Page 38: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

38

In Model 3 and Model 4:

22

1

2 22 1

5( )3 3( )

2 1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 39: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

39

Model 3; (x,y,t) = (2,2,T-1)

GS2 = 0CA2 = 2

GS2 = 1CA2 = 1

GS2 = 2CA2 = 0

GS1 = 0CA1 = 2

3/2*(0-0)+ 0 = 0

3/2*(0 – (5/3)/(1+4)) + 0.25*(0) + 0.75*(+1) = 0.25

3/2*(0 – (5/3)*2/(1+4))+0.25*(0) + 0.5*(1) + 0.25*(2)= 0

GS1 = 1CA1 = 1

3/2*(1/(1+4)-0) +0.25*(0) + 0.75*(-1) = -0.45

3/2*(1/(1+1) – (5/3)/(1+1))+0.5*(0)+0.25*(1) + 0.25*(-1)= -0.5

3/2*(1/(1+0) – (5/3)*2/(1+1))+0.5*(0) + 0.5*(1) = -0.5

GS1 = 2CA1 = 0

3/2*(4/(1+4) – 0)+0.25*(0) + 0.5*(-1) + 0.25*(-2) = 0.2

3/2*(4/(1+1) – (5/3)/(1+0))+0.5*(0) + 0.5*(-1)= 0

3/2*(4/(1+0)-(5/3)*2/(1+0))+ 0= 1

Page 40: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

40

Model 3; (x,y,t) = (2,2,T-1)

GS2 = 0CA2 = 2

GS2 = 1CA2 = 1

GS2 = 2CA2 = 0

GS1 = 0CA1 = 2

0

0.25 0

GS1 = 1CA1 = 1

-0.45 -0.5

-0.5

GS1 = 2CA1 = 0 0.2 0 1

Page 41: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

41

11 12 1

21 22 2

1 2

.

.

. . . .

.

n

n

m m mn

Page 42: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

42

1 1 1

1

.

. . .

.

n

m m n

x y x y

x y x y

Page 43: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

43

11 1 1 1

12 1 2 2

1 1

1

max

. .

... ( )

... ( )

.

... ( )

1 ........

m m

m m

n mn m n

m

E

s t

E x x against

E x x against

E x x against

x x

Page 44: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

44

11 1 1 1

21 1 2 2

1 1

1

min

. .

... ( )

... ( )

.

... ( )

1 ........

n n

n n

m mn n m

n

E

s t

E y y against

E y y against

E y y against

y y

Page 45: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

45

Results from Model 1

Page 46: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

46

Table 1.1

V(x,y,3) with Model 1(This (n=3) means that t =T-1 since we use backward recursion and period T+1 is defined as n=1. )

-4 -1.5 0

-2 0 1.5

0 2 4

Page 47: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

47

Page 48: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

48

(0,2) (0,2) (0,0)

(0,1) (1,1) (2,0)

(0,0) (1,0) (2,0)

Table 1.2(GS1*, GS2*) at n=3 with Model 1

Page 49: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

49

(0,2) (0,2) (0,0)

(0,1) (1,1) (2,0)

(0,0) (1,0) (2,0)

Table 1.2(GS1*, GS2*) at n=3 with Model 1

Page 50: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

50

Page 51: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

51

(0,2) (0,2) (0,0)

(0,1) (1,1) (2,0)

(0,0) (1,0) (2,0)

Table 1.2(GS1*, GS2*) at n=3 with Model 1

Page 52: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

52

Page 53: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

53

(0,2) (0,2) (0,0)

(0,1) (1,1) (2,0)

(0,0) (1,0) (2,0)

Table 1.2(GS1*, GS2*) at n=3 with Model 1

Page 54: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

54

Page 55: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

55

(0,2) (0,2) (0,0)

(0,1) (1,1) (2,0)

(0,0) (1,0) (2,0)

Table 1.2(GS1*, GS2*) at n=3 with Model 1

Page 56: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

56

Page 57: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

57

Model 2

Page 58: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

58

In Model 2:

22

1

2 22 1

5( ) 3( )1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 59: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

59

Model 2

!**********************;! The game problems ;!**********************;

@for(xyset(x,y): @for(D2set(D2)|D2 #LE# y: [ydec] V(x,y,3) <= @sum(D1set(D1):

(GS1(x,y,D1)*GS1(x,y,D1)/(1+CA2(x,y,D2)*CA2(x,y,D2)) - 5/3*GS2(x,y,D2)/(1+CA1(x,y,D1)*CA1(x,y,D1)) + @sum(xyset(x2,y2): TPX(x,GS1(x,y,D1)+1,CA2(x,y,D2)+1,x2)*TPY(y,GS2(x,y,D2)+1,CA1(x,y,D1)+1,y2)* V(x2,y2,2) )) * xdec(x,y,3,D1) ) ););

Page 60: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

60

Results from Model 2

Page 61: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

61

Table 2.1V(x,y,3) with Model 2

-5.333 -2.167 0

-2.667 -0.333 2.5

0 2 6

Page 62: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

62

Table 2.2(GS1*, GS2*) at n=3 with Model 2

(0,2) (0,2) (0,0)

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 63: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

63

Table 2.2(GS1*, GS2*) at n=3 with Model 2

(0,2) (0,2) (0,0)

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 64: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

64

Page 65: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

65

Model 3

Page 66: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

66

In Model 3 and Model 4:

22

1

2 22 1

5( )3 3( )

2 1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 67: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

67

!**********************;! The game problems ;!**********************;

@for(xyset(x,y): @for(D2set(D2)|D2 #LE# y: [ydec] V(x,y,3) <= @sum(D1set(D1):

( 3/2*(GS1(x,y,D1)*GS1(x,y,D1)/(1+CA2(x,y,D2)*CA2(x,y,D2)) - 5/3*GS2(x,y,D2)/(1+CA1(x,y,D1)*CA1(x,y,D1)) ) !A constant is added and later removed; + (1 +)

@sum(xyset(x2,y2): TPX(x,GS1(x,y,D1)+1,CA2(x,y,D2)+1,x2)*TPY(y,GS2(x,y,D2)+1,CA1(x,y,D1)+1,y2)* V(x2,y2,2) )) * xdec(x,y,3,D1) ) ););

Page 68: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

68

Results from Model 3

Page 69: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

69

Table 3.1V(x,y,3) with Model 3

-7 -3 0.111

-3.5 -0.75 3.5

0 2.5 8

Page 70: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

70

Table 3.2(GS1*, GS2*) at n=3 with Model 3

(0,2) (0,2) (0,0) Prob = .4444444 * .5555556 = .246914

(2,0) Prob = .5555556 * .5555556 = .308642

(0,1) Prob = .4444444 * .4444444 = .197531

(2,1) Prob = .5555556 * .4444444 = .246914 Sum = 1.000001

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 71: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

71

Table 3.2(GS1*, GS2*) at n=3 with Model 3

(0,2) (0,2) (0,0) Prob = .4444444 * .5555556 = .246914

(2,0) Prob = .5555556 * .5555556 = .308642

(0,1) Prob = .4444444 * .4444444 = .197531

(2,1) Prob = .5555556 * .4444444 = .246914 Sum = 1.000001

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 72: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

72

Table 3.2(GS1*, GS2*) at n=3 with Model 3

(0,2) (0,2) (0,0) Prob = .4444444 * .5555556 = .246914

(2,0) Prob = .5555556 * .5555556 = .308642

(0,1) Prob = .4444444 * .4444444 = .197531

(2,1) Prob = .5555556 * .4444444 = .246914 Sum = 1.000001

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 73: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

73

Page 74: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

74

Table 3.2(GS1*, GS2*) at n=3 with Model 3

(0,2) (0,2) (0,0) Prob = .4444444 * .5555556 = .246914

(2,0) Prob = .5555556 * .5555556 = .308642

(0,1) Prob = .4444444 * .4444444 = .197531

(2,1) Prob = .5555556 * .4444444 = .246914 Sum = 1.000001

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 75: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

75

Page 76: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

76

Table 3.2(GS1*, GS2*) at n=3 with Model 3

(0,2) (0,2) (0,0) Prob = .4444444 * .5555556 = .246914

(2,0) Prob = .5555556 * .5555556 = .308642

(0,1) Prob = .4444444 * .4444444 = .197531

(2,1) Prob = .5555556 * .4444444 = .246914 Sum = 1.000001

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 77: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

77

Page 78: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

78

Table 3.2(GS1*, GS2*) at n=3 with Model 3

(0,2) (0,2) (0,0) Prob = .4444444 * .5555556 = .246914

(2,0) Prob = .5555556 * .5555556 = .308642

(0,1) Prob = .4444444 * .4444444 = .197531

(2,1) Prob = .5555556 * .4444444 = .246914 Sum = 1.000001

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 79: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

79

Page 80: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

80

Model 4

Page 81: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

81

In Model 3 and Model 4:

22

1

2 22 1

5( )3 3( )

2 1 ( ) 1 ( )

tt

t t

t

GSGSR

CA CA

Page 82: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

82

!**********************;! The game problems ;!**********************;

@for(xyset(x,y): @for(D2set(D2)|D2 #LE# y: [ydec] V(x,y,3) <= @sum(D1set(D1):

( 3/2*(GS1(x,y,D1)*GS1(x,y,D1)/(1+CA2(x,y,D2)*CA2(x,y,D2)) - 5/3*GS2(x,y,D2)/(1+CA1(x,y,D1)*CA1(x,y,D1)) )

+ 1 + .85 *

@sum(xyset(x2,y2): TPX(x,GS1(x,y,D1)+1,CA2(x,y,D2)+1,x2)*TPY(y,GS2(x,y,D2)+1,CA1(x,y,D1)+1,y2)* V(x2,y2,2) )) * xdec(x,y,3,D1) ) ););

Note that “discounting” has been introduced!

Page 83: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

83

Results from Model 4

Page 84: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

84

Table 4.1V(x,y,3) with Model 4

-6.7 -2.925 0.117

-3.35 -0.825 3.425

0 2.35 7.7

Page 85: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

85

Table 4.2(GS1*, GS2*) at n=3 with Model 4

(0,2) (0,2) (0,0) Prob = .6666667 * .1515152 = .101010

(2,0) Prob = .3333333 * .1515152 = .050505

(0,1) Prob = .6666667 * .8484849 = .565657

(2,1) Prob = .3333333 * .8484849 = .282828

Sum = 1.000000

(0,1) (0,1) (2,0)

(0,0) (1,0) (2,0)

Page 86: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

86

Detailed study of optimal strategies:

( , , ) (2,2, 1)t tx y t T Optimal strategies with Model 3(In Model 3, future results are not discounted. d = 1)

P1:

Strategy Probability

Full CA 0.4444444

Full GS 0.5555556

P2:

Strategy Probability

Full CA 0.5555556

50% CA &50% GS

0.4444444

Page 87: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

87

Detailed study of optimal strategies:

( , , ) (2,2, 1)t tx y t T Optimal strategies with Model 4(In Model 3, future results are not discounted. d = 0.85)

P1: P2:

Strategy Probability

Full CA 2/3

Full GS 1/3

Strategy Probability

Full CA 0.1515152

50% CA &50% GS

0.8484848

Page 88: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

88

When the importance of instant results in relation to future results increases (= when the discounting of future results increases from 0 to 15%):

P1 increases the probability of instant full CA.P1 decreases the probability of instant GS.

P2 decreases the probability of instant full CA.P2 increases the probability of partial CA and partial GS.

Page 89: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

89

Observations:

• Even in case there is just one more period of conflict ahead of us and even if the participants only have two units available per participant, we find that the optimal strategies are mixed.

• The optimal decision frequencies are affected by the result discounting.

• The different participants should optimally change the strategies in qualitatively different ways when the degree of discounting changes.

Page 90: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

90

Observations cont.:

• Differential games in continuous time can not describe these mixed strategies.

• Furthermore, even if we would replace deterministic differential games in continuous time by “stochastic differential games” based on stochastic differential equations in continuous time, this would not capture the real situation, since the optimal frequencies are results of the scales of missions.

• Two resource units used during one time interval will not give the same result as one resource unit during two time intervals.

Page 91: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

91

Isaacs (1965), in section 5.4, The war of attrition and attack:

“The realistic execution of the strategies would comprise of a series of discrete decisions. But we shall smooth matters into a continuous process. Such is certainly no farther from truth than our assumptions and therefore can be expected to be as reliable as a stepped model. It is also more facile to handle and yields general results more readily.”

Page 92: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

92

Isaacs (1965), page 66:

• ”Similarily, except possibly on singular surfaces, the optimal strategies will be continuous functions denoted by ... when they are unique; when they are not, we shall often assume such continuous functions can be selected.”

Observation (Lohmander):• With economies of scale in operations, the optimal

strategies will usually not be continuous functions!

Page 93: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

93

V

u

0 1 2

0

1

2

3

4 X=2

X=1

X=0

Page 94: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

94

V*

x

0 1 2

0

1

2

3

4

Page 95: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

95

u*(x)

x

0 1 2

0

1

2

3

4

Page 96: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

96

Isaacs (1965) obtains differential equations that describe the optimal decisions over time by the two participants:

1 1 1 2

2 2 2 1

x m c x

x m c x

The system moves according to these equations:

Page 97: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

97

The objective function in Isaacs (1965) is linear in the

decision variables and time is continuous:

2 1

0

(1 ) (1 )T

x x dt

Page 98: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

98

There is no reason to expect that the Isaacs (1965) model would lead to

mixed strategies. • The objective function is linear.

• Furthermore there are no scale effects in the “dynamic transition”.

Page 99: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

99

Washburh (2003), Tactical air war:

”- It is a curious fact that in no case is a mixed strategy ever needed; in fact, in all cases each player assigns either all or none of his air force to GS.”

(The model analysed by Washburn has very strong similarities to the model analysed here. The Washburn model was even the starting point in the development of this model. However, the objective function used by Washburn is linear. Hence, the results become quite different.)

Page 100: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

100

An analogy to optimal control:

The following observations are typical when optimal management of natural resources is investigated:

• If the product price is a constant or a decreasing function of the production and sales volume and if the cost of extraction is a strictly convex function of the extraction volume, the objective function is strictly concave in the production volume. Then we obtain a smooth differentiable optimal time path of the resource stock.

• However, if the extraction cost is concave, which is sometimes

the case if you have considerable set up costs or other scale advantages, then the optimal strategy is usually “pulse harvesting”. In this case, the objective function that we are maximizing is convex in the decision variable. The optimal stock level path then becomes non differentiable.

Page 101: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

101

Technology differences:

• The reason why the two participants should make different decisions with different strategies is that they have different “GS-technologies”. These technologies have different degree of convexity of results with respect to the amount of resources used.

• Such differences are typical in real conflicts. They are caused by differences in equipment and applied methods. Of course, in most cases we can expect that the applied methods are adapted to the equipment and other relevant conditions.

Page 102: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

102

• For P1, the instant GS result is strictly convex in the number of units devoted to the GS mission.

• For P2, the instant GS result is proportional to the number of units devoted to the GS mission.

Page 103: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

103

Model 5

Page 104: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

104

Model 5 corresponds to Model 3 but the following line is addedjust before “end”.

Case 1:xdec(3,3,3,1) = 1;

Case 2:xdec(3,3,3,2) = 1;

Case 3:xdec(3,3,3,3) = 1;

Page 105: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

105

Results from Model 5

Page 106: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

106

Results if the decisions of P1 are not constrained in (2,2) when n = 3 (Model 3):

Case 0:xdec(3,3,3,1) = 0.4444444 xdec(3,3,3,3) = 0.5555556 ;

(GS1 = 0 and CA1 = 2 or GS1 = 2 and CA1 = 0 )

Effects:

The value of the game : V(3,3) = 0.111

The opposition should use a mixed strategy:

GS2 = 0, CA2 = 2 with probability 0.5555556 GS2=1, CA2 = 1 with probability 0.4444444.

Page 107: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

107

Results if the decisions of P1 are constrained in (2,2) when n = 3:

Case 1:xdec(3,3,3,1) = 1;

(GS1 = 0 and CA1 = 2 )

Effects:

The value of the game decreases: V(3,3) = 0

The decision of the opposition changes: GS2 = 2, CA2 = 0

Page 108: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

108

Results if the decisions of P1 are constrained in (2,2) when n = 3:

Case 2:xdec(3,3,3,2) = 1;

(GS1 = 1 and CA1 =1 )

Effects:

The value of the game decreases: V(3,3) = -0.5

The decision of the opposition changes: GS2 = 2, CA2 = 0

Page 109: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

109

Results if the decisions of P1 are constrained in (2,2) when n = 3:

Case 3:xdec(3,3,3,3) = 1;

(GS1 = 2 and CA1 = 0 )

Effects:

The value of the game decreases: V(3,3) = 0

The decision of the opposition changes: GS2 = 1, CA2 = 1

Page 110: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

110

Conclusions from Model 5:

Since we are interested in the best attainable expected outcome,

we should not restrict our decisions to a pure strategy and let the opposition select strategy without such restrictions!

You should avoid being predictable!

Page 111: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

111

Conclusions: This paper presents a stochastic two person differential (difference)

game model with a linear programming subroutine that is used to optimize pure and/or mixed strategies as a function of state and time.

In ”classical dynamic models”, ”pure strategies” are often assumed to be optimal and deterministic continuous path equations can be derived. In such models, scale and timing effects in operations are however usually not considered.

When ”strictly convex scale effects” in operations with defence and attack (”counter air” or ”ground support”) are taken into consideration, dynamic mixed OR pure strategies are optimal in different states.

The optimal decision frequences are also functions of the relative importance of the results from operations in different periods.

The expected cost of forcing one participant in the conflict to use only pure strategies is determined.

The optimal responses of the opposition in case one participant in the conflict is forced to use only pure strategies are calculated.

Dynamic models of the presented type, that include mixed strategies, are highly relevant and must be used to determine the optimal strategies. Otherwise, considerable and quite unnecessary losses should be expected.

Page 112: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

112

Contact: Peter Lohmander

Professor

SLU

SE-901 83 Umea, Sweden

e-mail:

[email protected]

Home page:

http://www.Lohmander.com

Page 113: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

113

Source: Lohmander, P., TAW models 070612.doc