pe chemical engineers’ handbook seventh … new york san francisco washington, d.c. auckland...

30
McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto Prepared by a staff of specialists under the editorial direction of Late Editor Robert H. Perry Editor Don W. Green Deane E. Ackers Professor of Chemical and Petroleum Engineering, University of Kansas Associate Editor James O. Maloney Professor Emeritus of Chemical Engineering, University of Kansas PERRY’S CHEMICAL ENGINEERS’ HANDBOOK SEVENTH EDITION

Upload: tranhuong

Post on 22-Apr-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

McGraw-Hill New York

San FranciscoWashington, D.C.

AucklandBogotá

CaracasLisbon

LondonMadrid

Mexico CityMilan

MontrealNew DelhiSan Juan

SingaporeSydney

TokyoToronto

Prepared by a staff of specialists under the editorial direction of

Late EditorRobert H. Perry

EditorDon W. Green

Deane E. Ackers Professor of Chemicaland Petroleum Engineering,

University of Kansas

Associate EditorJames O. Maloney

Professor Emeritus of Chemical Engineering,University of Kansas

PERRY’SCHEMICAL

ENGINEERS’HANDBOOK

SEVENTH EDITION

Library of Congress Cataloging-in-Publication Data

Perry’s chemical engineers’ handbook. — 7th ed. / prepared by a staffof specialists under the editorial direction of late editor Robert H. Perry : editor, Don W. Green : associate editor, James O’Hara Maloney.

p. cm.Includes index.ISBN 0-07-049841-5 (alk. paper)1. Chemical engineering—Handbooks, manuals, etc. I. Perry,

Robert H., date. II. Green, Don W. III. Maloney, James O.TP151.P45 1997660—dc21 96-51648

CIP

Copyright © 1997, 1984, 1973, 1963, 1950, 1941, 1934 by The McGraw-Hill Companies, Inc. Copyright renewed 1962, 1969 by Robert H. Perry.All rights reserved.

Printed in the United States of America. Except as permitted under theUnited States Copyright Act of 1976, no part of this publication may bereproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the pub-lisher.

1 2 3 4 5 6 7 8 9 0 DOW/DOW 9 0 2 1 0 9 8 7

ISBN 0-07-049841-5

INTERNATIONAL EDITION

Copyright © 1997. Exclusive rights by The McGraw-Hill Companies, Inc.,for manufacture and export. This book cannot be re-exported from thecountry to which it is consigned by McGraw-Hill. The International Edi-tion is not available in North America.

When ordering this title, use ISBN 0-07-115448-5.

The sponsoring editors for this book were Zoe Foundotos and RobertEsposito, the editing supervisor was Marc Campbell, and the productionsupervisor was Pamela A. Pelton. It was set in Caledonia by North MarketStreet Graphics.

Printed and bound by R. R. Donnelley & Sons Company.

This book was printed on acid-free paper.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believed to be reli-able. However, neither McGraw-Hill nor its authors guarantee theaccuracy or completeness of any information published herein, andneither McGraw-Hill nor its authors shall be responsible for any errors,omissions, or damages arising out of use of this information. This workis published with the understanding that McGraw-Hill and its authorsare supplying information but are not attempting to render engineeringor other professional services. If such services are required, the assis-tance of an appropriate professional should be sought.

Michael M. Ahbott, Ph.D., Howard P. Isermann Department of Chemical Engineering, Rens-

selaer Polytechnic Institute; Member, American Institute of Chemical Engineers (Section 4, Ther-

modynamics)

Terry Allen, Ph.D., Senior Research Associate (retired), Du~ont Central Research and Devel-opment \Section 20, Size Reduction and Size Enlargement)

John D. Dacha, Ph.D., Consulting Scientist, Chevron Products Company; Member, ASTM(American Society for TestiI1cg and Materials), Committee D02 on Petroleufll Products and Lubri"-cants; American Chemical Society; International Association for Stability and Handling of LiquidFuels, Steering Committee (Section 27, Energy Resources, Conversion, and Utilization)

Glenn w. Baldwin, M.S., P.E., Staff Engineer, Union Carbide Corporatio~; Membe!, AmericanInstitute of Chemical Engineers (Section 12, Psychrometry, Evaporative Cooling, and Solids Drying)

Scott D. Barnicki, Ph.D., Senior Resear~h Chemical Engineer, Eastman Chemical Company

(Section 13, Distillation)

Kenneth J. Bell, Ph.D., P.E., Regents Professor Emeritus, School of Chemical Engineering,Oklahoma State University; Member, American Institute of Chemical Engineers (Section 11,

Heat- Transfer Equipment)

Richard C. Bennett, B.S., Ch.E., Registered Professional Engineer, Illinois; Member, Ameri-can Institute of Chemical Engineers (AIChE); President of Crystallization Technology, Inc.; FoJ-mer Presideptof Swenson Process Equipme~t, Inc. (Section 13, Liquid-Solid Operations and

Equipment)

Charles E. Benson, M.Eng., M.E., Director, Combustion Technology, Arthur D. Little, lIic.;Member, American Society of Mechanical Engineers; Comb~tion Institute (Section 27, EnergyResources, Conversion, and Utilization)

Patrick M. Bernhagen, P.E., B.S.M.E., Senior Mechanical Engineer, Foster wheeler USA Cor-poration, American Society of Mechanical EngineeFs ( Section 11, Heat -Transfer Equipment) c

ix

LIST OF CONTRIBUTORSx

Heinz P. Bloch, P.E., B.S.M.E., M.S.M.E., Consulting Engineer, Process Machinery Consult-ing; American Society of Mechanical Engineers, Vibration Institute; Registered Professional Engi-neer (New Jersey, Texas) (Section 29, Process Machinery Drives)

Frank T. Bodurtha, Sc.D., E.I. DuPont de Nemours and Co., Inc. (retired), Wilmington,Delaware (retired); Consultant, Frank T. Bodurtha, Inc. (Section 26, Process Safety)

Meherwan P. Boyce, P.E., Ph.D., President, Boyce Engineering International; ASME Fellow;Registered Professional Engineer (Texas, Oklahoma) (Section 10, Transport and Storage of Fluids;

Section 29, Process Mochinery Drives),

Laurence G. Britton, Ph.D., Research Scientist, Union Carbide Corporation (Section 26,Process Safety)

Evan Buck, M.S.Ch.E., Manager, Thermophysical Property Skill Center, Central Technology,Union Carbide Corporation (Section 2, Physical and Chemical Data)

Henry R. Bungay, P.E., Ph.D., Professor of Chemical and Environmental Engineering, Rens-selaer Polytechnic Institute; Member, American Institute of Chemical Engineers, AmericanChemical Society, American Society for Microbiology, American Society for Engineering Educa-

tion, Society for General Microbiology (Section 24, Biochemical Engineering)

Anthony I. Buonicore, M.Ch.E., P.E., Diplomate AAEE, CEO, Environmental DataResources, Inc.; Member, American Institute of Chemical Engineers, Air and Waste Management

Association (Section 25, Waste Management)

Michael M. Calistrat, B.S.M.E., M.S.M.E., Owner, Michael Calistrat and Associates; Member,American Society of Mechanical Engineers (Section 29, Process Machinery Drives)

,Giorgio Carta, Ph.D., Professor, Department of Chemical Engineering, U niversity of Virginia;

Member, American Institute of Chemical Engineers, American Chemical Society, InternationalAdsorption Society (Section 16, Adsorption and Ion Exchange)

Vincent Conrad, Ph.D., Group Leader, Technical Services Development Laboratory,CONSOL,Inc.; Member, Spectroscopy Society of Pittsburgh, Society for Analytical Chemistry of Pittsburgh,Society for Applied Spectroscopy (Section 27, Energy Resources, Conversion, and Utilization)

Harrison Cooper, ph.D., Harrison R. Cooper Systems, Inc., Salt take City, Utah (Section 19,Solid-Solid Operations and Equipment)

B. B. Crocker, S.M., P.E., Consulting Chemical Engineer; Fellow, American Institute of chem-ical Engineers; Member, Air Pollution Control Association (Section 14, Gas Absorption and Gas-

Liquid System Design)

Daniel A. Crowl, Ph.D., Professor of Chemical Engineering, Chemical Engineering Depart-

ment, Michigan Technological University; Member, American Institute of Chemical Engineers,American Chemical Society (Section 26, Process Safety)

Roger W. Cusack, Vice President, Glitsch Process Systems, Inc.; Member, American Insi:itute of

Chemical Engineers (Section 15, Liquid-Liquid Extraction Operations and Equipment)

Donald A. Dahlstrom, Ph.D., Research Professor, Chemical and Fuels Engineering Depart-ment and Metallurgical Engineering Department, University of Utah; Member, National Acad-emy of Engineering, American Institute of Chemical Engineers (AIChE), American Chemical

Society (ACS), Society of Mining, Metallurgic Exploration (SME) of the American Institute ofMining, Metallurgical and Petrol~um Engine()r~ (AIME), AmericaI) Society of Engineering Edu-cation (Section 18, Liquid-Solid °?erations and Equipment)

Thomas E. Daubert, Ph.D., Professor, Department of Chemical Engineering, The Pennsylva-

nia State University (Section 2, Physic~ and Chemical Data)

R. H. Daugherty, Ph.D., Consulting Engineer, Research Center~ Reliance Electric Company;Member, Institute of Electrical and Electronics Engineers (Section 29, Process Machinery Drives)

xiLIST OF CONTRIBUTORS

James F. DaVis, Ph.D., Professor of Chemical Engineering, Ohio State University (Section 3,

Mathematics)

James B. Dunson, B.S., Principal Consultant, E. I. duPont de Nemours & Co.; Member Amer-

icanlnstitute of Chemical Engineers; Registered Professional Engineer \Delaware) (Section 17,

Gas-Solid Operation and Equipment)

Thomas F. Edgar, Ph.p., Professor of Chemical Engineering, y niversity o£Texas, Austin, Texas

(Section8, Process Control)

Robert C. Emmet, Jr., B,.5., Ch.E., Senior Process Consultant, EIMCO Process Equipment

Co.; Member, American Institute of Chemical Engineers (AIChE), American Institute of Mining,Metallurgical and Petroleum Engineers (AIME), Society of Mining, Metallurgical and Explo-

ration Engineers (SME) (Section 18, Liquid-Solid Operations and Equipment)

Stanley M. Englund, M.S., Ch.E., Fellow, American Institute of Chemical Engineers; Process

Consultant, The Dow Chemical Company (retired) (Section 26, Process Safety)

BryanJ. Ennis, Ph.D., President, E&G Associates, and Adjunct Professor of Chemical Engi-neering; Vanderbilt University; Member and Chair of Powder Technology Programming Group ofthe Particle Technology Forum, American Institute of Chemical Engineers (Section 20, Size

Reduction and Size Enlargement)

William Eyka~p, Ph.D., Adjunc~ Professor of Chemical Engineering, Tufts University; For-

merly President, Koch Membrane Systems; Member, American Institute of Chemical Engineers,American Chemical Society, American Association for the Advancement of Science, North Amer-

ican Membrane Society, European Society of Membrane Science and Technology (Section 22,

Altemative Separation Processes)

James R. Fair, Ph.D., P.E., Professor of Chemical Engineering, University of Texas; NationalAcademy of Engineering; Fello'Y, American Institute of Chemical Engineers; Member, American

Chemical Society, American S,ociety for Engineering Education, N atio~al Society of Professional.,

Engineers (Section 14, Gas Ab~orption and Gas-Liquid System Design),Bruce A. Finlayson, Ph.D., Rehnberg Professor and Chair, Department of Chemical Engineering,

University ofWashington; Member, National Academy of Engineering (Section 3, Mathematics)

Thomas M. FI~n, Ph.D" P.E., Cryogenic Engineer, President CRYOCO, Louisville, CoJorado;

Member, American Institute of Chemical Engineers (Section 11, Heat-Trans£er Equipment)

Anthony G.,Fonseca, Ph,P., Director, Coal Utiltzation, CONSOL, Inc,; Member, American

Chemical Society, Society for Mining, Metallurgy, and Extraction ( Section 27, Energy Resources,

Conversion, and Utilization)

D. G. Friend, National Institutes of Standards and Technology, Boulder, Colorado (Section 2,

Physical and Chemical Data)

George W. Gassman, B.S.M.E., Senior Research Specialist, Final Control Systems, Fisher Con-

trols International, Inc., Marshalltown, Iowa (Section 8, Process Control)

Fred K. Geitner, P.Eng., B.S.M.E., M.S.M.E., Consulting Engineer; Registered Professional

Engineer (Ontario, Canada) (Section 29, Process Machinery Drives)

Victor M. Goldschmidt, Ph.D., P.E., Professor of Mechanical Engineering, Purdue University,

West Lafayette, Indiana (Section 11, Heat-Trallsfer Equipment)

Stanley Grossel, President, Process Safety & Design, Inc.; Fellow, American Institute of chem-ical Engineers; Member, American Chemical Society; Member, The Combustion Institute; Mem-

ber,Explosion Protection Systems Committee of NFPA (Section 26, Process Safety)

Peter Harriott, Ph.D., Professor, School of Chemical Engineering, Cornell University; Member,American Institute of Chemical Engineering, American Chemical Society (ACS) (Section 18;

Liquid-Solid Operations and Equipment)

xii LIST OF CONTRIBUTORS

T. Alan Hatton, Ph.D., Ralph Landau Professor and Director of the DavidH. Koch School of

Chemical Engineering Practice, Massachusetts Institute of Technology; Founding Fellow, Ameri-can Institute of Medical and Biological Engineering; Member. American Institute of Chemical

Engineers, American Chemical Society, International Association of Colloid and Interface scien-tists, American Association for the Advancement of Science, N eutt:on Scattering Society of Amer-ica (Section 22, Alternative Separation Processes)

Joseph D. Henry, Jr., Ph.D., P.E., Senior Fellow, Department of Engineering and Public Pol-

icy, Carnegie Mellon University; Member, American InStitute of Chemical Engineers, AmericanSociety for Engineering Education (Section 22, Alternative Separation Processes)

W. G. High, C.Eng., B.Sc., F.I.Mech.E., Burgoyne Consultants Ltd., W. Yorks, England (Sec-

tion 26, Process Safety)

Richard Hogg, Ph.D., Professor, Department of Mineral Engineering, The Pennsylvania State

University, University Park, PA (Section 19, Solid-Solid Operations and Equipment)

F. A. Holland, D.Sc., Ph.D., Consultant in Heat Energy Recycling; Research Professor, Univer-sity of Salford, England; Fellow; Institution of Chemical Engineers, London (Section 9, Process

Economics)

Hoyt C. Hottel, S.M., Professor Emeritus of Chemical Engineering, Massachusetts Institute of

Technology; Member, National Academy of Sciences, American Academy of Arts and Sciences,American Institute of Chemical Engineers, American Chemical Society, Combustion Institute(Section 5, Heat and Mass Transfer)

Colin S.Howat, Ph.D., P.E., John E. & Winfred E. Sharp Professor, Department of Chemical andPetroleum Engineering, University of Kansas; Member, American Institute of Chemical Engineers;

Member, American Society of Engineering Education (Section 30, Analysis ofPlant Performance)

Predrag S. Hrnjak, Ph.D., V.Res., Assistant Professor, University of Illinois at Urbana cham-

paign and Principal Investigator-U. of I. Air Conditioning and Refrigeration Center, Assistant

Professor, University of Belgrade; Member, International Institute of Refrigeration, AmericanSociety of Heating, Refrigeration and Air Conditioning (Section 11, Heat-Transfer Equipment)

Arthur E. Humphrey, Ph.D., Retired, Professor of Chemical Engineering, Pennsylvania State

University; Member, U.S. National Academy of Engineering, American Institute of ChemicalEngineers, American Chemical Society, American Society for Microbiology (Section 24, Bio-chemical Engineering)

Eric Jenett, M.S.Ch.E., Manager, Process Engineering, Brown & Root, Inc.; Associate Member,

AIChE, Project Management Institute; Registered Professional Engineer (Texas) (Section 29,Process Machinery Drives)

John S. Jeris, Sc.D., P.E., Professor of Environmental Engineering, Manhattan College; Envi-ronmental Consultant; Member, American Water Works Association, Water Environment Feder-ation Section Director (Section 25, Waste Management)

T. L. P. Jespen, M.S., MiD. Proc;, Metallurgical Engineer, Basic, Inc;; Gabbs, Nevada (Section

19, Solid-Solid Operations and Equipment)

Keith P. Johnston, Ph.D., P.E., Professor of Chemical Engineering, University of Texas (Austin);

Member, American Institute of Chemical Engineers, American Chemical Society, U niversity ofTexas Separations Research Program (Section 22, Alternative Separation Processes)

Trevor A. Kletz, D.Sc., Senior Visiting Research Fellow, Department of Chemical Engineering,

Loughborough University, U.K.; Fellow, American Institute of Chemical Engineers, Royal Acad-emy of Engineers (U .K.), Institution of Chemical Enginee!s (U .K.), and Royal Society of chem-

istry (U.K.) (Section 26, Process Safety)

Edgar B. Klunder, Ph.D., Project Manager, Energy Technol<?gy Center (Pittsburgh), U,~.

Department of Energy (Section 27, Energy Resources, Conversion, and Utilization)

LIST OF CONTRIBUTORS xiii

Kent S. Knaebel, Ph.D., President, Adsorption Research, Inc.; Member, American Il;lstitute ofChemical Engineers, American Chemical Society, International Adsorption Society. Professional

Engineer (Ohio) (Section 5, Heat and Mass Transfer)

Frank Knoll, M.S., Min. Proc., President, Carpco, Inc., Jacksonville, Florida (Section 19, Solid-Solid Operations and Equipment)

James G.Knudsen, Ph.D.,Professor Emeritus of Chemical Engineering, Oregon State univer-sity; Member, American Institute of Chemical Engineers, American Chemical Society; RegisteredProfessional Engineer (Oregon) (Section 5, Heat and Mass Transfer)

Michael Krumpelt, Ph.D., Manager, Fuel Cell TechnolQgy, Argonne National Laboratory;Member, American Institute of Chemical Engineers, American Chemical Society, Electrochemi-cal Society (Section 27, Energy Resources, Conversion, and Utilization)

Irwin J. Kugelman, Sc.D., Professor of Civil Engineering, Lehigh University; Member, AmericanSociety of Civil Engineering, Water Environmental Federation (Section 25, Waste Management)

rim Laros, M.S. Mineral Processing, Senior Process Consultant, EIMCO Process EquipmentCo,; Member, Society of Mining, Metallurgy and Exploration (SME of AIME) (Section 18,Liquid-Solid Operations and Equipment)

Richard M. Lemert, Ph.D., P.E., Assistant Professor of Chemical Engineering, University of

Toledo; Member, American Institute of Chemical Engineers, American Chemical Society, Societyqf Mining Engineers, American Society for Engineering Education (Section 22, Alternative Sepa-ration Processes)

Robert Lemlich, Ph.D., P.E., Professor of Chemical Engineering Emeritus, University ofCincinnati; Fellow, American Institute of Chemical Engineers; Member, American ChemicalSociety, American Society for Engineering Education, American Chemical Society (Sectiqn 22,Alternative Separation Processes)

Wallace Leung, Sc.D., Director, Process Technology, Bird Machine Company; Member, Amer-ican Filtration and Separation Society (Director) (Section 18, Liquid-Solid Operations and

Equipment)

M. Douglas LeVan, Ph.D., Professor, Department of Chemical Engineering, University of Vir-ginia; Member, American Institute of Chemical Engineers, American Chemical Society, Intema-tional Adsorption Society (Section 16, Adsorption and Ion Exchange)

Peter E. Liley, Ph.D., D.I.C., School of Mechanical Engineering, Purdue University (Section 2,Physical and Chemical Data)

James D. Litster, Ph.D., Associate Professor, Department of Chemical Engineering, Universityof Queensland; Member, Institute of Chemical Engiiieers-Australia (Section 20, Size Reductionand Size Enlargement)

Peter J. Lofuis, D. Phil., Arthur D. Little, Inc.; Member, American Society of Mechanical Engi-neers (Section 27, Energy Resources, Conversion, and Utilization)

Hsue-peng Loh, Ph.D., P.E., Federal Energy Technology Center (Morgantown), U .S. Depart-ment of Energy; Member, American Institute of Chemical Engineers, American Society of Infor-mation Sciences (Section 27, Energy Resources, Conversion, and Utilization)

Douglas E. Lowenhaupt, M.S., Group Leader, Coke Laboratory, CONSOL, Inc.; Member,American Society for Testing and Materials, Iron and Steel Making Society, International Com-

mittee for Coal Petrology (Section 27, Energy Resources, Conversion, and Utilization)

James 0. Maloney, Ph.D., P.E., Emeritus Professor of Chemical Engineering, University ofKansas; Fellow, American Institute of Chemical Engineering; Fellow, American Association forthe Advancement of Science; Member, American Chemical Society, American Society for Engi-neering Education (Section 1, Conversion Factors and Mathematical Symbols)

Thomas J. McAvoy, Ph.D., Professor of Chemical Engineering, University of Maryland, College

Park, Maryland (Section 8, Process Control)

Chad McCleary, EIMCO Process Equipment Company, Process Consultant (Section 18, Liq-uid-Solid Operations and Equipment)

Thomas F. McGowan, P.E., Senior Consultant, RMT/Four Nines; Member, American Instituteof Chemical Engineers, American Society of Mechanical Engineers, Air and Waste Management

Association (Section 25, Waste Management)

Howard G. Mcllvried, III, Ph.D., Senior Engineer, Burns and Roe Services Corporation, Fed-eral Energy Technology Center (Pittsburgh), Member, American Chemical Society, AmericanInstitute of Chemical Engineers (Section 27, Energy Resources, Conversion, and Utilization)

John D. McKenna, Ph.D., President and Chairman, ETS International, Inc., Member, Ameri-can Institute of Chemical Engineers, Air and Waste Management Association (Section 25, Waste

Management)

Shelhy A. Miller, Ph.D., P.E., Resident Retired Senior Engineer; Argonne National Laboratory;American Association for the Advancement of Science (Fellow), American Chemical Society,American Institute of Chemical Engineers (Fellow), American Institutes of Chemists (Fellow), Fil-tration Society, New York Academy of Sciences, Society of Chemical Industry (Section 18; Liqmd.;

Solid Operations and Equipment; Section 27, Energy Resources, Conversion, and Utilization)

Booker Morey, Ph.D., Senior Consultant, SRI International; Member; Society of Mining,Metallurgy and Exploration (SME of AIME), The Filtration Society, Air and Waste ManagementAssociation; Registered Professional Engineer (California and Massachusetts) (Section 18, Liquid-Solid Operations and Equipment)

Charles G. Moyers, Ph.D., P.E., Principal Engineer, Union Carbide Corporation; Fellow,American Institute of Chemical Engineers (Section 12, Psychrometry, Evaporative Cooling, and

Solids Drying; Section 22, Alternative Separation Processes)

John Newman, Ph.D., Professor of Chemical Engineering, University of California, Berkeley;Principle Investigator; Inorganic Materials Research Division, Lawrence Berkeley Laboratory(Section 22, Alternative Separation Processes)

James Y. Oldshue, Ph.D., President, Oldshue Technologies International, Inc.; Member,National Academy of Engineering; Adjunct Professor of Chemical Engineering atBeijing Instituteof Chemical Technology, Beijing, China; Member; American Chemical Society (ACE), American

Institute of Chemical Engineering (AIChE), Traveler Century Club, Executive Committee on theTransfer of Appropriate Technology for the World Federation of Engineering Organizations (Sec-tion 18, Liquid-Solid Operations and Equipment)

Robert W. Ormsby, M.S., Ch.E. P.E., Manager of Safety, Chemical Group, Air Products andChemicals, Inc.; Air Products Corp.; Fellow, American Institute of Chemical Engineers (Section

26, Process Safety)

John E. Owens, B.E.E., Electrostatic Consultant, Condux, Inc.; Member, Institute of Electricaland Electronics Engineers, Electrostatics Society of America (Section 26, Process Safety)

Bhupendra Parekb, Ph.D., Associate Director, Center for Applied Energy Research, Universityof Kentucky, Lexington, Kentucky (Section 19, Solid-Solid Operations and Equipment)

Mel Pen, Ph.D., Senior Consultant, E. I. duPont de Nemours & Co.; Fellow, American Instituteof Chemical Engineers; Registered Professional Engineer (Delaware) (Section 17, Gas-SolidOperations and Equipment)

W. R. Penney, Ph.D., P.E., Professor of Chemical Engineering, University of Arkansas; Member,American Institute of Chemical Engineers (Section 14, Gas Absorption and Gas-Liquid System

Design)

LIST OF CONTRIBUTORS xv

WalterF. Podolski, Ph.D., Chemical Engineer, Electrochemical Technology Program, Argonne

National Laboratory; Member, American Institute of Chemical Engineers (Section 27, Energy

Resources, Conversion, and Utilization)

Herbert A. Pohl, Ph.D. (deceased), Professor of Physics, Oklahoma State University (Section

22, Alternative Separation Processes)

Kent Pollock, Ph.D., Member of Technical Staff, Group 91, Space Surveillance Techniques,

MIT Lincoln Laboratory (Section 22, Alternative Separation Processes)

George Priday,B.S., Ch.E., EIMCO Process Equipment Company; Member, American Insti-

tute of Chemical Engineering AIChE), Instrument Society of America (ISA) (Section 18, Liquid-

Solid Operations and Equipment)

Michael E. Prudich, Ph.D" Professor and Chair of Chemical Engineering, Ohio U~iversity;Member, American Institute of Chemical Engineers, American Chemical Society, Society of Min-

ing Engineers, American Society for Engineering Education (Section 22, Alternative Skparation

Processes)

Raj K. Rajamani, Ph.D., Professor, Department of Metallurgy and Metallurgical Engineering,University of Utah, Salt Lake City, Utah (Section 19, Solid-Solid Operations and Equipment)

Lawrence K. Rath, B.S., P.E., Federal Energy Technology Center (Morgantown), U .S. Depart-

ment of Energy; Member, American Institute of Chemical Engineers (Section 27, Energy

Resources, Conversion, and Utilization)

Grantges J. Raymus, M.E., M.S., President, Raymus Associates, Incorporated, Packaging con-sultants; Adjunct Professor and Program Coordinator, Center for Packaging Science and Engi-

neering, College of Engineering, Rutgers, The State University of New Jersey; formerly Managerof Packaging Engineering, Union Carbide Corporation; Registered Professional Engineer, cali-fornia; Member, Institute of Packaging Professionals, ASME (Section 21, Handling of Bulk Solids

and Packagi?g of Solids and Liquids)

Lanny A. Robbins, Ph.D., Research Fellow, Dow Chemical Company; Member, American Insti-

tute of Chemical Engineers (Section 15, Liquid-Liquid Extraction Operations and Equipment)

Joseph J. Santoleri, P.E.,Senior Consultant, RMT/Four Nines; Member, American Institute ofChemical Engineers, American Society of Mechanical Engineers, Air and Waste Management

Association (Section 25, Waste Management)

Adel F. Sarofim, Sc.D., Lammot DuPont Professor of Chemical Engineering and AssistantDirector, Fuels Research Laboratory, Massachusetts Institute of Technology; Member, American

Institute of Chemical Engineers, American Chemical Society, Combustion Institute (Section 5,

Heat and Mass Transfer)

Kalanadh v. S. Sastry, Ph.D., Professor, Department of Materials Science and Mineral Engineer-ing, University of California, Berkeley, CA; Member, American Institute of Chemical Engineers,Society for Mining, Metallurgy and Exploration (Section 19, Solid-Solid Operations and Equipment)

Paul J. Schafbuch, Ph.D" Senior Research Specialist, ~inal Control Systems, Fisher Controls

International, Inc., Marshalltown, Iowa (Section 8, Process Control)

Carl A. Schiappa, B.S., Ch.E., Process Engineering Associate, Michigan Division Engineering,

The Dow Chemical Company; Member, AIChE and CCPS (Section 26, Process Safety)

David K. Schmalzer, Ph.D., P.E., Fossil Energy Program Manager, Argonne National Labora-

tory; Member, American Chemical Society, Americanlnstitute of Chemical Engineers (Section

27, Energy Resources, Conversion, and Utilization)

J. D. Seader, Ph.D., Professor of Chemical Engineering, University of Utah, Salt Lake City,

Utah; Fellow, American Institute of Chemical Engineers; Member, American Chemical Society;

Member. American SocietY for Enl!ineerin!! Education (Section 13. Distillation)

LIST OF CONTRIBUTORSxvi

Dale E. Seborg, Ph.D., Professor of Chemical Engineering, University of California, Santa Bar-

bara, California (Section 8, Process Control)

Richard L. Shilling, P.E., B.S.M., B.E.M.E., Manager of Engineering Development, BrownFintube Company-a Koch Engineering Company; Member, American Society of Mechanical

Engineers (Section 11, Heat-Transfer Equipment)

F. Greg Shinskey, B.S.Ch.E., Consultant (retired from Foxboro Co.), North Sandwich, New

Hampshire (Section 8, Process Control)

Oliver w. Siebert, P.E., B.S.M.E., Washington University, Graduate Metallurgical Engineering,Sever Institute of Technology; Professor, Department of Chemical Engineering, Washington Uni-

versity, St. Louis, Missouri; President, Siebert Materials Engineering, Inc., St, Louis, Missouri;Senior Engineering Fellow (retired), Monsanto Co.; Mechanical Designer, Sverdrup Corp.; Met-allurgist, Carondelet Foundry; United Nations Consultant to the People's Republic of China; Fel-

low, American Institute of Chemical Engineers; Life Fellow, American Society of Mechanical

Engineers; Past Elected Director and Fellow, N ational Association of Corrosion Engineers, Int'I;American Society for Metals, Int'I; American Welding Society; Pi Tau Sigma, Sigma Xi, and Tau

Beta Pi (Section 28, Materials of Construction)

Jeffrey J. Siirola, Ph.D., Research Fellow, Eastman Chemical Company; Member, National

Academy of Engineering; Fellow, American Institute ofChemical Engineers, American ChemicalSociety, American Association for Artificial Intelligence, American Society for Engineering Edu-

cation (Section 13, Distillation)

Charles E. Silverblatt, M.S., Ch.E., Peregrine International Associates, Inc.; Consultant toWesTech Engineering, Inc., American Institute of Mining, Metallurgical and Petroleum Engines

(AIME) (Section 18, Liquid-Solid Operations and Equipment)

Richard Siwek, M.S., Explosion Protection Manager, Corporate Unit Safety and Environment,

Ciba-Geigy Ltd., Basel, Switzerland (Section 26, Process Safety)

J. Stephen Slottee, M.S., Ch.E., Manager, Technology and Development, EIMCO Process

Equipment Co.; Member, American Institute of Chemical Engineers (AIChE) (Section 18,

Liquid-Solid Operations and Equipment)

Cecil L. Smith, Ph.D., Principal, Cecil L. Smith Inc., Baton Rouge, Louisiana (Section 8,

Process Control)

Julian C. Smith, B. Chem., Ch.E., Professor Emeritus Chemical Engineering, Cornell Univer-

sity; Member, American Chemical Society (ACS), American Institute of Chemical Engineers

(AIChE) (Section 18, Liquid-Solid Operations and Equipment)

Richard H. Snow, Ph.D., Engineering Advisor, lIT Research Institute; Member, AmericanChemical Society, Sigma Xi; Fellow, American Institute of Chemical Engineers (Section 20, Size

Reduction and Size Enlargement)

Thomas Sorenson, M.B.A., MiD. Eng., President, Galigher Ash (Canada) Ltd. (Section 19,

Solid-Solid Operations and Equipment)

Rameshwar D. Srivastava, Ph.D., Fuels Group Manager, Burns and Roe Services Corporation,Federal Energy Technology Center (Pittsburgh) (Section 27, Energy Resources, Conversion, and

Utilization )

F. C. Standiford, M.S., P.E., Member, American Institute of Chemical Engineers, American

Chemical Society (Section 11, Heat-Transfer Equipment)

D. E. SteiDmeyer, M.A., M.S., P.E., Distinguished Fellow, Monsanto Company; Fellow; Amer-ican Institute of Chemical Engineers; Member, American Chemical Society (Section 14, Gas

Absorption and Gas-Liquid System Design)

Gary J. Stiegel, M.S., P.E., Program Coordinator, Federal Energy Technology Center (Pitts-

burgh), U .S. Department of Energy (Section 27, Energy Resources, Conversion, and Utilization)

LIST OF CONTRIBUTORS xvii

John G. Stoecker II, B.S.M.E., University of Missouri School of Mines and Metallurgy; princi-

pal Consultant, Stoecker & Associates, St. Louis, Missouri; Principal Materials EngineeringSpecialist (retired), Monsanto Co.; High-Temperature Design/Application Engineer, AbexCorporation; Member, NACE International, ASM International (Section 27, Energy Resources,Conversion, and Utilization)

Judson S. Swearingen, Ph.D., Retired President, Rotoflow Corporation (Section 29, Process

Machinery Drives)

Louis Theodore, Sc.D., Professor of Chemical Engineering, Manhattan College; Member, Airand Waste Management Association (Section 25, Waste Management)

Michael P. Thien, Sc.D., Senior Research Fellow, Merck & Co., Inc.; Member, American Insti-tute of Chemical Engineers, American Chemical Society, International Society for PharmaceuticalEngineers (Section 22, Alternative Separation Processes)

George H. Thomson, AIChE Design Institute for Physical Property Data (Section 2, Physicaland Chemical Data)

James N. Tilton, Ph.D., P.E., Senior Consultant, Process Engineering, E. I. duPont de Nemours& Co.; Member, American Institute of Chemical Engineers; Registered Professional Engineer(Delaware) (Section 6, Fluid and Particle Dynamics)

Klaus D. Timmerhaus, Ph.D., P.E., Professor and President's Teaching Scholar, University ofColorado, Boulder, Colorado; Fellow, American Institute of Chemical Engineers, American Soci-ety for Engineering Education, American Association for the Advancement of Science; Member,American Astronautical Society, N ational Academy of Engineering, Austrian Academy of Science,

International Institute of Refrigeration, American Society of Heating, Refrigerating and Air Con-ditioning Engineers, American Society of Environmental Engineers, Engineering Society forAdvancing Mobility on Land, Sea, Air, and Space, Sigma Xi, The Research Society (Section 11,Heat-Transfer Equipment)

David B. Todd, Ph.D., President, Todd Engineering; Member, American Association for theAdvancement of Science (AAAS), American Chemical Society (ACS), American Institute ofChemical Engineering (AIChE), American Oil Chemists Society (AOCS), Society of Plastics Engi-neers (SPE), and Society of the Plastics Industry (SPI); Registered Professional Engineer, Michi-

gan (Section 18, Liquid-Solid Operations and Equipment)

George T. Tsao, Ph.D., Director, Laboratory for Renewable Resource Engineering, PurdueUniversity; Member, American Institute of Chemical Engineers, American Chemical Society,

American Society for Microbiology (Section 24, Biochemical Engineering)

Hendrick c. Van Ness, D.Eng., Howard P. Isermann Department of Chemical Engineering,Rensselaer Polytechnic Institute; Fellow, American Institute of Chemical Engineers; Member,

American Chemical Society (Section 4, Thermodynamics)

Stanley M. Walas, Ph.D., Professor Emeritus, Department of Chemical and Petroleum Engi-neering, University of Kansas; Fellow, American Institute of Chemical Engineers (Section 7,

Reaction Kinetics; Section 23, Chemical Reactors)

Phillip C. Wankat, Ph.D., Professor of Chemical Engineering, Purdue University; Member,American Institute of Chemical Engineers, American Chemical Society, International Adsorp-tion Society (Section 5, Heat and Mass Transfer)

Ionel Wechsler, M.S., MiD. and Met., Vice President, Sala Magnetics, Inc., Cambridge, Massa-chusetts (Section 19, Solid-Solid Operations and Equipment)

Arthur W. Westerberg, Ph.D., Swearingen University Professor of Chemical Engineering,Carnegie Mellon University; Member, National Academy of Engineering (Section 3, Mathematics)

John M. Wheeldon, Ph.D., Electric Power Research Institute (Section 27, Energy Resources,

Conversion. and Utilization)

xviii LIST OF CONTRIBUTORS

Robert E. White, Ph.D., Principal Engineer; Chemistry and Chemical Engineering Division,

Southwest Research Institute (Section 26, Process Safety)

J. K. Wilkinson, M.Sc., Consultant Chemical Engineer; Fellow, Institution of Chemical Engi-neers, London (Section 9, Process Economics)

David Winegarder, Ph.D., Engineering Associate, Michigan Division Engineering, The DowChemical Company; Member AIChE and CCPS (Section 26, Process Safety)

John L. Woodward, Ph.D., Principal, DNV Technica, Inc. (Section 26, Process Safety)

Yoshiyuki Yamashita, Ph.D., Associate Professor of Chemical Engineering, Tohoku University,

Sendai, Japan (Section 3, Mathematics)

Cannen M. Yon, M.S., DevelopmentAssociate, UOP, Des Plaines, Illinois; Member, AmericanInstitute of Chemical Engineers (Section 16, Adsorption and Ion Exchange)

xix

Preface to theSeventh Edition

Perry’s has been an important source for chemical engineering information since 1934. The signif-icant contributions of the editors who have guided preparation of the previous editions is acknowl-edged. These include John H. Perry (first to third editions), Robert H. Perry (fourth to sixtheditions), Cecil H. Chilton (fourth and fifth editions), and Sidney D. Kirkpatrick (fourth edition).Ray Genereaux (DuPont) contributed to each of the first six editions, and Shelby Miller (ArgonneNational Lab) worked on the second through the seventh. The current editors directed both thesixth and seventh editions. Advances in the technology of chemical engineering have continued aswe have moved toward the twenty-first century, and this edition will carry us into that century.

The Handbook has been reorganized. The first group of sections focuses on chemical and physi-cal property data and the fundamentals of chemical engineering. The second and largest group ofsections deals with processes, generally divided as heat transfer operations, distillation, kinetics, liquid-liquid, liquid-solid, and so on. The last group treats auxiliary information such as materials ofconstruction, process machinery drives, waste management, and process safety. All sections havebeen revised and updated, and several sections are entirely new or have been extensively revised.Examples of these sections are mathematics, mass transfer, reaction kinetics, process control, trans-port and storage of fluids, alternative separation processes, heat-transfer equipment, chemical reac-tions, liquid-solid operations and equipment, process safety, and analysis of plant performance.Significant new information has also been included in the physical and chemical data sections.

Several section editors and contributors worked on this seventh edition, and these persons andtheir affiliations are listed as a part of the front material. Approximately one-half of the section edi-tors are fellows of the AIChE. In addition, the following chemical engineering students at the Uni-versity of Kansas assisted in the preparation of the index: Jason Canter, Pau Ying Chong, Mei LingChuah, Li Phoon Hor, Siew Pouy Ng, Francis J. Orzulak, Scott C. Renze, Page B. Surbaugh, andStephen F. Weller. Shari L. Gladman and Sarah Smith provided extensive secretarial assistance.

Much of Bob Perry’s work carries over into this edition and his influence is both recognized andremembered.

DON W. GREENJAMES O. MALONEYUniversity of KansasApril, 1997

For the detailed contents of any section, consult the title page ofthat section. See also the alphabetical index in the back of thehandbook.

Section

1

2

3

4

5

6

7

8

9

10

11

12

13

Conversion Factors and Mathematical Symbols Jam£s 0. Maloney

Physical and Chemical Data Peter E. Liley, George H. Thomson, D. G. Friend,Thomas E. Daubert, Evan Buck

Mathematics Bruce A. Finlayson, Jam£s F Davis, Arthur W Westerberg,Yoshiyuki Yamashita

Thermodynamics Hendrick C. Van Ness, Michael M. Abbott

Heat and Mass Transfer Jam£s G. Knudsen, Hoyt C. Hottel, Adel F Sarofim,Phillip c. Wankat, Kent S. Knaebel

Fluid and Particle Dynamics Jam£s N. Tilton

Reaction Kinetics Stanley M. Walas

Process Control Thomas F Edgar; Cecil L. Smith, F Greg Shinskey,George W Gassman, Paul J. Schajbuch, Thomas J. McAvoy, Dale E. Seborg

Process Economics F A. Holland, J. K Wilkinson

Transport and Storage of Fluids Meherwan 1'. Royce

Heat- Transfer Equipment Richard L. Shilling, Kenneth J. Bell,

Patrick M. Bemhagen, Thomas M. Flynn, Victor M. Goldschmidt,Predrag S. Hrnjak, F C. Standiford, Klaus D. Timmerhaus

Psychrometry, Evaporative Cooling, and Solids Drying Charles G. Moyers,Glenn W Baldwin

Distillation J. D. Seader; Jeffrey J. Siirola, Scott D. Bamicki

vii

viii CONTENTS

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Gas Absorption and Gas-Liquid System Design james R. Fair; D. E. Steinmeyer;

W R. Penny, B. B. Crocker

Liquid-Liquid Extraction Operations and Equipment Lanny A. Robbins,

Roger W Cusack

Adsorption and Ion Exchange M. Douglas LeVan, Giorgio Carta, Carmen M. Yon

Gas-Solid Operations and Equipment Mel Pell, james B. Dunson

Liquid-Solid Operations and Equipment Donald A. Dahlstrom, Richard C. Bennett,Robert G, Emmet, Peter Harriott, Tim Laros, Wallace Leung, Shelby A. Miller;Brooker Morey, james Y. Oldshue, George Priday, Charles E. Silverblatt,

I. Stephen Slottee, Iulian c. Smith

Solid-Solid Operations and Equipment Kalanadh V S. Sastry, Harrison Cooper;Richard Hogg, T L. p Iespen, Frank Knoll, Bhupendra Parekh, Raj K Rajamani,Thomas Sorenson, Ionel Wechsler; Chad McCleary, David B. Todd

Size Reduction and Size Enlargement Richard L. Snow, Terry Allen,Bryan I. Ennis, james D. Litster

Handling of Bulk Solids and Packaging of Solids and Liquids Grantges I. Raymus

Alternative Separation Processes joseph D. Henry, Ir:, Michael E. Prudich,William Eykamp, T Alan Hatton, Keith p johnston, Richard M. Lemert,Robert Lemlich, Charles G. Moyers, john Newman, Herbert A. Pohl,

Kent Pollock, Michael p Thien

Chemical Reactors Stanley M. Walas

Biochemical Engineering Henry R. Bungay, Arthur E. Humphrey, George T Tsao

Waste Management Louis Theodore, Anthony I. Buonicore, John D. McKenna,Irwin I. Kugelman, john s. Ieris, joseph I. Santoleri, Thomas R McGowan

Process Safety Stanley M. Englund, Frank T Bodurtha, Laurence G. Britton,Daniel A. Crowl, Stanley Grossel, W G. High, Trevor A. Kletz, Robert W Ormsby,john E. Owens, Carl A. Schiappa, Richard Siwek, Robert E. White,

David Winegardner; john L. Woodward

Energy Resources, Conversion, and Utilization Walter R Podolski,

Shelby A. Miller; David K Schnialzer; Anth9ny G. Fonseca, Vincent Conrad,Douglas E. Lowenhaupt, john Bacha, Lawrence K Rath, Hsue-peng Loh,

EdgarB. Klunder; Howard G. McIlvried, III, Gary I. Stiegel,Rameshwar D. Srivastava, Peter I. Loftus, Charles E. Benson,

john M. Wheeldon, Michael Krumpelt

Materials of Construction Oliver W Siebert, john G. Stoecker

Process Machinery Drives Heinz p Bloch, R. H. Daugherty, Fred K Geitner;Meherwan p Boyce, judson S. Swearingen, Eric jennet, Michael M. Calistrat

Analysis of Plant Performance Colin S. Howat

Index follows Section 30.

29

30

CONVERSION FACTORSFig. 1-1 Graphic Relationships of SI Units with Names . . . . . . . . . 1-2Table 1-1 SI Base and Supplementary Quantities and Units. . . . . . . 1-3Table 1-2a Derived Units of SI that Have Special Names. . . . . . . . . . 1-3Table 1-2b Additional Common Derived Units of SI . . . . . . . . . . . . . 1-3Table 1-3 SI Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3Table 1-4 Conversion Factors: U.S. Customary and Commonly

Used Units to SI Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4Table 1-5 Metric Conversion Factors as Exact Numerical

Multiples of SI Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13Table 1-6 Alphabetical Listing of Common Conversions . . . . . . . . . 1-15Table 1-7 Common Units and Conversion Factors . . . . . . . . . . . . . . 1-18Table 1-8 Kinematic-Viscosity Conversion Formulas . . . . . . . . . . . . 1-18Table 1-9 Values of the Gas-Law Constant. . . . . . . . . . . . . . . . . . . . . 1-18

Table 1-10 United States Customary System of Weights and Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19

Table 1-11 Temperature Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19Table 1-12 Specific Gravity, Degrees Baumé, Degrees API, Degrees

Twaddell, Pounds per Gallon, Pounds per Cubic Foot . . . 1-20Table 1-13 Wire and Sheet-Metal Gauges . . . . . . . . . . . . . . . . . . . . . . 1-21Table 1-14 Fundamental Physical Constants . . . . . . . . . . . . . . . . . . . . 1-22

CONVERSION OF VALUES FROM U.S. CUSTOMARY UNITS TO SI UNITS

MATHEMATICAL SYMBOLSTable 1-15 Mathematical Signs, Symbols, and Abbreviations . . . . . . . 1-24Table 1-16 Greek Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24

1-1

Section 1

Conversion Factors and Mathematical Symbols*

James O. Maloney, Ph.D., P.E., Emeritus Professor of Chemical Engineering, Univer-sity of Kansas; Fellow, American Institute of Chemical Engineering; Fellow, American Associa-tion for the Advancement of Science; Member, American Chemical Society, American Society forEngineering Education

* Much of the material was taken from Sec. 1. of the fifth edition. The contribution of Cecil H. Chilton in developing that material is acknowledged.

1-2

FIG. 1-1 Graphic relationships of SI units with names (U.S. National Bureau of Standards, LC 1078, December 1976.)

1-3

TABLE 1-1 SI Base and Supplementary Quantities and Units

SI unit symbol(“abbreviation”);

Use romanQuantity or “dimension” SI unit (upright) type

Base quantity or “dimension”length meter mmass kilogram kgtime second selectric current ampere Athermodynamic temperature kelvin Kamount of substance mole* molluminous intensity candela cd

Supplementary quantity or “dimension”plane angle radian radsolid angle steradian sr

*When the mole is used, the elementary entities must be specified; they maybe atoms, molecules, ions, electrons, other particles, or specified groups of suchparticles.

TABLE 1-2a Derived Units of SI that Have Special Names

Quantity Unit Symbol Formula

frequency (of a periodic phenomenon) hertz Hz l/sforce newton N (kg⋅m)/s2

pressure, stress pascal Pa N/m2

energy, work, quantity of heat joule J N⋅mpower, radiant flux watt W J/squantity of electricity, electric charge coulomb C A⋅selectric potential, potential difference, volt V W/Aelectromotive force

capacitance farad F C/Velectric resistance ohm Ω V/Aconductance siemens S A/Vmagnetic flux weber Wb V⋅smagnetic-flux density tesla T Wb/m2

inductance henry H Wb/Aluminous flux lumen lm cd⋅srilluminance lux lx lm/m2

activity (of radionuclides) becquerel Bq l/sabsorbed dose gray Gy J/kg

TABLE 1-2b Additional Common Derived Units of SI

Quantity Unit Symbol

acceleration meter per second squared m/s2

angular acceleration radian per second squared rad/s2

angular velocity radian per second rad/sarea square meter m2

concentration (of amount of mole per cubic meter mol/m3

substance)current density ampere per square meter A/m2

density, mass kilogram per cubic meter kg/m3

electric-charge density coulomb per cubic meter C/m3

electric-field strength volt per meter V/melectric-flux density coulomb per square meter C/m2

energy density joule per cubic meter J/m3

entropy joule per kelvin J/Kheat capacity joule per kelvin J/Kheat-flux density, watt per square meter W/m2

irradianceluminance candela per square meter cd/m2

magnetic-field strength ampere per meter A/mmolar energy joule per mole J/molmolar entropy joule per mole-kelvin J/(mol⋅K)molar-heat capacity joule per mole-kelvin J/(mol⋅K)moment of force newton-meter N⋅mpermeability henry per meter H/mpermittivity farad per meter F/mradiance watt per square-meter- W/(m2⋅sr)

steradianradiant intensity watt per steradian W/srspecific-heat capacity joule per kilogram-kelvin J/(kg⋅K)specific energy joule per kilogram J/kgspecific entropy joule per kilogram-kelvin J/(kg⋅K)specific volume cubic meter per kilogram m3/kgsurface tension newton per meter N/mthermal conductivity watt per meter-kelvin W/(m⋅K)velocity meter per second m/sviscosity, dynamic pascal-second Pa⋅sviscosity, kinematic square meter per second m2/svolume cubic meter m3

wave number 1 per meter 1/m

TABLE 1-3 SI Prefixes

Multiplication factor Prefix Symbol

1 000 000 000 000 000 000 = 1018 exa E1 000 000 000 000 000 = 1015 peta P

1 000 000 000 000 = 1012 tera T1 000 000 000 = 109 giga G

1 000 000 = 106 mega M1 000 = 103 kilo k

100 = 102 hecto* h10 = 101 deka* da0.1 = 10−1 deci* d

0.01 = 10−2 centi c0.001 = 10−3 milli m

0.000 001 = 10−6 micro µ0.000 000 001 = 10−9 nano n

0.000 000 000 001 = 10−12 pico p0.000 000 000 000 001 = 10−15 femto f

0.000 000 000 000 000 001 = 10−18 atto a

*Generally to be avoided.

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Space,† time

Length naut mi km 1.852* E + 00mi km 1.609 344* E + 00chain m 2.011 68* E + 01link m 2.011 68* E − 01fathom m 1.828 8* E + 00yd m 9.144* E − 01ft m 3.048* E − 01

cm 3.048* E + 01in mm 2.54* E + 01in cm 2.54 E + 00mil µm 2.54* E + 01

Length/length ft/mi m/km 1.893 939 E − 01

Length/volume ft/U.S. gal m/m3 8.051 964 E + 01ft/ft3 m/m3 1.076 391 E + 01ft/bbl m/m3 1.917 134 E + 00

Area mi2 km2 2.589 988 E + 00section ha 2.589 988 E + 02acre ha 4.046 856 E − 01ha m2 1.000 000* E + 04yd2 m2 8.361 274 E − 01ft2 m2 9.290 304* E − 02in2 mm2 6.451 6* E + 02

cm2 6.451 6* E + 00

Area/volume ft2/in3 m2/cm3 5.699 291 E − 03ft2/ft3 m2/m3 3.280 840 E + 00

Volume cubem km3 4.168 182 E + 00acre⋅ft m3 1.233 482 E + 03

ha⋅m 1.233 482 E − 01yd3 m3 7.645 549 E − 01bbl (42 U.S. gal) m3 1.589 873 E − 01ft3 m3 2.831 685 E − 02

dm3 L 2.831 685 E + 01U.K. gal m3 4.546 092 E − 03

dm3 L 4.546 092 E + 00U.S. gal m3 3.785 412 E − 03

dm3 L 3.785 412 E + 00U.K. qt dm3 L 1.136 523 E + 00U.S. qt dm3 L 9.463 529 E − 01U.S. pt dm3 L 4.731 765 E − 01U.K. fl oz cm3 2.841 307 E + 01U.S. fl oz cm3 2.957 353 E + 01in3 cm3 1.638 706 E + 01

Volume/length (linear bbl/in m3m 6.259 342 E + 00displacement) bbl/ft m3/m 5.216 119 E − 01

ft3/ft m3/m 9.290 304* E − 02U.S. gal/ft m3/m 1.241 933 E − 02

L/m 1.241 933 E + 01

Plane angle rad rad 1deg (°) rad 1.745 329 E − 02min (′) rad 2.908 882 E − 04sec (″) rad 4.848 137 E − 06

Solid angle sr sr 1

Time year a 1week d 7.0* E + 00h s 3.6* E + 03

min 6.0* E + 01min s 6.0* E + 01

h 1.666 667 E − 02mµs ns 1

Mass, amount of substance

Mass U.K. ton Mg t 1.016 047 E + 00U.S. ton Mg t 9.071 847 E − 01U.K. cwt kg 5.080 234 E + 01U.S. cwt kg 4.535 924 E + 01lbm kg 4.535 924 E − 01oz (troy) g 3.110 348 E + 01oz (av) g 2.834 952 E + 01gr mg 6.479 891 E + 01

1-4

1-5

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Amount of substance lbm⋅mol kmol 4.535 924 E − 01std m3(0°C, 1 atm) kmol 4.461 58 E − 02std ft3 (60°F, 1 atm) kmol 1.195 30 E − 03

Enthalpy, calorific value, heat, entropy, heat capacity

Calorific value, enthalpy Btu/lbm MJ/kg 2.326 000 E − 03(mass basis) kJ/kg J/g 2.326 000 E + 00

kWh/kg 6.461 112 E − 04cal/g kJ/kg J/g 4.184* E + 00cal/lbm J/kg 9.224 141 E + 00

Caloric value, enthalpy kcal/(g⋅mol) kJ/kmol 4.184* E + 03(mole basis) Btu/(lb⋅mol) kJ/kmol 2.326 000 E + 00

Calorific value (volume Btu/U.S. gal MJ/m3 kJ/dm3 2.787 163 E − 01basis—solids and liquids) kJ/m3 2.787 163 E + 02

kWh/m3 7.742 119 E − 02Btu/U.K. gal MJ/m3 kJ/dm3 2.320 800 E − 01

kJ/m3 2.320 800 E + 02Btu/ft3 kWh/m3 6.446 667 E − 02

MJ/m3 kJ/dm3 3.725 895 E − 02kJ/m3 3.725 895 E + 01kWh/m3 1.034 971 E − 02

cal/mL MJ/m3 4.184* E + 00(ft⋅lbf)/U.S. gal kJ/m3 3.581 692 E − 01

Calorific value (volume cal/mL kJ/m3 J/dm3 4.184* E + 03basis—gases) kcal/m3 kJ/m3 J/dm3 4.184* E + 00

Btu/ft3 kJ/m3 J/dm3 3.725 895 E + 01kWh/m3 1.034 971 E − 02

Specific entropy Btu/(lbm⋅°R) kJ/(kg⋅K) J/(g⋅K) 4.186 8* E + 00cal/(g⋅K) kJ/(kg⋅K) J/(g⋅K) 4.184* E + 00kcal/(kg⋅°C) kJ/(kg⋅K) J/(g⋅K) 4.184* E + 00

Specific-heat capacity (mass kWh/(kg⋅°C) kJ/(kg⋅K) J/(g⋅K) 3.6* E + 03basis) Btu/(lbm⋅°F) kJ/(kg⋅K) J/(g⋅K) 4.186 8* E + 00

kcal/(kg⋅°C) kJ/(kg⋅K) J/(g⋅K) 4.184* E + 00

Specific-heat capacity (mole Btu/(lb⋅mol⋅°F) kJ/(kmol⋅K) 4.186 8* E + 00basis) cal/(g⋅mol⋅°C) kJ/(kmol⋅K) 4.184* E + 00

Temperature, pressure, vacuum

Temperature (absolute) °R K 5/9K K 1

Temperature (traditional) °F °C 5/9(°F − 32)

Temperature (difference) °F K, °C 5/9

Pressure atm (760 mmHg at 0°C or 14,696 psi) MPa 1.013 250* E − 01kPa 1.013 250* E + 02bar 1.013 250* E + 00

bar MPa 1.0* E − 01kPa 1.0* E + 02

mmHg (0°C) = torr MPa 6.894 757 E − 03kPa 6.894 757 E + 00bar 6.894 757 E − 02

µmHg (0°C) kPa 3.376 85 E + 00µ bar kPa 2.488 4 E − 01mmHg = torr (0°C) kPa 1.333 224 E − 01cmH2O (4°C) kPa 9.806 38 E − 02lbf/ft2 (psf) kPa 4.788 026 E − 02mHg (0°C) Pa 1.333 224 E − 01bar Pa 1.0* E + 05dyn/cm2 Pa 1.0* E − 01

Vacuum, draft inHg (60°F) kPa 3.376 85 E + 00inH2O (39.2°F) kPa 2.490 82 E − 01inH2O (60°F) kPa 2.488 4 E − 01mmHg (0°C) = torr kPa 1.333 224 E − 01cmH2O (4°C) kPa 9.806 38 E − 02

Liquid head ft m 3.048* E − 01in mm 2.54* E + 01

cm 2.54* E + 00

Pressure drop/length psi/ft kPa/m 2.262 059 E + 01

1-6

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Density, specific volume, concentration, dosage

Density lbm/ft3 kg/m3 1.601 846 E + 01g/m3 1.601 846 E + 04

lbm/U.S. gal kg/m3 1.198 264 E + 02g/cm3 1.198 264 E − 01

lbm/U.K. gal kg/m3 9.977 633 E + 01lbm/ft3 kg/m3 1.601 846 E + 01

g/cm3 1.601 846 E − 02g/cm3 kg/m3 1.0* E + 03lbm/ft3 kg/m3 1.601 846 E + 01

Specific volume ft3/lbm m3/kg 6.242 796 E − 02m3/g 6.242 796 E − 05

ft3/lbm dm3/kg 6.242 796 E + 01U.K. gal/lbm dm3/kg cm3/g 1.002 242 E + 01U.S. gal/lbm dm3/kg cm3/g 8.345 404 E + 00

Specific volume (mole basis) L/(g⋅mol) m3/kmol 1ft3/(lb⋅mol) m3/kmol 6.242 796 E − 02

Specific volume bbl/U.S. ton m3/t 1.752 535 E − 01bbl/U.K. ton m3/t 1.564 763 E − 01

Yield bbl/U.S. ton dm3/t L/t 1.752 535 E + 02bbl/U.K. ton dm3/t L/t 1.564 763 E + 02U.S. gal/U.S. ton dm3/t L/t 4.172 702 E + 00U.S. gal/U.K. ton dm3/t L/t 3.725 627 E + 00

Concentration (mass/mass) wt % kg/kg 1.0* E − 02g/kg 1.0* E + 01

wt ppm mg/kg 1

Concentration (mass/volume) lbm/bbl kg/m3 g/dm3 2.853 010 E + 00g/U.S. gal kg/m3 2.641 720 E − 01g/U.K. gal kg/m3 g/L 2.199 692 E − 01lbm/1000 U.S. gal g/m3 mg/dm3 1.198 264 E + 02lbm/1000 U.K. gal g/m3 mg/dm3 9.977 633 E + 01gr/U.S. gal g/m3 mg/dm3 1.711 806 E + 01gr/ft3 mg/m3 2.288 351 E + 03lbm/1000 bbl g/m3 mg/dm3 2.853 010 E + 00mg/U.S. gal g/m3 mg/dm3 2.641 720 E − 01gr/100 ft3 mg/m3 2.288 351 E + 01

Concentration (volume/volume) ft3/ft3 m3/m3 1bbl/(acre⋅ft) m3/m3 1.288 931 E − 04vol% m3/m3 1.0* E − 02U.K. gal/ft3 dm3/m3 L/m3 1.605 437 E + 02U.S. gal/ft3 dm3/m3 L/m3 1.336 806 E + 02mL/U.S. gal dm3/m3 L/m3 2.641 720 E − 01mL/U.K. gal dm3/m3 L/m3 2.199 692 E − 01vol ppm cm3/m3 1

dm3/m3 L/m3 1.0* E − 03U.K. gal/1000 bbl cm3/m3 2.859 403 E + 01U.S. gal/1000 bbl cm3/m3 2.380 952 E + 01U.K. pt/1000 bbl cm3/m3 3.574 253 E + 00

Concentration (mole/volume) (lb⋅mol)/U.S. gal kmol/m3 1.198 264 E + 02(lb⋅mol)/U.K. gal kmol/m3 9.977 644 E + 01(lb⋅mol)/ft3 kmol/m3 1.601 846 E + 01std ft3 (60°F, 1 atm)/bbl kmol/m3 7.518 21 E − 03

Concentration (volume/mole) U.S. gal/1000 std ft3 (60°F/60°F) dm3/kmol L/kmol 3.166 91 E + 00bbl/million std ft3 (60°F/60°F) dm3/kmol L/kmol 1.330 10 E − 01

Facility throughput, capacity

Throughput (mass basis) U.K. ton/year t/a 1.016 047 E + 00U.S. ton/year t/a 9.071 847 E − 01U.K. ton/day t/d 1.016 047 E + 00

t/h 4.233 529 E − 02U.S. ton/day t/d 9.071 847 E − 01

t/h 3.779 936 E − 02U.K. ton/h t/h 1.016 047 E + 00U.S. ton/h t/h 9.071 847 E − 01lbm/h kg/h 4.535 924 E − 01

1-7

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Throughput (volume basis) bbl/day t/a 5.803 036 E + 01m3/d 1.589 873 E − 01

ft3/day m3/h 1.179 869 E − 03bbl/h m3/h 1.589 873 E − 01ft3/h m3/h 2.831 685 E − 02U.K. gal/h m3/h 4.546 092 E − 03

L/s 1.262 803 E − 03U.S. gal/h m3/h 3.785 412 E − 03

L/s 1.051 503 E − 03U.K. gal/min m3/h 2.727 655 E − 01

L/s 7.576 819 E − 02U.S. gal/min m3/h 2.271 247 E − 01

L/s 6.309 020 E − 02

Throughput (mole basis) (lbm⋅mol)/h kmol/h 4.535 924 E − 01kmol/s 1.259 979 E − 04

Flow rate

Flow rate (mass basis) U.K. ton/min kg/s 1.693 412 E + 01U.S. ton/min kg/s 1.511 974 E + 01U.K. ton/h kg/s 2.822 353 E − 01U.S. ton/h kg/s 2.519 958 E − 01U.K. ton/day kg/s 1.175 980 E − 02U.S. ton/day kg/s 1.049 982 E − 02million lbm/year kg/s 5.249 912 E + 00U.K. ton/year kg/s 3.221 864 E − 05U.S. ton/year kg/s 2.876 664 E − 05lbm/s kg/s 4.535 924 E − 01lbm/min kg/s 7.559 873 E − 03lbm/h kg/s 1.259 979 E − 04

Flow rate (volume basis) bbl/day m3/d 1.589 873 E − 01L/s 1.840 131 E − 03

ft3/day m3/d 2.831 685 E − 02L/s 3.277 413 E − 04

bbl/h m3/s 4.416 314 E − 05L/s 4.416 314 E − 02

ft3/h m3/s 7.865 791 E − 06L/s 7.865 791 E − 03

U.K. gal/h dm3/s L/s 1.262 803 E − 03U.S. gal/h dm3/s L/s 1.051 503 E − 03U.K. gal/min dm3/s L/s 7.576 820 E − 02U.S. gal/min dm3/s L/s 6.309 020 E − 02ft3/min dm3/s L/s 4.719 474 E − 01ft3/s dm3/s L/s 2.831 685 E + 01

Flow rate (mole basis) (lb⋅mol)/s kmol/s 4.535 924 E − 01(lb⋅mol)/h kmol/s 1.259 979 E − 04million scf/D kmol/s 1.383 45 E − 02

Flow rate/length (mass basis) lbm/(s⋅ft) kg/(s⋅m) 1.488 164 E + 00lbm/(h⋅ft) kg/(s⋅m) 4.133 789 E − 04

Flow rate/length (volume basis) U.K. gal/(min⋅ft) m2/s m3/(s⋅m) 2.485 833 E − 04U.S. gal/(min⋅ft) m2/s m3/(s⋅m) 2.069 888 E − 04U.K. gal/(h⋅in) m2/s m3/(s⋅m) 4.971 667 E − 05U.S. gal/(h⋅in) m2/s m3/(s⋅m) 4.139 776 E − 05U.K. gal/(h⋅ft) m2/s m3/(s⋅m) 4.143 055 E − 06U.S. gal/(h⋅ft) m2/s m3/(s⋅m) 3.449 814 E − 06

Flow rate/area (mass basis) lbm/(s⋅ft2) kg/(s⋅m2) 4.882 428 E + 00lbm/(h⋅ft2) kg/(s⋅m2) 1.356 230 E − 03

Flow rate/area (volume basis) ft3/(s⋅ft2) m/s m3/(s⋅m2) 3.048* E − 01ft3/(min⋅ft2) m/s m3/(s⋅m2) 5.08* E − 03U.K. gal/(h⋅in2) m/s m3/(s⋅m2) 1.957 349 E − 03U.S. gal/(h⋅in2) m/s m3/(s⋅m2) 1.629 833 E − 03U.K. gal/(min⋅ft2) m/s m3/(s⋅m2) 8.155 621 E − 04U.S. gal/(min⋅ft2) m/s m3/(s⋅m2) 6.790 972 E − 04U.K. gal/(h⋅ft2) m/s m3/(s⋅m2) 1.359 270 E − 05U.S. gal/(h⋅ft2) m/s m3/(s⋅m2) 1.131 829 E − 05

1-8

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Energy, work, power

Energy, work therm MJ 1.055 056 E + 02kJ 1.055 056 E + 05kWh 2.930 711 E + 01

U.S. tonf⋅mi MJ 1.431 744 E + 01hp⋅h MJ 2.684 520 E + 00

kJ 2.684 520 E + 03kWh 7.456 999 E − 01

ch⋅h or CV⋅h MJ 2.647 780 E + 00kJ 2.647 780 E + 03kWh 7.354 999 E − 01

kWh MJ 3.6* E + 00kJ 3.6* E + 03

Chu kJ 1.899 101 E + 00kWh 5.275 280 E − 04

Btu kJ 1.055 056 E + 00kWh 2.930 711 E − 04

kcal kJ 4.184* E + 00cal kJ 4.184* E − 03ft⋅lbf kJ 1.355 818 E − 03lbf⋅ft kJ 1.355 818 E − 03J kJ 1.0* E − 03(lbf⋅ft2)/s2 kJ 4.214 011 E − 05erg J 1.0* E − 07

Impact energy kgf⋅m J 9.806 650* E + 00lbf⋅ft J 1.355 818 E + 00

Surface energy erg/cm2 mJ/m2 1.0* E + 00

Specific-impact energy (kgf⋅m)/cm2 J/cm2 9.806 650* E − 02(lbf⋅ft)/in2 J/cm2 2.101 522 E − 03

Power million Btu/h MW 2.930 711 E − 01ton of refrigeration kW 3.516 853 E + 00Btu/s kW 1.055 056 E + 00kW kW 1hydraulic horsepower—hhp kW 7.460 43 E − 01hp (electric) kW 7.46* E − 01hp [(550 ft⋅lbf)/s] kW 7.456 999 E − 01ch or CV kW 7.354 999 E − 01Btu/min kW 1.758 427 E − 02(ft⋅lbf)/s kW 1.355 818 E − 03kcal/h W 1.162 222 E + 00Btu/h W 2.930 711 E − 01(ft⋅lbf)/min W 2.259 697 E − 02

Power/area Btu/(s⋅ft2) kW/m2 1.135 653 E + 01cal/(h⋅cm2) kW/m2 1.162 222 E − 02Btu/(h⋅ft2) kW/m2 3.154 591 E − 03

Heat-release rate, mixing power hp/ft3 kW/m3 2.633 414 E + 01cal/(h⋅cm3) kW/m3 1.162 222 E + 00Btu/(s⋅ft3) kW/m3 3.725 895 E + 01Btu/(h⋅ft3) kW/m3 1.034 971 E − 02

Cooling duty (machinery) Btu/(bhp⋅h) W/kW 3.930 148 E − 01

Specific fuel consumption (mass lbm/(hp⋅h) mg/J kg/MJ 1.689 659 E − 01basis) kg/kWh 6.082 774 E − 01

Specific fuel consumption (volume m3/kWh dm3/MJ mm3/J 2.777 778 E + 02basis) U.S. gal/(hp⋅h) dm3/MJ mm3/J 1.410 089 E + 00

U.K. pt/(hp⋅h) dm3/MJ mm3/J 2.116 806 E − 01

Fuel consumption U.K. gal/mi dm3/100 km L/100 km 2.824 807 E + 02U.S. gal/mi dm3/100 km L/100 km 2.352 146 E + 02mi/U.S. gal km/dm3 km/L 4.251 437 E − 01mi/U.K. gal km/dm3 km/L 3.540 064 E − 01

1-9

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Velocity (linear), speed knot km/h 1.852* E + 00mi/h km/h 1.609 344* E + 00ft/s m/s 3.048* E − 01

cm/s 3.048* E + 01ft/min m/s 5.08* E − 03ft/h mm/s 8.466 667 E − 02ft/day mm/s 3.527 778 E − 03

m/d 3.048* E − 01in/s mm/s 2.54* E + 01in/min mm/s 4.233 333 E − 01

Corrosion rate in/year (ipy) mm/a 2.54* E + 01mil/year mm/a 2.54* E − 02

Rotational frequency r/min r/s 1.666 667 E − 02rad/s 1.047 198 E − 01

Acceleration (linear) ft/s2 m/s2 3.048* E − 01cm/s2 3.048* E + 01

Acceleration (rotational) rpm/s rad/s2 1.047 198 E − 01

Momentum (lbm⋅ft)/s (kg⋅m)/s 1.382 550 E − 01

Force U.K. tonf kN 9.964 016 E + 00U.S. tonf kN 8.896 443 E + 00kgf (kp) N 9.806 650* E + 00lbf N 4.448 222 E + 00dyn mN 1.0 E − 02

Bending moment, torque U.S. tonf⋅ft kN⋅m 2.711 636 E + 00kgf⋅m N⋅m 9.806 650* E + 00lbf⋅ft N⋅m 1.355 818 E + 00lbf⋅in N⋅m 1.129 848 E − 01

Bending moment/length (lbf⋅ft)/in (N⋅m)/m 5.337 866 E + 01(lbf⋅in)/in (N⋅m)/m 4.448 222 E + 00

Moment of inertia lbm⋅ft2 kg⋅m2 4.214 011 E − 02

Stress U.S. tonf/in2 MPa N/mm2 1.378 951 E + 01kgf/mm2 MPa N/mm2 9.806 650* E + 00U.S. tonf/ft2 MPa N/mm2 9.576 052 E − 02lbf/in2 (psi) MPa N/mm2 6.894 757 E − 03lbf/ft2 (psf) kPa 4.788 026 E − 02dyn/cm2 Pa 1.0* E − 01

Mass/length lbm/ft kg/m 1.488 164 E + 00

Mass/area structural loading, U.S. ton/ft2 Mg/m2 9.764 855 E + 00bearing capacity (mass lbm/ft2 kg/m2 4.882 428 E + 00basis)

Miscellaneous transport properties

Diffusivity ft2/s m2/s 9.290 304* E − 02m2/s mm2/s 1.0* E + 06ft2/h m2/s 2.580 64* E − 05

Thermal resistance (°C⋅m2⋅h)/kcal (K⋅m2)/kW 8.604 208 E + 02(°F⋅ft2⋅h)/Btu (K⋅m2)/kW 1.761 102 E + 02

Heat flux Btu/(h⋅ft2) kW/m2 3.154 591 E − 03

Thermal conductivity (cal⋅cm)/(s⋅cm2⋅°C) W/(m⋅K) 4.184* E + 02(Btu⋅ft)/(h⋅ft2⋅°F) W/(m⋅K) 1.730 735 E + 00

(kJ⋅m)/(h⋅m2⋅K) 6.230 646 E + 00(kcal⋅m)/(h⋅m2⋅°C) W/(m⋅K) 1.162 222 E + 00(Btu⋅in)/(h⋅ft2⋅°F) W/(m⋅K) 1.442 279 E − 01(cal⋅cm)/(h⋅cm2⋅°C) W/(m⋅K) 1.162 222 E − 01

Heat-transfer coefficient cal/(s⋅cm2⋅°C) kW/(m2⋅K) 4.184* E + 01Btu/(s⋅ft2⋅°F) kW/(m2⋅K) 2.044 175 E + 01cal/(h⋅cm2⋅°C) kW/(m2⋅K) 1.162 222 E − 02Btu/(h⋅ft2⋅°F) kW/(m2⋅K) 5.678 263 E − 03

kJ/(h⋅m2⋅K) 2.044 175 E + 01Btu/(h⋅ft2⋅°R) kW/(m2⋅K) 5.678 263 E − 03kcal/(h⋅m2⋅°C) kW/(m2⋅K) 1.162 222 E − 03

1-10

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Volumetric heat-transfer Btu/(s⋅ft3⋅°F) kW/(m3⋅K) 6.706 611 E + 01coefficient Btu/(h⋅ft3⋅°F) kW/(m3⋅K) 1.862 947 E − 02

Surface tension dyn/cm mN/m 1

Viscosity (dynamic) (lbf⋅s)/in2 Pa⋅s (N⋅s)/m2 6.894 757 E + 03(lbf⋅s)/ft2 Pa⋅s (N⋅s)/m2 4.788 026 E + 01(kgf⋅s)/m2 Pa⋅s (N⋅s)/m2 9.806 650* E + 00lbm/(ft⋅s) Pa⋅s (N⋅s)/m2 1.488 164 E + 00(dyn⋅s)/cm2 Pa⋅s (N⋅s)/m2 1.0* E − 01cP Pa⋅s (N⋅s)/m2 1.0* E − 03lbm/(ft⋅h) Pa⋅s (N⋅s)/m2 4.133 789 E − 04

Viscosity (kinematic) ft2/s m2/s 9.290 304* E − 02in2/s mm2/s 6.451 6* E + 02m2/h mm2/s 2.777 778 E + 02ft2/h m2/s 2.580 64* E − 05cSt mm2/s 1

Permeability darcy µm2 9.869 233 E − 01millidarcy µm2 9.869 233 E − 04

Thermal flux Btu/(h⋅ft2) W/m2 3.152 E + 00Btu/(s⋅ft2) W/m2 1.135 E + 04cal/(s⋅cm2) W/m2 4.184 E + 04

Mass-transfer coefficient (lb⋅mol)/[h⋅ft2(lb⋅mol/ft3)] m/s 8.467 E − 05(g⋅mol)/[s⋅m2(g⋅mol/L)] m/s 1.0 E + 01

Electricity, magnetism

Admittance S S 1

Capacitance µF µF 1

Charge density C/mm3 C/mm3 1

Conductance S S 1(mho) S 1

Conductivity S/m S/m 1/m S/m 1

m /m mS/m 1

Current density A/mm2 A/mm2 1

Displacement C/cm2 C/cm2 1

Electric charge C C 1

Electric current A A 1

Electric-dipole moment C⋅m C⋅m 1

Electric-field strength V/m V/m 1

Electric flux C C 1

Electric polarization C/cm2 C/cm2 1

Electric potential V V 1mV mV 1

Electromagnetic moment A⋅m2 A⋅m2 1

Electromotive force V V 1

Flux of displacement C C 1

Frequency cycles/s Hz 1

Impedance Ω Ω 1

Linear-current density A/mm A/mm 1

Magnetic-dipole moment Wb⋅m Wb⋅m 1

Magnetic-field strength A/mm A/mm 1Oe A/m 7.957 747 E + 01gamma A/m 7.957 747 E − 04

Magnetic flux mWb mWb 1

1-11

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Magnetic-flux density mT mT 1G T 1.0* E − 04gamma nT 1

Magnetic induction mT mT 1

Magnetic moment A⋅m2 A⋅m2 1

Magnetic polarization mT mT 1

Magnetic potential A A 1difference

Magnetic-vector potential Wb/mm Wb/mm 1

Magnetization A/mm A/mm 1

Modulus of admittance S S 1

Modulus of impedance Ω Ω 1

Mutual inductance H H 1

Permeability µH/m µH/m 1

Permeance H H 1

Permittivity µF/m µF/m 1

Potential difference V V 1

Quantity of electricity C C 1

Reactance Ω Ω 1

Reluctance H−1 H−1 1

Resistance Ω Ω 1

Resistivity Ω⋅cm Ω⋅cm 1Ω⋅m Ω⋅m 1

Self-inductance mH mH 1

Surface density of change mC/m2 mC/m2 1

Susceptance S S 1

Volume density of charge C/mm3 C/mm3 1

Acoustics, light, radiation

Absorbed dose rad Gy 1.0* E − 02

Acoustical energy J J 1

Acoustical intensity W/cm2 W/m2 1.0* E + 04

Acoustical power W W 1

Sound pressure N/m2 N/m2 1.0*

Illuminance fc lx 1.076 391 E + 01

Illumination fc lx 1.076 391 E + 01

Irradiance W/m2 W/m2 1

Light exposure fc⋅s lx⋅s 1.076 391 E + 01

Luminance cd/m2 cd/m2 1

Luminous efficacy lm/W lm/W 1

Luminous exitance lm/m2 lm/m2 1

Luminous flux lm lm 1

Luminous intensity cd cd 1

Radiance W/m2⋅sr W/m2⋅sr 1

Radiant energy J J 1

Radiant flux W W 1

Radiant intensity W/sr W/sr 1

Radiant power W W 1

1-12

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Concluded)

Conversion factor; multiplyCustomary or commonly Alternate customary unit by factor to

Quantity used unit SI unit SI unit obtain SI unit

Wavelength Å nm 1.0* E − 01

Capture unit 10−3 cm−1 m−1 1.0* E + 0110−3 cm−1 1

m−1 m−1 1

Radioactivity Ci Bq 3.7* E + 10

*An asterisk indicates that the conversion factor is exact.†Conversion factors for length, area, and volume are based on the international foot. The international foot is longer by 2 parts in 1 million than the U.S. Survey

foot (land-measurement use).NOTE: The following unit symbols are used in the table:

Unit symbol Name Unit symbol Name

A ampere lm lumena annum (year) lx lux

Bq becquerel m meterC coulomb min minutecd candela ′ minuteCi curie N newtond day naut mi U.S. nautical mile°C degree Celsius Oe oersted° degree Ω ohm

dyn dyne Pa pascalF farad rad radianfc footcandle r revolutionG gauss S siemensg gram s secondgr grain ″ secondGy gray sr steradianH henry St stokesh hour T teslaha hectare t tonneHz hertz V voltJ joule W wattK kelvin Wb weber

L, , l liter

NOTE: Copyright SPE-AIME, The SI Metric System of Units and SPE’s Tentative Metric Standard, Society of Petroleum Engineers, Dallas, 1977.

1-13

TABLE 1-5 Metric Conversion Factors as Exact Numerical Multiples of SI UnitsThe first two digits of each numerical entry represent a power of 10. For example, the entry “−02 2.54” expresses the fact that 1 in = 2.54 × 10−2 m.

To convert from To Multiply by To convert from To Multiply by

abampere ampere +01 1.00 fluid ounce (U.S.) meter3 −05 2.957 352abcoulomb coulomb +01 1.00 foot meter −01 3.048abfarad farad +09 1.00 foot (U.S. survey) meter −01 3.048 006abhenry henry −09 1.00 foot of water (39.2°F) newton/meter2 +03 2.988 98abmho mho +09 1.00 footcandle lumen/meter2 +01 1.076 391abohm ohm −09 1.00 footlambert candela/meter2 +00 3.426 259abvolt volt −08 1.00 furlong meter +02 2.011 68acre meter2 +03 4.046 856 gal (galileo) meter/second2 −02 1.00ampere (international of ampere −01 9.998 35 gallon (U.K. liquid) meter3 −03 4.546 0871948) gallon (U.S. dry) meter3 −03 4.404 883

angstrom meter −10 1.00 gallon (U.S. liquid) meter3 −03 3.785 411are meter2 +02 1.00 gamma tesla −09 1.00astronomical unit meter +11 1.495 978 gauss tesla −04 1.00atmosphere newton/meter2 +05 1.013 25 gilbert ampere turn −01 7.957 747bar newton/meter2 +05 1.00 gill (U.K.) meter3 −04 1.420 652barn meter2 −28 1.00 gill (U.S.) meter3 −04 1.182 941barrel (petroleum 42 gal) meter3 −01 1.589 873 grad degree (angular) −01 9.00barye newton/meter2 −01 1.00 grad radian −02 1.570 796British thermal unit (ISO/ joule +03 1.055 06 grain kilogram −05 6.479 891TC 12) gram kilogram −03 1.00

British thermal unit joule +03 1.055 04 hand meter −01 1.016(International Steam Table) hectare meter2 +04 1.00

British thermal unit (mean) joule +03 1.055 87 henry (international of 1948) henry +00 1.000 495British thermal unit joule +03 1.054 350 hogshead (U.S.) meter3 −01 2.384 809(thermochemical) horsepower (550 ft lbf/s) watt +02 7.456 998

British thermal unit (39°F) joule +03 1.059 67 horsepower (boiler) watt +03 9.809 50British thermal unit (60°F) joule +03 1.054 68 horsepower (electric) watt +02 7.46bushel (U.S.) meter3 −02 3.523 907 horsepower (metric) watt +02 7.354 99cable meter +02 2.194 56 horsepower (U.K.) watt +02 7.457caliber meter −04 2.54 horsepower (water) watt +02 7.460 43calorie (International Steam joule +00 4.1868 hour (mean solar) second (mean solar) +03 3.60

Table) hour (sidereal) second (mean solar) +03 3.590 170calorie (mean) joule +00 4.190 02 hundredweight (long) kilogram +01 5.080 234calorie (thermochemical) joule +00 4.184 hundredweight (short) kilogram +01 4.535 923calorie (15°C) joule +00 4.185 80 inch meter −02 2.54calorie (20°C) joule +00 4.181 90 inch of mercury (32°F) newton/meter2 +03 3.386 389calorie (kilogram, joule +03 4.186 8 inch of mercury (60°F) newton/meter2 +03 3.376 85International Steam Table) inch of water (39.2°F) newton/meter2 +02 2.490 82

calorie (kilogram, mean) joule +03 4.190 02 inch of water (60°F) newton/meter2 +02 2.4884calorie (kilogram, joule +03 4.184 joule (international of 1948) joule +00 1.000 165

thermochemical) kayser 1/meter +02 1.00carat (metric) kilogram −04 2.00 kilocalorie (International joule +03 4.186 74Celsius (temperature) kelvin tK = tc + 273.15 Steam Table)centimeter of mercury (0°C) newton/meter2 +03 1.333 22 kilocalorie (mean) joule +03 4.190 02centimeter of water (4°C) newton/meter2 +01 9.806 38 kilocalorie (thermochemical) joule +03 4.184chain (engineer’s) meter +01 3.048 kilogram mass kilogram +00 1.00chain (surveyor’s or meter +01 2.011 68 kilogram-force (kgf) newton +00 9.806 65

Gunter’s) kilopond-force newton +00 9.806 65circular mil meter2 −10 5.067 074 kip newton +03 4.448 221cord meter3 +00 3.624 556 knot (international) meter/second −01 5.144 444coulomb (international of coulomb −01 9.998 35 lambert candela/meter2 +04 1/π1948) lambert candela/meter2 +03 3.183 098

cubit meter −01 4.572 langley joule/meter2 +04 4.184cup meter3 −04 2.365 882 lbf (pound-force, newton +00 4.448 221curie disintegration/second +10 3.70 avoirdupois)day (mean solar) second (mean solar) +04 8.64 lbm (pound-mass, kilogram −01 4.535 923day (sidereal) second (mean solar) +04 8.616 409 avoirdupois)degree (angle) radian −02 1.745 329 league (British nautical) meter +03 5.559 552denier (international) kilogram/meter −07 1.111 111 league (international meter +03 5.556dram (avoirdupois) kilogram −03 1.771 845 nautical)dram (troy or apothecary) kilogram −03 3.887 934 league (statute) meter +03 4.828 032dram (U.S. fluid) meter3 −06 3.696 691 light-year meter +15 9.460 55dyne newton −05 1.00 link (engineer’s) meter −01 3.048electron volt joule −19 1.602 10 link (surveyor’s or Gunter’s) meter −01 2.011 68erg joule −07 1.00 liter meter3 −03 1.00Fahrenheit (temperature) kelvin tK = (5/9)(tF + lux lumen/meter2 +00 1.00

459.67) maxwell weber −08 1.00Fahrenheit (temperature) Celsius tc = (5/9)(tF − meter wavelengths Kr 86 +06 1.650 763

32) micrometer meter −06 1.00farad (international of 1948) farad −01 9.995 05 mil meter −05 2.54faraday (based on carbon coulomb +04 9.648 70 mile (U.S. statute) meter +03 1.609 344

12) mile (U.K. nautical) meter +03 1.853 184faraday (chemical) coulomb +04 9.649 57 mile (international nautical) meter +03 1.852faraday (physical) coulomb +04 9.652 19 mile (U.S. nautical) meter +03 1.852fathom meter +00 1.828 8 millibar newton/meter2 +02 1.00fermi (femtometer) meter −15 1.00 millimeter of mercury (0°C) newton/meter2 +02 1.333 224