past and future of micro/nano cmos devices...past and future of micro/nano cmos devices ieee eds mq...

74
Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Upload: others

Post on 08-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Past and Future of Micro/Nano CMOSDevices

IEEE EDS MQ @ Inter Continental Hotel, Shanghai

H. IwaiTokyo Inst. Tech.

1

November 1, 2010

Page 2: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Founded in 1881, Promoted to Univ. 1929Tokyo Institute of Technology

Page 3: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010
Page 4: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

International StudentsInternational Students

Asia 847Europe 78 North America 12

South America 24Oceania 5

Africa 16

Total 982

Country Students

China 403

S. Korea 130

Indonesia 64

Thailand 55

Vietnam 60

Malaysia 28

(As of May. 1, 2005)

Page 5: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

5

大学院生のみ

岩井研究室が属している組織

物理電子システム創造専攻

他に10の専攻

先端ナノエレクトロニクスコアユニット

5つの研究所

フロンティア研究機構

ソリューション研究機構

G-COE「フォトニクス集積コアエレクトロニクス」

他に8つのG-COE

大学院

統合研究院

総合理工学研究科

他に5つの研究科 複合創造領域

他に3つのコアユニット

イノベーション研究推進体

超低消費電力・超高速情報通信用ナノデバイス集積回路の研究

他に24の推進体

東京工業大学

Page 6: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

6

石原宏 岩井洋 筒井一生大見俊一郎

杉井信之徳光英輔

益一哉

菅原聡宗片比呂夫

梶川浩太郎半那純一

小山二三夫 宮本智之植之原裕行

浅田雅洋

渡辺 正裕

伊藤治彦

強誘電体メモリ Si MOS技術 Si MOS技術共鳴トンネル素子

Si MOS技術

強誘電体メモリ Si MOS技術

回路設計技術

スピントロニクス

センサ有機半導体/SiGeデバイス

近接場光

共鳴トンネル素子

THzデバイス

光エレクトロニクス光集積デバイス フォトニックスネットワーク

スピントロニクス

東京工業大学大学院 総合理工学研究科物理電子システム創造専攻 (准教授以上)

Siデバイスの研究Si MOSFET

町田克之

寳迫巌

西山彰Si MOS技術

博(3)修(4)

博(2)修(8)学(1)

博(10)修(11)学(1) 博(6)修(5)学(1)博(1)修(6)学(1)

博(8)修(9)学(2)

修(3)学(1)

石橋幸治THzデバイス THzデバイス

修(4)学(1) 博(1)修(5)学(1)

博(4)修(4)学(1)

博(2)修(7)学(2) 博(1)

LSI/MEMS集積博(1)修(8)学(1)

博(3)修(9)学(1)

博(4)修(8)学(1) 博(1)修(9)学(1) 博(1)修(7)学(1)

修(3)修(2)

博(2)

井筒雅之光エレクトロニクス

教員数22名, 博士課程50名, 修士課程112名, 学部生17名

回路設計の研究 光デバイスの研究

その他のナノ電子デバイスの研究

Page 7: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

7

複合創造領域 先端ナノエレクトロニクス研究コアユニット研究室メンバー

Innovative Platform for Education and Research Nanoelectronics Research Frontier Core Unit

総合理工学研究科

教員

博士学生

川那子高暢 佐藤創志

幸田みゆきMaimaitirexiatiMaimaiti

AbudukelimuAbudureheman

冨田隆治

李映勲

佐々木雄一朗 舘喜一

韓熙成佐野貴洋宋永旭 廖敏

服部健雄 名取研二 角嶋邦之杉井信之 西山彰Simon Min Sze

修士学生

ダリウス・ハサンザデMokhammadSholihul Hadi

神田高志小柳友常 小澤健児 澤田剛伸 茂森直登 向井弘樹

来山大祐呉研 Dou Chunmeng 小山将央

細井隆司 中島一祐 金田翼 鈴木拓也 Li Wei (10月より) 吉村泰彦 神野浩介

石川純平

大西峻人

木村雄一郎

Rena Saimaiti久保田透

(15人)

(10人)

(28人)

物理電子システム創造専攻教授 岩井 洋

Electronics and Applied Physics Professor Hiroshi Iwai

物理電子システム創造専攻教授 筒井 一生

Electronics and Applied Physics Professor Kazuo Tsutsui

物理電子システム創造専攻准教授 大見 俊一郎

Electronics and Applied Physics Associate Professor Shunichiro Ohmi

フロンティア研究機構特任准教授アヘメト パールハットFrontier Research Center Associate Professor Parhat Ahmet

高橋慶太

佐藤寿紀 田中正興 齊藤昇

宮田陽平

萱沼良介 金原潤 林優士

東京工業大学大学院

(客員教授) (客員教授) (特任教授) (連携教授) (連携教授) (助教)

山口成幸

庄司大

(1人)技術員

(D3) (D3) (D3) (D3) (D2)高峻(D3)

(D2) (D2) (D2) (D2) (D1) (D1) (D1) (D1) (D1)

博士研究員

(1人)

学部生(3人)

研究生(1人)

(M2) (M2) (M2) (M2) (M2) (M2) (M2)(M2)

(M2) (M2) (M1) (M1) (M1) (M1) (M1)(M2)(M2)

(M1) (M1) (M1) (M1) (M1) (M1) (M1)(M1)(M1)

(B4) (B4) (B4)(M1)(M1)

Milan Kumar Bera

(2010年5月26日現在)

Page 8: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

8

研究風景

Page 9: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

PreparationRoom

E-Beam Evaporation8 different target

Flash LampAnnealMicro to mille-seconds

Sputter for metal5 different target

Robot room

Cluster tool for high-k thin film deposition

Page 10: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

10

研究設備(岩井研究室の専有装置)1

クラスタチャンバMBE(x4)+スパッタ(x2)

クラスタチャンバMBE(x7)

クラスタチャンバMBE(x8)+スパッタ(x5)+FLA

5元スパッタ装置 アーク成膜装置 蒸着装置

Page 11: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

11

研究設備(岩井研究室の専有装置)2

熱酸化炉(6本)

ランプ加熱炉2インチ

ランプ加熱炉超高速型

ランプ加熱炉6インチ

プラズマドーピング装置 反応性イオンエッチング装置 反応性イオンエッチング装置

Page 12: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

12

研究設備(岩井研究室の専有装置)3

低ノイズプローバ6インチ

プローバ8インチ

高周波プローバ8インチ

プローバ6インチ

電界放出型走査電子顕微鏡 エリプソメータ マスクアライナ

Page 13: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

13

研究設備(専攻の共同利用機器)

マスクアライナ3インチ

ドラフタイオン注入機200kV

低温プローバ

透過型電子顕微鏡200kV

反応性イオンエッチング装置

反応性イオンエッチング装置

反応性イオンエッチング装置

原子間力顕微鏡

Page 14: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

First Computer Eniac: made of huge number of vacuum tubes 1946Big size, huge power, short life time filament

Today's pocket PCmade of semiconductor has much higher performance with extremely low power consumption

dreamed of replacing vacuum tube with solid‐state device

14

Page 15: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

1900 1950 1960 1970 2000

VacuumTube

Transistor IC LSI ULSI

10 cm cm mm 10 µm 100 nm

In 100 years, the size reduced by one million times.There have been many devices from stone age.We have never experienced such a tremendous reduction of devices in human history.

10-1m 10-2m 10-3m 10-5m 10-7m

Downsizing of the components has been the driving force for circuit evolution

15

Page 16: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

1616

Scaling Method: by R. Dennard in 1974

1

1Wdep

1 1

I

00 V 1

X  , Y , Z : K,     V : K,   Na : 1/K

K

K

KWdep

Wdep  V/Na:  K

KI00 KV

I : K

K=0.7 for example

Wdep: Space Charge Region (or Depletion Region) Width

Wdep has to be suppressedOtherwise, large leakagebetween S and D

Leakage current

S D

By the scaling, Wdep is suppressed in proportion,and thus, leakage can be suppressed.

Good scaled I-V characteristics

Potential in space charge region ishigh, and thus, electrons in source areattracted to the space charge region.

Page 17: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

1717

Drive current

Power per chip

Integration (# of Tr)

Scaling    K :   K=0.7 for example

Id = vsatWgCo (Vg‐Vth)

N

K‐1(αK‐2)K (K1 )2= α

Switching  speed KK/K= K

Id per unit Wg = Id / Wg= 1

Wg (tox –1)(Vg‐Vth)= Wgtox 

‐1(Vg‐Vth)= KK‐1K=Kin saturation

Co: gate C per unit area

Cg = εoεoxLgWg/tox

Id per unit Wg

Clock frequency

K

1

τ

Id

K

Id/µm

f 1/K f = 1/τ = 1/K

N α/K2

P α

Gate  capacitance Cg K

Chip area Achip α

Lg, WgTox, Vdd

Geometry &Supply voltage

K

KK/K = K

τ= CgVdd/Id

α: Scaling factor

α/K2

fNCV2/2

= 1/K2 , when α=1

= 1, when α=1

Downscaling merit: Beautiful!

In the past, α>1 for most cases

Page 18: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

1818

k= 0.72 =0.5 and α =1

Vdd 0.7Single MOFET

Lg 0.7Id 0.7Cg 0.7P (Power)/Clock

0.73 = 0.34 τ (Switching time) 0.7

Chip N (# of Tr) 1/0.72 = 2

P (Power)

k= 0.7 and α =1

Vdd 0.5Lg 0.5Id 0.5Cg 0.5P (Power)/Clock

0.53 = 0.125 τ (Switching time) 0.5

1/0.7 = 1.4f (Clock)1

N (# of Tr) 1/0.52 = 4

P (Power)1/0.5 = 2f (Clock)1

Page 19: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Integrated Circuits Technologies are still very important for Green or power saving!

1. Green by Integrated Circuits

2. Green of Integrated Circuits

Power saving by Microprocessor control for all the human systems

Power saving of Integrated Circuits by Down Scaling of MOSFETs in PC, Data Center, Router, etc.

Page 20: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

It has been always discussed about the limit of downscaling, but the down scaling of MOSFETs is still possible for another 10 or 20 years!

1. Thinning of high-k beyond 0.5 nm

2. Metal S/D

3. Si-Nanowire FET

3 important technological items for DS.

Down scaling is the most effective way ofPower saving.

Page 21: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

How far we can go with downscaling?

Question:

Page 22: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Late 1970’s      1µm:             SCE

Early 1980’s 0.5µm:          S/D resistance

Early 1980’s  0.25µm:      Direct‐tunneling of gate SiO2

Late 1980’s 0.1µm:       ‘0.1µm brick wall’(various)

2000                 50nm:         ‘Red brick wall’ (various)

2000                10nm: Fundamental?

Period              Expected       Cause limit(size)

Many people wanted to say about the limit. Past predictions were not correct!!

22

Page 23: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Historically, many predictions of the limit of downsizing.

VLSI text book written 1979 predict that 0.25 micro‐meter would be the limit because of direct‐tunneling current through the very thin‐gate oxide.

Page 24: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

VLSI textbook

Finally,  there  appears  to  be  a  fundamental limit  10 of  approximately  quarter micron channel length, where certain physical effects such  as  the  tunneling  through  the  gate oxide ..... begin  to  make  the  devices  of smaller dimension unworkable.

24

Page 25: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Potential Barrier

Wave function

Direct‐tunneling effect

25

G

SD

Gate Oxide

Gate OxideGate Electrode

Si Substrate

Direct tunneling leakage current start to flow when the thickness is 3 nm.

Direct tunnelingcurrent

Page 26: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Direct tunneling leakage was found to be OK! In 1994! 

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

1.6

1.2

0.8

0.4

0.0

‐0.4

0.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.4

0.3

0.2

0.1

0.0

‐0.1

0.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.08

0.06

0.04

0.02

0.00

‐0.02

0.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.03

0.02

0.01

0.00

0.01

‐0.4

0.0 0.5 1.0 1.5

Vd (V)

Id (m

A /  μ

m)

Lg = 10 µm Lg = 5 µm Lg = 1.0 µm Lg = 0.1µm

Gate electrode

Si substrate

Gate oxide

MOSFETs with 1.5 nm gate oxide

26

G

S D

Lg

Page 27: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

1.6

1.2

0.8

0.4

0.0

-0.40.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

1.6

1.2

0.8

0.4

0.0

-0.40.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.4

0.3

0.2

0.1

0.0

-0.10.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.4

0.3

0.2

0.1

0.0

-0.10.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.08

0.06

0.04

0.02

0.00

-0.020.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.08

0.06

0.04

0.02

0.00

-0.020.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.03

0.02

0.01

0.00

0.01

-0.40.0 0.5 1.0 1.5

Vd (V)

Id (m

A/ μ

m)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.03

0.02

0.01

0.00

0.01

-0.40.0 0.5 1.0 1.5

Vd (V)

Id (m

A/ μ

m)

Lg = 10 µm Lg = 5 µm Lg = 1.0 µm Lg = 0.1µm

Gate leakage:  Ig ∝ Gate Area ∝ Gate length (Lg)

Id

Drain current:  Id ∝ 1/Gate length (Lg)

Lg  small, Then, Ig  small, Id  large,    Thus, Ig/Id  very small

27

G

S D

Ig Id

Page 28: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

5 nm gate length CMOS

H. Wakabayashi et.al, NEC

IEDM, 2003

Length of 18 Si atoms

Is a Real Nano Device!!

5 nm

28

Page 29: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Tunnelingdistance

3 nm

Atomdistance

0.3 nm

MOSFET operation

Lg = 3 nm?

Below this, no one knows future!

Predicted limit now

29

S D

UltimateLimit

Page 30: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

ITRS expect Lg less than 10nm2009 ITRS Technology Trend: MPU gate length

MPU physical gate length

ITRS

Page 31: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

How far can we go?

8µm 6µm 4µm 3µm 2µm 1.2µm 0.8µm 0.5µm0.35µm 0.25µm 180nm 130nm 90nm 65nm 45nm

1973年

32nm 22nm 16nm 11.5 nm 8nm 5.5nm? 4nm? 2.9 nm?

Past 0.7 times per 3 years

Now

In 40 years: 15 generations,Size 1/200, Area 1/40,000

Future

・At least 5,6 generations, for 15 ~ 20 years

・Hopefully 8 generations, for 30 years

Page 32: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

ITRS/JEITA

CMOS remains as the mainsream

More Than Moore:Hybrid device integration

More Moore:CMOS Mainstream

Beyond CMOS:New functional

CMOS scaling is the mainstream

Page 33: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

33

ITRS

Year

Vd

d (

V)

0

0.2

0.4

0.6

0.8

1

1.2

2004 2007 2010 2013 2016 2019 2022

2008up (bulk)2008up (UTB)2008up (DG)2007 (bulk)2007 (UTB)2007 (DG)2005 (bulk)2005 (UTB)2005 (DG)200320011999

20082003, 2005, 2007

1999

2001

2008 update

0.4

0.6

0.8

1

1.2

2004 2007 2010 2013 2016 2019 2022

2008up (bulk)2008up (UTB)2008up (DG)2007 (bulk)2007 (UTB)2007 (DG)2005 (bulk)2005 (UTB)2005 (DG)2003 (bulk)20011999

YearEO

T (n

m)

Is 0.5nm real limit?

for H

P Lo

gic

DelaySaturation

0.4

0.6

0.8

1

1.2

2004 2007 2010 2013 2016 2019 2022

2008up (bulk)2008up (UTB)2008up (DG)2007 (bulk)2007 (UTB)2007 (DG)2005 (bulk)2005 (UTB)2005 (DG)2003 (bulk)20011999

YearEO

T (n

m)

Is 0.5nm real limit?

for H

P Lo

gic

DelaySaturation

Vdd stay high ITRS EOT limit = 0.5 nm?

Page 34: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Power of FET = CV2/2 ∝D3 (=L3)

No

rma

lize

d σ

Vth

No

rma

lize

d σ

Vth

ITRS2007

ゲート絶縁膜

リーク電流閾値ばらつき

ゲート絶縁膜厚もゲート長と同時に縮小する必要がある

ProblemsSCEVariation in VthIncrease in Off-leakage current

Solution

Scaling of high beyond 0.5 nm is important

Page 35: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

35

Direct contact of high‐k to Si

Year

Pow

er p

er M

OSF

ET (P

)

P∝L

g 3

(Scaling)

EOT Limit0.7~0.8 nm

EOT=0.5nm

TodayEOT=1.0nm

Now

45nm nodeLg=22nm

One order of Magnitude

Si

HfO2

Metal

SiO2/SiON

Si

High-k

Metal

Direct ContactOf high-k and Si

Si

MetalSiO2/SiON

0.5~0.7nm

Introduction of High-kStill SiO2 or SiONIs used at Si interface

For the past 45 yearsSiO2 and SiON

For gate insulator

EOT can be reduced further beyond 0.5 nm by using direct contact to SiBy choosing appropriate materials and processes.

SiO2/SiON interfacial layer

Direct contactHigh-k/Si

Page 36: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

PreparationRoom

E-Beam Evaporation8 different target

Flash LampAnnealMicro to mille-seconds

Sputter for metal5 different target

Robot room

Cluster tool for high-k thin film deposition

Page 37: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

37

Challenge to EOT~0.3nm

1

EOT<0.5nm with Gain in Drive Current

14% of Id increase is observed even at saturation region

EOT below 0.4nm is still useful for scaling

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Dra

in c

urre

nt (m

A) 3.5

2

1

0

3

(a) EOT=0.37nm (b) EOT=0.43nm (c) EOT=0.48nm

W/L=2.5/50µmPMA 300oC (30min)

Vth=-0.04V Vth=-0.03V Vth=-0.02V

14%up4%up

0 0.2 0.4 0.6 0.8 1Drain voltage (V)

0 0.2 0.4 0.6 0.8 1Drain voltage (V)

0 0.2 0.4 0.6 0.8 1Drain voltage (V)

compensation regioninsufficient

W/L=50/2.5µm

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Dra

in c

urre

nt (m

A) 3.5

2

1

0

3

(a) EOT=0.37nm (b) EOT=0.43nm (c) EOT=0.48nm

W/L=2.5/50µmPMA 300oC (30min)

Vth=-0.04V Vth=-0.03V Vth=-0.02V

14%up4%up

0 0.2 0.4 0.6 0.8 1Drain voltage (V)

0 0.2 0.4 0.6 0.8 1Drain voltage (V)

0 0.2 0.4 0.6 0.8 1Drain voltage (V)

compensation regioninsufficient

W/L=50/2.5µm

Page 38: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

38

Si Nanowire FET

Page 39: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Planar Fin Nanowire

Source DrainGate

Wdep

1

Leakage current

S D

Planar FETFin FET Nanowire FET

Because of off-leakage control,

Page 40: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Nanowire FETNanowire FET

Nanowire FET

ITRS 2009

Multiple Gate (Fin)FET

Bulk → Fin → Nanowire

Siナノワイヤ

FinBulk or SOI

Si Nanowire

Page 41: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

41

Si nanowire FET as a strong candidate

1. Compatibility with current CMOS process

2. Good controllability of IOFF

3. High drive current

1D ballisticconduction

Multi quantumChannel High integration

of wires

k

E

量子チャネル

量子チャネル量子チャネル量子チャネル

バンド図

Quantum channelQuantum channel

Quantum channelQuantum channel

k

E

量子チャネル

量子チャネル量子チャネル量子チャネル

バンド図

Quantum channelQuantum channel

Quantum channelQuantum channel

Off電流のカットオフ

Gate:OFFDrain Source

cut-off

Gate: OFFdrainsource

Off電流のカットオフ

Gate:OFFDrain Source

cut-off

Gate: OFFdrainsource

Wdep

1

Leakage current

S D

Page 42: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

1

10

100

1000

10000

0 1000 2000 3000 4000

bulkFinFETSiNWFETGeNWFETITRS(Planer)ITRS(SOI)ITRS(DG)

Bulk

DG

dia~3nm

dia~10nm

ITRS (SOI)

ITRS (DG)

ITRS(Bulk)

Si Nanowire

Ion (uA/um)

Ioff

(nA

/um

)

1

10

100

1000

10000

0 1000 2000 3000 4000

bulkFinFETSiNWFETGeNWFETITRS(Planer)ITRS(SOI)ITRS(DG)

1

10

100

1000

10000

0 1000 2000 3000 4000

bulkFinFETSiNWFETGeNWFETITRS(Planer)ITRS(SOI)ITRS(DG)

Bulk

DG

dia~3nm

dia~10nm

ITRS (SOI)

ITRS (DG)

ITRS(Bulk)

Si Nanowire

Ion (uA/um)

Ioff

(nA

/um

)Off Current

42

Page 43: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Increase the Number of quantum channels

Energy band of Bulk Si

Eg

By Prof. Shiraishi of Tsukuba univ.

Energy band of 3 x 3 Si wire

4 channels can be used

Eg

43

Page 44: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Maximum number of wires per 1 µm

Surrounded gate type MOS

Front gate type MOS 165 wires /µm

33 wires/µm

High-k gate insulator (4nm)Si Nano wire (Diameter 2nm)

Metal gate electrode(10nm)

Surrounded gate MOS

30nm

6nm6nm pitchBy nano-imprint method

30nm pitch: EUV lithograpy

44

Page 45: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Device fabrication

Si/Si0.8Ge0.2superlatticeepitaxy on SOI

Anisotropicetchingof these layers

Isotropicetchingof SiGe

Gate depositions S/D implantationSpacer formationActivation annealSalicidation

BOXSi

SiGeSi

SiGeSi

SiGeSiN

BOX BOX

BOX

Gate

BOX

Gate

Gate etchingStandardBack-Endof-LineProcess

HfO2 (3nm)TiN (10nm)Poly-Si (200nm)

C. Dupre et al.,IEDM Tech. Dig., p.749, 2008

7

SiN HM

Process Details :

The NW diameteris controllabledown to 5 nm by self limited oxidation.

( )

Page 46: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Cross-section

50nm

SiN HM

Wire direction : <110>50 NWs in parallel3 levels vertically-stackedTotal array of 150 wires EOT ~2.6 nm

NWs

8

3D-stacked Si NWs with Hi-k/MG

BOX

500 nm

Sou

rce

Dra

in

Gate

Top view

<110>

Page 47: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

SiNW Band structure calculation

Page 48: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Cross section of Si NW

[001] [011] [111]D=1.96nm D=1.94nm D=1.93nm

First principal calculation,

Page 49: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Si nanowire FET with 1D Transport[001] [011] [111]0.86 0.94 0.89

OrientationDiameter (nm)

[001] [011] [111]3.00 3.94 1.93

OrientationDiameter (nm)

ZG G GZ ZWave Number

ZG G GZ ZWave Number

Ener

gy (e

V)

0

-1

0

1

Ener

gy (e

V)

0

-1

0

1

(a)

(b)

Small mass with [011]

Large number of quantum channels with [001]

Page 50: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

10 nm diameter Si(100)NW( 2341 atoms)

20 nm diameter Si(100)NW ( 8941 atoms )

Atomic models of a Si quantum dot and Si nanowires

6.6 nm diameter SiQD( 8651 atoms)

Page 51: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

2 6

26

( , , ) ( , , )n m nm

x y z C x m x y zx

ψ ψ=−

∂≈ + ∆

∂ ∑

1( ) ( ) ( ) ( )

Mesh

m n m i n ii

d x y zψ ψ ψ ψ=

≈ ∆ ∆ ∆∑∫ r r r r r

Real-Space Finite-DifferenceSparse MatrixFFT free (FFT is inevitable in the conventional plane-wave code)

Kohn-Sham eq. (finite-difference)

3D grid is divided by several regionsfor parallel computation.

Higher-order finite difference

Integration

MPI_ISEND, MPI_IRECV

MPI_ALLREDUCE

RSDFT – suitable for parallel first-principles calculation -

MPI ( Message Passing Interface ) library

)()()(ˆ)]([21 2 rrrr nnn

PPnlocs vv φεφρ =⎟

⎠⎞

⎜⎝⎛ ++∇−

CPU0

CPU8CPU7CPU6

CPU5CPU4CPU3

CPU2CPU1

Higher-order finite difference pseudopotential methodJ. R. Chelikowsky et al., Phys. Rev. B, (1994)

Page 52: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

|Vnew-Vold|^2

50403020100iteration

Convergence behavior for Si10701H1996

e.g.) The system over 10,000 atoms → Si10701H1996(7.6 nm diameter Si dot)

Massively Parallel Computing

Computational Time (with 1024 nodes of PACS-CS

6781 sec. × 60 iteration step = 113 hour

Based on the finite-difference pseudopotential method (J. R. Chelikowsky et al., PRB1994)

Highly tuned for massively parallel computers

Computations are done on a massively-parallel cluster PACS-CS at University of Tsukuba.

(Theoretical Peak Performance = 5.6GFLOPS/node)

with our recently developed code “RSDFT”

Iwata et al, J. Comp. Phys., to be publishedReal-Space Density-Functional Theory code (RSDFT)

Grid points = 3,402,059Bands = 22,432

Page 53: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

1.0

0.9

0.8

0.7

0.6

0.5

(eV

)

-0.6

-0.4

-0.2

0.0

(eV

)

1.2

1.1

1.0

0.9

0.8

0.7

(eV

)

-0.8

-0.4

0.0

0.4

(eV

)

3.4

3.2

3.0

2.8

2.6

(eV

)

-1.5

-1.0

-0.5

0.0

0.5

(eV

)

1.0

0.8

0.6

0.4

0.2

0.0DO

S ( S

tate

s / e

V a

tom

)

-12 -10 -8 -6 -4 -2 0 2(eV)

1.0

0.8

0.6

0.4

0.2

0.0DO

S ( S

tate

s / e

V a

tom

)

-12 -10 -8 -6 -4 -2 0 2(eV)

1.0

0.8

0.6

0.4

0.2

0.0DO

S ( S

tate

s / e

V a

tom

)

-10 -8 -6 -4 -2 0 2 4 6(eV)

Band Structure and DOS of Si(100)NWs (D=1nm, 4nm, and 8nm)

D = 4 nmSi341H84(425 atoms)KS band gap = 0.81eV

D=4nm D=8nmD=1nm

D=8 nmSi1361H164 (1525 atoms)KS band gap=0.61eV

D=1 nmSi21H20(41 atoms)KS band gap=2.60eV

KS band gap of bulk (LDA) = 0.53eV

Page 54: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Band structure of 8-nm-diameter Si nanowire near the CBM

1.0

0.9

0.8

0.7

0.6

0.5

(eV

)

0.300.250.200.150.100.050.00

・KS band gap = 0.608 eV (@Γ)

kz

kx

ky

82 meV (96 meV)

kx

Each band is4-dgenerate. 23 meV (24 meV)

)()()(22 2

2

*

2

2

2

2

2

*

2

rr Φ−=Φ⎥⎦

⎤⎢⎣

∂∂

−⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

− CBMlt zmyxm

εεhh

Effective mass equation

The band structure can be understood thatelectrons near the CBM in the bulk Si are Confined within a cylindrical geometry.

Page 55: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Si12822H1544(14,366 atoms)・10nm diameter、3.3nm height、(100)・Grid spacing:0.45Å (~14Ry)・# of grid points:4,718,592・# of bands:29,024・Memory:1,022GB~2,044GB

Si12822H1544

Top View Side View

Si nano wire with surface roughness

Page 56: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

SiNW Band compact model

Page 57: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Landauer Formalism for Ballistic FET

From xmax to xmin

[ ][ ]∑

⎭⎬⎫

⎩⎨⎧

−+−+

⎟⎟⎠

⎞⎜⎜⎝

⎛=

i BiD

BiSi

BD TkE

TkEgqTkGI

/)(exp1/)(exp1ln

0

00 µ

µ

µS

µD

xO xmax xmin

Qf

Qb

k

Energy

µSµD

E0

E1

E2min

E2max

qVD

E2min

Qf

Qb

Page 58: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5

Drain Bias (V)

Current (uA)

IV Characteristics of Ballistic SiNW FET

T=1KT=300K

Vg-Vt=1.0 V

0.7 V

0.3 V

0.05 V

Small temperature dependency35µA/wire for 4 quantum channels

Page 59: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Model of Carrier Scattering

ChannelOpticalPhonon

Initial ElasticZone

Optical PhononEmission Zone

ε~kBT

ε*

Source

TransmissionProbability : Ti

Elastic Backscatt.Elastic Backscatt.+(Optical Phonon Emission)

x00x

V(x)

F(0)

G(0)

Linear Potential Approx. : Electric Field E

TransmissionProbability to Drain

To Drain

0Drain fromInjection )0()0()0()(

=⎟⎟⎠

⎞−=

FGFT ε

Page 60: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Résumé of the Compact Model

.)( 0

G

bfStG C

QQ

qVV

+=

−−−

µµα

.

22

ln

2

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−+

++=

oxox

oxox

oxG

ttrttr

Cεπ

0 1 1 ( ( ))( ) ( ) ( )1 exp 1 exp 1 exp

f b i i ii i S i S i D

B B B

q dkQ Q g T k dkk k kk T k T k T

επ ε µ ε µ ε µ

−∞ −∞

⎤⎡ ⎧ ⎫⎥⎢ ⎪ ⎪

⎪ ⎪ ⎥⎢+ = − −⎨ ⎬ ⎥⎢ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫− − −⎪ ⎪+ + + ⎥⎢ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎩ ⎭ ⎦

∑ ∫ ∫

.ln

2

⎟⎠⎞

⎜⎝⎛ +

=

rtr

Cox

oxG

επDDS qV=− µµ

Unknowns are ID, (µS-µ0), (µD-µ0), (Qf+Qb)

[ ]( , ) ( , )i s D ii

qI g f f T dε µ ε µ επ

= −∑ ∫h

( )0

00 0 0 0 0

2( )

2 ln

D qET

qExB D D qE mD Bε

εε

=+⎛ ⎞+ + + ⎜ ⎟

⎝ ⎠

PlanarGate

GAA

(Electrostatics requirement)

(Carrier distributionin Subbands)

Page 61: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

I-VD Characteritics (RT)

Electric current 20~25 µANo satruration at Large VD

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6

Drain Bias [V]

Current [uA]

VG-Vt=0.1V,Bal.

VG-Vt=0.1V,Qbal

VG-Vt=0.4V,Bal.

VG-Vt=0.4V,Qbal.

VG-Vt=0.7V,Bal.

VG-Vt=0.7V,Qbal.

VG-Vt=1.0V,Bal.

VG-Vt=1.0V,Qbal.

Page 62: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

SiNW FET Fabrication

Page 63: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

SiNW FET Fabrication

Sacrificial Oxidation

SiN sidewall support formation

Ni SALISIDE Process (Ni 9nm / TiN 10nm)

S/D & Fin Patterning

Gate Oxidation & Poly-Si DepositionGate Lithography & RIE EtchingGate Sidewall Formation

30nm

30nm

30nm

Oixde etch back

Standard recipe for gate stack formationBackend

Page 64: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

(a) SEM image of Si NW FET (Lg = 200nm) (b) high magnification observation of gate and its sidewall.

64

Page 65: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Fabricated SiNW FET

30nm

Poly-Si

SiN

Nanow

ire

SiN support

SiNW

Page 66: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Lg=65nm, Tox=3nm

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

-1.5 -1.0 -0.5 0.0 0.5 1.0

0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

6.E-05

7.E-05

-1.0 -0.5 0.0 0.5 1.00

10 20 30 40 50 60 70

Dra

in C

urre

nt (µ

A)

Drain Voltage (V)

Vg-Vth=1.0 V

Vg-Vth= -1.0 V

0.8 V

0.6 V

0.4 V

0.2 V

(a)

10-12

Gate Voltage (V)

pFET nFET

(b)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Dra

in C

urre

nt (A

)

Vd=-50mV

Vd=-1V

Vd=50mV

Vd=1V

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

-1.5 -1.0 -0.5 0.0 0.5 1.0

0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

6.E-05

7.E-05

-1.0 -0.5 0.0 0.5 1.00

10 20 30 40 50 60 70

Dra

in C

urre

nt (µ

A)

Drain Voltage (V)

Vg-Vth=1.0 V

Vg-Vth= -1.0 V

0.8 V

0.6 V

0.4 V

0.2 V

(a)

10-12

Gate Voltage (V)

pFET nFET

(b)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Dra

in C

urre

nt (A

)

Vd=-50mV

Vd=-1V

Vd=50mV

Vd=1V

On/Off>106、60uA/wire

Recent results to be presented by ESSDERC 2010 next week in Sevile

Wire cross-section: 20 nm X 10 nm

Page 67: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

(5)

(5)

(10)

(10)(12)

(12x19)

(12)

(12x19)

(13x20)

(9x14)(10)

(10)

(10)

(8)

(8)

(16)

(13)

(34)

(3)(3)

(30)

(19)

VDD: 1.0~1.5 V

括弧内は寸法を示す

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

(5)

(5)

(10)

(10)(12)

(12x19)

(12)

(12x19)

(13x20)

(9x14)(10)

(10)

(10)

(8)

(8)

(16)

(13)

(34)

(3)(3)

(30)

(19)

VDD: 1.0~1.5 V

括弧内は寸法を示す

(12)

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

(5)

(5)

(10)

(10)(12)

(12x19)

(12)

(12x19)

(13x20)

(9x14)(10)

(10)

(10)

(8)

(8)

(16)

(13)

(34)

(3)(3)

(30)

(19)

VDD: 1.0~1.5 V

括弧内は寸法を示す

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

(5)

(5)

(10)

(10)(12)

(12x19)

(12)

(12x19)

(13x20)

(9x14)(10)

(10)

(10)

(8)

(8)

(16)

(13)

(34)

(3)(3)

(30)

(19)

VDD: 1.0~1.5 V

括弧内は寸法を示す

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

(5)

(5)

(10)

(10)(12)

(12x19)

(12)

(12x19)

(13x20)

(9x14)(10)

(10)

(10)

(8)

(8)

(16)

(13)

(34)

(3)(3)

(30)

(19)

VDD: 1.0~1.5 V

括弧内は寸法を示す

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

010203040506070

1 10 100 1000Gate Length (nm)

I ON

(µA

/ w

ire)

nMOSpMOS

(5)

(5)

(10)

(10)(12)

(12x19)

(12)

(12x19)

(13x20)

(9x14)(10)

(10)

(10)

(8)

(8)

(16)

(13)

(34)

(3)(3)

(30)

(19)

VDD: 1.0~1.5 V

括弧内は寸法を示す

(12)

本研究で得られたオン電流

(10x20)102µA

Our Work

Bench Mark

Page 68: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Bench MarkBench MarkThis work Ref[11] Ref[12] Ref[13] Ref[14] Ref[15] Ref[4]

NW Cross-section (nm) Rect. Rect. Rect. Cir. Cir. Elliptical Elliptical NW Size (nm) 10x20 10x20 14 10 10 12 13x20

Lg (nm) 65 25 100 30 8 65 35EOT or Tox (nm) 3 1.8 1.8 2 4 3 1.5

Vdd (V) 1.0 1.1 1.2 1.0 1.2 1.2 1.0Ion(uA) per wire 60.1 102 30.3 26.4 37.4 48.4 43.8

Ion(uA/um) by dia. 3117 5010 2170 2640 3740 4030 2592Ion(uA/um) by cir. 1609 2054 430 841 1191 1283 825

SS (mV/dec.) 70 79 68 71 75 ~75 85DIBL (mV/V) 62 56 15 13 22 40-82 65

Ion/Ioff ~1E6 >1E6 >1E5 ~1E6 >1E7 >1E7 ~2E5

Ref[11] by Stmicro Lg=25nm,Tox=1.8nmThis work Lg=65nm,Tox=3nm

Page 69: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Y. Jiang, VLSI 2008, p.34H.-S. Wong, VLSI 2009, p.92S. Bangsaruntip, IEDM 2009, p.297C. Dupre, IEDM 2008, p. 749S.D.Suk, IEDM 2005, p.735G.Bidel, VLSI 2009, p.240

SiナノワイヤFET

Planer FETS. Kamiyama, IEDM 2009, p. 431P. Packan, IEDM 2009, p.659

1.2~1.3V

1.0~1.1V

Lg=500~65nm

IIONON/I/IOFF OFF Bench markBench mark

This work

Page 70: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010
Page 71: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

0 .E + 0 0

1 .E + 1 9

2 .E + 1 9

3 .E + 1 9

4 .E + 1 9

5 .E + 1 9

6 .E + 1 9

0 2 4 6 8Distance from SiNW Surface (nm)

6543210

角の部分

平らな部分

電子濃度(x1019cm-3)Electron Density

Edge portion

Flat portion

Page 72: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

0

2000

4000

6000

8000

10000

12000

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

Year

I ON

(µA/

µm)

SiNW (12nm×19nm)

MGFDbulk

ION∝Lg-0.5×Tox

-1(20)

(11)

(33)

(15)

(26)

今回用いたIONの仮定

1µm当たりの本数

コンパクトモデルの完成

S/D寄生抵抗低減技術

pMOSの高性能化

低EOT実現技術

Compact model

Small EOT for high-k

P-MOS improvement

Low S/D resistance

# of wires /1µm

Assumption

ITRSNan

owire

Primitive estimation !

Page 73: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Our roadmap for R &D Source: H. Iwai, IWJT 2008

Current Issues

III-V & Ge NanowireHigh-k gate insulatorWire formation technique

CNT:

Width and Chirality control Growth and integration of CNT

Graphene:Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap

Chirality determines conduction types: metal or semiconductor

73

Si NanowireControl of wire surface property

Compact I-V model

Source Drain contactOptimization of wire diameter

Page 74: Past and Future of Micro/Nano CMOS Devices...Past and Future of Micro/Nano CMOS Devices IEEE EDS MQ @ Inter Continental Hotel, Shanghai H. Iwai Tokyo Inst. Tech. 1 November 1, 2010

Thank you for your attention