particle flow reconstruction based on the directed tree...

20
Particle Flow reconstruction based on the directed tree clustering algorithm Dhiman Chakraborty, Guilherme Lima, Vishnu Zutshi NICADD / Northern Illinois University Calor 2006  –  Chicago June 5-9, 2006

Upload: others

Post on 20-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

Particle Flow reconstruction basedon the directed tree clustering algorithm

Dhiman Chakraborty, Guilherme Lima, Vishnu ZutshiNICADD / Northern Illinois University

Calor 2006  –  ChicagoJune 5­9, 2006

Page 2: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

2G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Talk outline

● Brief introduction and goalsmotivations for particle flow reconstruction

● Perfect PFAwhat can we expect?

● Real PFAhow we are doing the real PFA

● Summarystatus and plans

Page 3: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

3G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Jet resolution goals● Physics: ability to resolve hadronic decays of Z and W bosons

Z­mass resolution goal:

    E  

/ E  =  30% / E

Most promising path seems to be throughParticle Flow Algorithms(PFA).

Page 4: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

4G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

PFA in a nutshell● Basic idea: use high­granularity calorimeters to optimize the reconstruction 

of individual particles in every event (energy resolution)

● How?

– Identify clusters from charged particles, replace them with track momentum (track extrapolation, MIP tracking in calorimeter, clustering)

– Identify photons and optimize their energy resolution (clustering, EM­shower shape, optimize ECal resolution)

– Neutral hadrons: remaining calorimeter hits/clusters

negligible negligible fora perfect PFA

detector dependent(PFA used for design)

Page 5: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

5G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Perfect PFA: ingredients● Geometry:  sidaug05_tcmt

– ECal: 30 Si­W layers, each 3.75mm­thick (0.72 X0), non­projective, 5x5mm2 cells

– HCal: 34 Sci­steel layers, each 28mm­thick (0.13 λI), non­projective, 10x10mm2 cells

– TCMT: 48 Sci­steel layers, each 28mm­thick, non­projective, 30x30mm2 cells

● Perfect clustering: uses all hits from each final state particle generated, no matter where the hits are located (far­flying hadronic debris are common)

● Energy reconstruction and corrections

– Use smeared MC particles for tracks (tracking not yet available)

– Neutral particle type: analog for photons, digital for hadrons

– Good particle ID: use pion mass for all charged hadrons

Page 6: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

6G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Photons: analog vs. digital calorimeter

Use an analog schemefor photon energies

Page 7: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

7G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Neutrons: analog vs. digital calorimeter

Use a ditital scheme forneutral hadron energies

Page 8: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

8G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Perfect PFA

● Perfect clusters: all hits coming from each generated Final State particle

● Good (rather than perfect) Particle ID: use pion mass for all charged hadrons

● Calibrated by global particle type contributions

Effect of imperfect PID:use pion mass for all charged hadrons

Page 9: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

9G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Perfect PFA: the ultimate, unattainable goal● Perfect clusters: all hits 

coming from each generated Final State particle

● Good PID: use pion masses for all charged hadrons (incomplete Particle­ID)

● Calibrated by global particle type contributions

● Low­E tail is partially due to energy lost through beam pipe

●  Further improvements are likely by using a more sophisticated calibration ( angular  and longitudinal corrections)

Two­gaussians fitMean = 90.2 GeVWidth = 1.98 GeVor  ~ 19% / √E

Page 10: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

10G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Directed Tree Clustering Algorithm

● Cal­only clustering developed at NIU (V.Zutshi):

– density neighborhood (fixed, used to find hit densities Di)

– clustering neighborhood (adaptive, based on hit's density)

– density gradient for cells i,j  (j in the neighborhood of i)­­>hit­density difference divided by distance d

ij:

Dij = (D

j – D

i)/d

ij  

– each cell attaches itself to the hit j with maximum hit­density gradient in its clustering neighborhood

– Cells with local density maxima become cluster seeds (or directed tree roots)

●  Hit selection: E > EMIP 

/ 4, and time < 100ns  (applied before the clustering)

Page 11: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

11G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Developing a realistic Particle Flow Algorithm● Development based on:

– Z ­­> q q  (light quarks)  on sidaug05_tcmt geometry

– Data sample generation:  SLIC v1.13 + Geant4 v8.0

– Java­based framework (org.lcsim)

● Algorithm description:

– Inputs: Directed tree clusters in ECal and HCal, reconstructed tracks

– Track extrapolations ­­> track­cluster associations  ­­>  seeds for charged clusters

– Photon­ID: use an Hmatrix (longitudinal cluster profile)  ­­>  seeds for photon clusters

– Shower pattern recognition: algorithms to merge clusters based on cluster shapes and distances

– Remaining clusters: sorted by size/energy ­­> seeds for neutral hadron clusters

– Low multiplicity fragments are discarded (reduce confusion, but degrades final resolution)

Page 12: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

12G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Z ­­> qqbar (uds)  ­  Directed tree clusters

All generated clusters

All directedtree clusters

Page 13: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

13G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Clusters from charged particles

Generatedchargedclusters

Reconstructedchargedclusters

Page 14: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

14G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Clusters from photons

Generatedphotonclusters

Reconstructedphotonclusters

Page 15: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

15G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Clusters from neutral hadrons

Generatedneutral hadronclusters

Reconstructedneutral hadronclusters

Page 16: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

16G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Optimizing the track matching window

✔ A +/­1 window seems to be enough for good track matching in Ecal, but going to +/­2 still gets more good than bad hits 

✔ Track matching window selected:+/­2 in ECal  (each unit ­­> 5mm)+/­1 in HCal  (each unit ­­> 10mm)

Page 17: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

17G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Photon­ID: longitudinal H­Matrix

Inner layer

Log( diag Chi2 )1 2 3 4 5

0

5

10

15

20

25

30

photon clusters

Inner layer

Log( diag Chi2 )2 3 4 5

0

5

10

15

20

25

30

neutral clusters

Inner layer

Log( diag Chi2 )1 2 3 4 5

0

5

10

15

20

25

30

charged clusters

# entries /  bin

Log( diag Chi2 )1 2 3 4 5

0102030405060708090

100HMatrix chisqDiag: photonsHMatrix chisqDiag: neutralsHMatrix chisqDiag: charged

Diagonal Chi2

✔ H­Matrix is not yet fully optimized, so there is room for  improvements

✔ Lowest layer hit in clusters provides further  ­ h0 discrimination

✔ Photon selection:log( 2

diag ) < 2.5

lowLayer <= 6

Page 18: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

18G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Current PFA result (preliminary)

# entries /  bin

Energy (GeV)20 40 60 80 100 120

020406080

100120140160180200220

  Entries :  1000   Mean : 89.072   Rms :  9.4971 

total energy

# entries /  bin

Ereco /  Egen0 2 4 6 8 10 12 14

050

100150200250300350400

  Entries :  885   Mean : 0.54946   Rms :  0.90969 

Ereco/ Egen ­  neutrals

# entries /  bin

Ereco /  Egen0 2 4 6 8

0

50

100

150

200

250

300  Entries :  1000   Mean :  1.4961   Rms : 0.82266 

Ereco/ Egen ­  photons

# entries /  bin

Ereco /  Egen0,5 1,0 1,5 2,0 2,5 3,0

020406080

100120140160180

  Entries :  999   Mean : 0.94634   Rms :  0.23193 

Ereco/ Egen ­  charged

Page 19: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

19G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Current PFA result (preliminary)

Double­gaussian fitmean = 91.6 GeVwidth = 2.6 GeV(or  ~ 25% / E)contains ~29% of events

A different binning:mean = 91.4 GeVwidth = 3.1 GeV(or  ~ 30% / E)contains ~42% of events

Page 20: Particle Flow reconstruction based on the directed tree ...lima/talks/060609-lima-calor06-pfa.pdf · 5 G.Lima – Calor 2006 @ Chicago – 2006/06/09 Perfect PFA: ingredients Geometry:

20G.Lima  –  Calor 2006 @ Chicago  –  2006/06/09

Summary● All the basic tools needed for a full PFA are in place  (ALCPG Java­based framework)

● Big effort to develop code which is independent of geometry

● Preliminary results are encouraging, but a lot of optimization still needed

● Things to do:

– Investigate origin of misidentified clusters and how to improve cluster identification

– Use tail catcher information to improve jet energy resolution (important for jetE > 75 GeV) 

– Further calibration corrections (dependency on energy, particle type, incidence angle and interaction layer)

– Comparisons to other people's results (standard geometries)

– Investigate PFA at higher energies and more complex physics processes (WW, ZH, etc)

– Comparisons for different geometries, B­fields and technologies