particle “precipitation” in the thermosphere / ionosphere1 particle “precipitation” in the...

44
1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center for Atmospheric Research HEPPA 2009 Center Green 6 October 2009

Upload: others

Post on 23-Jan-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

1

Particle “Precipitation”in the

Thermosphere / Ionosphere

Stan SolomonHigh Altitude Observatory

National Center for Atmospheric Research

HEPPA 2009 • Center Green • 6 October 2009

Page 2: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

What “Precipitation” Affects the Thermosphere/Ionosphere

2

Primarily auroral electrons in the energy range 100 eV – 100 keV...also protons and other ions in the energy range 1 keV – 1 MeV

Radiation belt particles, Solar energetic particles, cosmic rays, etc., are of little importance above ~90 km, because they pass right through the thermosphere.

“I got no kick against the east coast; you know the people there have got the most; and New York City’s like a friendly ghost, you seem to pass right through...” — Bob Segar, Katmandu.

Page 3: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

Outline of Presentation

3

• Simple tutorial on auroral energy deposition and thermosphere/ionosphere effects

• Introduction to the odd-nitrogen problem and the sources of nitric oxide

• Integrated auroral power and the magnitude of the chemical response

...not going to talk about:

— electrodynamical coupling and Joule heating

— disruption of the ionospheric electric field

— response of thermospheric temperature, density, and wind

Page 4: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

4

Page 5: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

5

Page 6: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

6

Page 7: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

7

Page 8: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

8

Reconnection in the Magnetotail

Page 9: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

9

Coupled Magnetosphere-Ionosphere-Thermosphere Model

Page 10: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

10

Energetic Particles from the Magnetosphere

Page 11: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

11

Motion of Charged Particles Along a Magnetic Field Line

Page 12: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

12

Transport of Auroral Electrons in the Upper Atmosphere

Page 13: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

13

Penetration Depth of Auroral Electrons Depends on Energy

Page 14: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

14

Thermosphere and Ionosphere Composition

Page 15: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

15

Auroral Collisional Processes

Electron Impact Ionization

Page 16: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

16

Ion Recombination Processes

Page 17: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

17

Examples of Auroral Emission Processes

Molecular Nitrogen:

e* + N2 → 2e* + N2+(B2Σu

+) N2+(B2Σu

+) → N2+(X1Σg

+) + hν (1N bands)

e* + N2 → e* + N2(B3Πg) N2(B3Πg) → N2(X1Σg+) + hν (1P bands)

e* + N2 → e* + N2(A3Σu+) N2 (A3Σu

+) → N2(X1Σg+) + hν (VK bands)

N2 (A3Σu+) + O(3P) → N2(X1Σg

+) + O(1S)

O(1S) → O(3P) + hν (5577Å)

Page 18: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

18

Examples of Auroral Emission Processes

Atomic Oxygen:

e* + N2 → e* + N2(A3Σu+) N2 (A3Σu

+) + O(3P) → N2(X1Σg+) + O(1S)

O(1S) → O(3P) + hν (5577Å) τ~1s

e* + O(3P) → e* + O(1S) O(1S) → O(3P) + hν (5577Å) τ~1s

e* + O(3P) → e* + O(1D) O(1D) → O(3P) + hν (6300Å) τ~100s

O2+ + e- → O + O(1D) O(1D) → O(3P) + hν (6300Å) τ~100s

O(1D) + N2 → O(3P) + N2

Page 19: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

19

Examples of Auroral Emission Processes

Atomic Nitrogen:

e* + N2 → e* + N(4S) + N(2D) N(2D) → N(4S) + hν (5200Å) τ~100,000s

N(2D) + O → N(4S) + O

NO+ + e- → O + N(2D) N(2D) → N(4S) + hν (5200Å) τ~100,000s

N(2D) + O → N(4S) + O

Page 20: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

20

Page 21: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

21

Page 22: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

22

Page 23: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

23

Page 24: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

24

Page 25: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

25

Page 26: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

26

Page 27: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

27

Simplified Schematic of Ion-Neutral Chemistry

Ionization leads inexorably to dissociation

Page 28: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

Simplified Schematic of E-region Ion-Neutral Chemistry

28

Page 29: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

29

Simplified Schematic of Odd-Nitrogen Chemistry

N2

N(2D)

NO

N(4S)

O

O2

N2

e*, hν

N(4S)

O2

NO

Page 30: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

30

Measurements of Nitric Oxide by SNOE

Thermospheric NO Peak Density at 107 km, Day 1998 070

SNOE measured thermospheric nitric oxide using γ-band fluorescence method.Measurement constrained to sunlit locations (i.e., can’t measure at winter pole)

Altitude range 90–170 km; best quality data in range 100–150 km

Page 31: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

31

Measurements of Nitric Oxide by SNOEDaily mean data at ~11 AM local solar time (15 orbits) averaged over all longitudes

Page 32: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

32

Comparison of SNOE NO to TIE-GCM 1.8 CalculationsSNOE TIE-GCM

Equinox

Solstice

Page 33: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

33

Comparison of SNOE NO to TIE-GCM 1.8 CalculationsSNOE TIE-GCM

LowAurora

HighAurora

Page 34: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

34

The 80’s View — Linear Fit to NOAA/DMSP Particle Data

Page 35: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

35

...But More Recent NOAA/DMSP HP Estimates are Higher

Page 36: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

36

Fit to Current HP Estimates is Approximately 2 x Maeda

Page 37: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

37

Comparison to HP Integrated over the “Hardy Oval”

Page 38: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

38

Auroral Measurements by the TIMEDGlobal Ultraviolet Imager (GUVI)

Page 39: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

39

GUVI Empirical Auroral Oval(ongoing work by Yongliang Zhang, Wenbin Wang, Xiaoli Luan)

Page 40: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

40

Comparison to New Estimates from TIMED/GUVI

Page 41: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

41

Morphology of Some Empirical Auroral Ovals

Kp=2

Kp=4

Kp=6

NOAA GUVI Hardy TIE-GCM

mW m-2

Page 42: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

Nitric Oxide in NCAR General Circulation Models

42

Where we are:

— Believe that we have a realistic representation of auroral distribution and HP...also now parameterized using solar wind / IMF input

— But TIE-GCM v. 1.93 still doesn’t produce quite enough nitric oxide...especially during high auroral activity

— Still get reasonable agreement with SNOE general morphology...including latitudinal, seasonal, and solar cycle dependence

— Also get good agreement with SABER cooling rate observations...see talk by Mlynczak et al., later this afternoon.

Page 43: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

43

Page 44: Particle “Precipitation” in the Thermosphere / Ionosphere1 Particle “Precipitation” in the Thermosphere / Ionosphere Stan Solomon High Altitude Observatory National Center

44