part i: predicting ground water flow: contouring · in this exercise, you will draw the contours of...

9
1| Page GEO144 Lab 7: Groundwater Contouring, Flow, and Contamination Name: ______________________________________________ Date: _________ Part I: Predicting Ground Water Flow: Contouring The water table is the surface of the saturated zone, below which all soil pores or rock fractures are filled with water. Ground water moves through the subsurface much like water on the ground surface, except that it travels a great deal more slowly. If the soil is mostly sand and gravel, ground water can move as much as five feet per day. But, more often than not, ground water moves at speeds of a few cms per day (or less). Like streams and rivers, ground water moves from high areas to low areas. In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides of a valley, to a river that flows to the sea. Before you begin this exercise, however, it is important that you understand three main principles. Ground water and surface water may share a strong connection. Have you ever noticed that streams continue to flow even when it hasn’t rained for days? Where does the water come from? In some cases water is discharged to surface waters from the ground water at the point where the water table intersects the surface of the land. In this situation, the surface water is called a gaining stream or gaining pond. Because the water table is at the land surface adjacent to “gaining” surface waters, the elevation of ground water is generally the same as that of the river, especially between rain storms. Ground water is assumed to flow at right angles to water table contours. This is because ground water moves downhill in the path of least resistance due to gravity. In this exercise, you’ll use all three of these principles. During this activity you will learn how to draw a water table contour map. Water table measurements that are taken at the same time of year can be used to develop a water table contour map to show the direction of ground water flow. Monitoring wells are typically used to determine the elevation of the water table. The elevation of the water table is determined at several locations throughout the area of interest. Like topographic map contours, water table contours represent lines of equal elevation. The difference between the maps is that water table elevations are measured in wells and at the river channel, not on the ground surface. Thus, just as surface water flow is downhill and perpendicular to topographic contours, the direction of ground water flow is also downhill and perpendicular to the water table contours. Follow these simple steps: 1. Use a pencil (in case you make mistakes), and lightly draw in 3 or 4 arrows to show your prediction for the direction(s) of ground water flow. 2. Draw contours at 50foot intervals. The pencil lines can always be inkedin later. Begin at 50 feet (the shoreline along the ocean will be sea level), then draw the other contours for 100, 150, 200, and 250 feet.

Upload: others

Post on 09-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

1 | P a g e   

GEO144 Lab 7: Groundwater Contouring, Flow, and Contamination 

Name: ______________________________________________ Date: _________ 

Part I: Predicting Ground Water Flow: Contouring 

The water table is the surface of the saturated zone, below which all soil pores or rock fractures are 

filled with water. Ground water moves through the subsurface much like water on the ground surface, 

except that it travels a great deal more slowly. If the soil is mostly sand and gravel, ground water can 

move as much as five feet per day. But, more often than not, ground water moves at speeds of a few 

cms per day (or less). 

Like streams and rivers, ground water moves from high areas to low areas. In this exercise, you will draw 

the contours of the water table to show how ground water moves beneath the ground, down the sides 

of a valley, to a river that flows to the sea. Before you begin this exercise, however, it is important that 

you understand three main principles. 

Ground water and surface water may share a strong connection. Have you ever noticed that streams 

continue to flow even when it hasn’t rained for days? Where does the water come from? In some cases 

water is discharged to surface waters from the ground water at the point where the water table 

intersects the surface of the land. In this situation, the surface water is called a gaining stream or gaining 

pond. 

Because the water table is at the land surface adjacent to “gaining” surface waters, the elevation of 

ground water is generally the same as that of the river, especially between rain storms. 

Ground water is assumed to flow at right angles to water table contours. This is because ground water 

moves downhill in the path of least resistance due to gravity. In this exercise, you’ll use all three of these 

principles. 

During this activity you will learn how to draw a water table contour map. Water table measurements 

that are taken at the same time of year can be used to develop a water table contour map to show the 

direction of ground water flow. Monitoring wells are typically used to determine the elevation of the 

water table. The elevation of the water table is determined at several locations throughout the area of 

interest. Like topographic map contours, water table contours represent lines of equal elevation. The 

difference between the maps is that water table elevations are measured in wells and at the river 

channel, not on the ground surface. Thus, just as surface water flow is downhill and perpendicular to 

topographic contours, the direction of ground water flow is also downhill and perpendicular to the 

water table contours. 

Follow these simple steps: 

1. Use a pencil (in case you make mistakes), and lightly draw in 3 or 4 arrows to show your prediction for 

the direction(s) of ground water flow. 

2. Draw contours at 50‐foot intervals. The pencil lines can always be inked‐in later. Begin at 50 feet (the 

shoreline along the ocean will be sea level), then draw the other contours for 100, 150, 200, and 250 

feet. 

Page 2: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

2 | P a g e   

3. To get started, draw the 50‐foot contour. Find the 50‐foot elevation on the river. Draw a line from 

that point through the 50‐foot elevation at the well just southwest of the river. Don’t go much past the 

well, because there are no more data to tell you where to go! 

4. Draw the contour on the other side of the river. When locating a contour between two points, you 

will have to interpolate—that is, figure out the proportional distance between the points. The 50‐foot 

contour between the 30‐ and 80‐foot elevations should be drawn closer to the 30‐foot value (20 feet 

difference) than the 80‐foot value (30 feet difference). You can do this by hand after a little practice, or 

measure it precisely with a ruler and calculator. For the other two wells, draw the contour exactly 

between the 30‐ and 70‐foot elevations, because they are both 20 feet different from the 50‐foot 

contour’s value. 

5. When you are finished, you will notice that the contours form V’s with the river and its tributaries. 

That’s because the river is a “gaining” river. It is receiving recharge from the aquifer. The contours show 

that ground water is moving down the sides of the valley and into the river channel. The opposite of a 

gaining stream is a “losing” stream. It arises when the water table at the stream channel is lower than 

the stream’s elevation, or stage, and stream water flows downward through the channel to the water 

table. 

This is very common in dryer regions of the Southwest. In the case of a losing stream, the V will point 

downstream, instead of upstream. 

Note: When making a water table map, it’s important that your well and stream elevations are accurate. 

All elevations should be referenced to a standard datum, such as mean sea level. This means that all 

elevations are either above or below the standard datum (e.g., 50 feet above mean sea level datum). It’s 

also very important to measure all of the water table elevations within a short period of time, such as 

one day, so that you have a “snapshot” of what’s going on. Because the water table rises and falls over 

time, your map will be more accurate if readings are made before these changes occur. 

Understanding how ground water flows is important when you want to know where to drill a well for a 

water supply, to estimate a well’s recharge area, or to predict the direction contamination is likely to 

take once it reaches the water table. Water table contouring can help you do all these things! 

1. Why are communities interested in learning the direction of ground water flow? 

 

2. Why would it be important to know if a stream in your community is a “gaining” stream or “losing” 

stream? 

 

 

3. Compare and contrast your predictions for ground water flow to your mapped ground water flow 

direction(s). Briefly explain and differences. 

 

 

Page 3: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

3 | P a g e   

 

 

 

Page 4: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

4 | P a g e   

Part II: Predicting Ground Water Flow: Commercial 

On a bus ride, you notice a groundwater treatment system with an air stripper tower at a gas station 

adjacent to a lake. This indicates that there was some sort of groundwater contamination problem 

there, and since the lake is the reservoir for your drinking water supply, it merits further investigation. 

In the 1970's, a law called the Freedom of Information Act was adopted. This allows citizens access to 

public records, including environmental data such as drilling logs, groundwater gaging data and 

groundwater sampling results. You visit your local Environmental Conservation office to have a look at 

the data associated with the site. The data are given to you below.  

The goal of this exercise is for you to determine if this groundwater pollution problem presents a threat 

to the drinking water supply. You will do this by performing your own site assessment using the data 

provided. 

You will be provided with the following data: 

• site maps 

• groundwater gaging data 

• groundwater sampling data. 

Using these data, you will be able to generate the following items: 

• groundwater contour map  

• isoconcentration map. 

After analyzing the data and constructing maps, you will be able to examine the spill and determine its 

present and future effects on the aquifer and on the lake. 

Follow the directions to complete each step. 

Groundwater Contour Map 

1. The well gaging data provided is from October 21, 1988. The depth to groundwater was measured in 

nine monitoring wells. The ground elevation was surveyed at the top of each monitoring well. To find 

the elevation of the water table, you need to subtract the depth to groundwater from the elevation of 

the top of the well. 

Example: 

 top of well elevation   = 84.30 feet 

 ‐depth to groundwater  = ‐7.02 feet 

elev. of water table   = 77.28 feet 

2. Determine the water table elevation in each monitoring well. 

3. Take one copy of the site map, and write in the groundwater elevations at each well (write in pen). 

Write in the elevation of the surface in the lake also. 

Page 5: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

5 | P a g e   

4. Using PENCIL, contour the groundwater elevations using a contour interval of 0.5 feet. Label each 

contour line. 

5. Determine the direction of groundwater flow (perpendicular to the contour lines and down the slope 

of the groundwater table), and draw an arrow that indicates flow direction. 

• Groundwater Gaging Data at right >>>> 

• Date: October 21, 1988 Performed by: 

Groundwater Technology, Inc. 

• All measurements in feet 

 

Isoconcentration Map 

1. The groundwater quality data below indicates 

the hydrocarbon concentration in each 

monitoring well measured in parts per billion. 

2. Using another site map, write the hydrocarbon 

concentration at each well. ND means that no 

hydrocarbons were detected in the well. 

3. Contour the hydrocarbon concentrations using 

a 5000 ppb contour interval, starting at 1000 ppb, 

then 6000 ppb, and 11,000 ppb. 

4. Shade each interval with colored pencils, and provide a key to the colors. Label the map "Dissolved 

Hydrocarbon Isoconcentration Map." 

• Groundwater Sampling Data at right >>>> 

• Analyzed by: Hudson Environmental Services, Inc. 

• Sampling Date: February 20, 1995 

 

 

 

 

 

 

 

 

 

Page 6: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

6 | P a g e   

 

MAP 1: Groundwater Contour Map 

 

 

Page 7: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

7 | P a g e   

 

MAP 2: Isoconcentration Map 

 

 

Page 8: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

8 | P a g e   

Part III: Predicting Ground Water Flow: Residential 

The problem: While replacing its underground gasoline storage tanks, a gas station discovers that the 

old tanks had been leaking. You have been hired as environmental consultants to investigate the 

contamination so it can be cleaned up. Because there is a limited amount of money available, you’re 

going to follow these steps: 

1) Pick three locations on the map to drill monitoring wells. These wells will tell you the 

elevation of groundwater (hydraulic head) and the concentration of benzene (a harmful 

pollutant in gasoline) present at that location. [When you’ve decided on locations, bring 

them to me and I will tell you the results.] Using the hydraulic head at the three wells, you 

should be able to tell which direction groundwater is flowing now. 

2) Using the information you gained in Step 1, decide where to drill three final monitoring 

wells. [Again, bring me the locations and I will give you the results.] 

3) Mark neatly on the map the direction groundwater is flowing and the estimated extent of 

the contamination plume (how far the contamination has travelled). This will be given to the 

gas station owner that hired you to plan cleanup. In addition, you’ll need to answer the 

three questions at the bottom of this page. 

Data Table 

Well 1  Column:  Row:    Head (ft):    Benzene concentration (ppb): 

Well 2  Column:  Row:    Head (ft):    Benzene concentration (ppb): 

Well 3  Column:  Row:    Head (ft):    Benzene concentration (ppb): 

Well 4  Column:  Row:    Head (ft):    Benzene concentration (ppb): 

Well 5  Column:  Row:    Head (ft):    Benzene concentration (ppb): 

Well 6  Column:  Row:    Head (ft):    Benzene concentration (ppb): 

Final Questions 

I. What was the highest concentration of benzene you found? 

 

II. Each house in this rural area has its own water well (marked with a “W”). Which one is in the greatest 

danger of being contaminated? (The maximum allowed concentration of benzene in drinking water is 5 

ppb.) 

 

III. When water contaminated with gasoline is present beneath a building, harmful vapors can rise and 

seep into that building (under certain conditions). Are there any buildings we need to check for vapors? 

(parts per billion) 

Page 9: Part I: Predicting Ground Water Flow: Contouring · In this exercise, you will draw the contours of the water table to show how ground water moves beneath the ground, down the sides

9 | P a g e   

  A  B  C  D  E  F  G  H  I  J  K  L  M N O  P Q R S  T  U  V  W  X Y  Z 

1            road                                    road 

2                                                     

3                    House A                             

4                              W                      

5                                                     

6                                                     

7                                                     

8                                                     

9                                                     

10                    tanks     gas                     

11    House B                    station                     

12                                                     

13                                                     

14                                                     

15      W                                               

16                                        House C         

17                                                     

18                                                     

19                                                     

20                                          W           

21                                                     

22                                                     

23                                                     

24                                                     

25                                                     

26                                                     

27                                                     

28                                                     

29                                                     

30                    House D                             

31                              W                      

32                                                     

33                                                     

34                                                     

35                                                     

 

 

These activities are modified from sources including the EPA region 1, Karin B. Kirk at Skidmore College, and Scott 

K. Johnson at the Fractal Planet. 

http://www.skidmore.edu/~jthomas/fairlysimpleexercises/gwasessment.html 

http://www.epa.gov/region1/students/pdfs/gwb10.pdf 

https://fractalplanet.wordpress.com/ 

water well