outline( - teded introduction carlson.pdf · outline • the(fuel ......

100

Upload: dangkhue

Post on 08-Apr-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Outline  •  The  fuel  demands  of  movements  •  How  we  mobilize  fuel  •  When  we  use  certain  fuel  pathways  •  Various  case  studies  of  the  energy  demands  of  sport  

•  Effects  of  underfueling  •  How  the  movements  drive  nutri?on  prescrip?on  

Athletes’  Performance  Mission  

To  provide  the  finest  performance  methods,  specialists,  and  facili?es  seamlessly  integrated  to  efficiently  and  

ethically  enhance  our  athletes’  performance.  

“The  Refuge”  

Athletes’  Performance  Goals  

Rela/onships  &  Results  ©

OPEN  

SKILL  

PSYCHOLOGY  

PHYSIOLOGY  

TACTICS    

EMOTION  

CHARACTER  

ENVIRONMENT  

ALTITUDE  HEAT  

COLD  HEALTH  

NUTRITION  

FOCUS  

CONFIDENCE  

COMMITTMENT  

CLOSED  COMPLEX  OFFENSIVE  DEFENSIVE  

SPECIAL  

PASSION  

SELF  CONTROL  

ENERGIZED  

INTEGRITY  

RESPECT  

CARING  

FITNESS  

TRAINING  &  PERFORMANCE  

©

NUTRITION

CONSISTENCY

TIMING

FUEL/NUTRIENTS

BREAKING DOWN

NUTRITION

“Nutrition can make a good athlete great, or a great athlete good

HYDRATION

©

Bioenerge?cs……  

©

The  scien?fic  study  of  the  flow  and  transforma?on  of  energy  in  and  between  living  organisms  and  between  living  organisms  and  their  environment  

In  rela/onship  to  sport…….  

Katch  and  Katch,  Chapter  4  

“The  human  body  con?nuously  extracts  energy  from  its  fuel  nutrients  and  harnesses  it  to  perform  its  many  biologic  func?ons”    The  Laws  of  Thermodynamics:  Energy  is  neither  created  nor  destroyed,  but  instead,  transforms  from  one  state  to  another  without  being  used  up.  

Crude  Oil    

•  “This  energy  transduc?on  can  be  viewed  as  one  giant  biological  refining  process  that  in  many  respects  is  similar  to  the  refining  of  gasoline  from  crude  oil.    If  we  let  gasoline  represent  ATP,  then  our  cells  take  food  molecules  (*crude  oil)  and  refine  them  to  produce  ATP  (*high-­‐test  gasoline).    The  food  molecule  themselves  do  not  provide  any  direct  energy  to  cells,  but  instead  provide  the  raw  materials  to  make  ATP,  which  like  gasoline  in  a    car  engine  is  used  directly  in  our  biological  engines  to  power  the  metabolic  processes  of  the  cell.”  

Carbon  and  Energy  Flow  

CO2  +  H2O  

Carbs  Proteins  Lipids  +  O2  

Photosynthesis  Cellular  (Aerobic)  Respira@on  (ATP  Produced)  

ENERGY  TRANSFER  •  Metabolism  

–  The  sum  of  all  chemical  reac?ons  that  occur  in  the  body    –  Energy  transfer  occurs  through  thousands  of  complex  chemical  reac?ons  using  a  balanced  mix  of  macronutrients  and  micronutrients  and  a  con?nual  supply  and  use  of  oxygen  

•  Aerobic  – Oxygen  requiring  energy  reac?ons  

•  Anaerobic  –  Chemical  reac?ons  that  generate  energy  rapidly  for  short  dura?ons  without  oxygen  

©Katch  and  Katch,  Chapter  4  

Where does the energy come…….. For the movement that we need to create?

Muscle Energy Pathway

Duration of Activity

Type of Activity (%MHR)

Immediate ATP in Muscles ATP+PCr

ATP+PCr+ Muscle Glycogen

1-6 sec 7-20 sec 20-45 sec

Surges and sprints (>80-90)

Short-Term Muscle Glycogen Muscle Glycogen +

Lactic Acid

45-120 sec 120-180 sec

Moderate intensity running (70-79)

Long-Term Muscle Glycogen + Free Fatty Acids

>30 min limited by Oxygen

Low-moderate-intensity running

(<69)

Energy  System  Produc?on  

©Katch  and  Katch,  Chapter  4  

CATEGORY   PATHWAY   SPORTS  High  Intensity    

(Max  Effort  Las@ng    <  30  secs)  

Phosphocrea?ne  Pathway    

Sprinters  Jumping/Hurdles  Cycle/Swim  Sprint  Throwing  

Olympic  Weight  Liging  Power  Liging  Gymnas?cs  

High  Intensity  Short  Dura@on  

Glycolysis   Swimmers  (200  –  1500m)  Runners  (1,500  –  2000m)  Rowing  Wrestling/Boxing  

Crew  Mountain  Biking  Speed  Ska?ng    

IntermiPent  High  Intensity  

Aerobic/Anaerobic   Soccer  Football  Basketball  Field  Hockey  

Ice  Hockey  Rugby  Volleyball  Tennis  Squash  

Endurance   Muscle Glycogen + Free Fatty Acids  

>2  Hours  ½  Marathon  Marathon  Ironmam  Ultraendurance  

Where does the energy come…….. For the movement that we need to create?

Muscle Energy Pathway

Duration of Activity

Type of Activity (%MHR)

Immediate ATP in Muscles ATP+PCr

ATP+PCr+ Muscle Glycogen

1-6 sec 7-20 sec 20-45 sec

Surges and sprints (>80-90)

Short-Term Muscle Glycogen Muscle Glycogen +

Lactic Acid

45-120 sec 120-180 sec

Moderate intensity running (70-79)

Long-Term Muscle Glycogen + Free Fatty Acids

>30 min limited by Oxygen

Low-moderate-intensity running

(<69)

Stage  I:    ATP  from  the  Muscle  

•  ATP  -­‐  Adenosine  Triphosphate:  a  complex  chemical  compound  formed  with  the  energy  released  from  food  and  stored  in  all  cells,  par?cularly  muscles.  

 •  Only  from  the  energy  released  by  the  breakdown  of  this  compound  can  the  cells  perform  work.  The  breakdown  of  ATP  produces  energy  and  ADP.    

ATP:  The  Energy  Carrier  

•  Poten?al  energy  from  food  is  conserved  within  the  bonds  of  ATP.  –  In  the  degrada?on  of  one  mole  of  ATP  to  adenosine  diphosphate  (ADP),  the  outermost  phosphate  bond  splits  and  liberates  approximately  7.3  kCal  of  free  energy.  

 •  ATP  is  the  compound  that  is  directly  used  to  fuel  many  chemical  reac?ons.  

 

ATP:  The  Energy  Currency  •  Food  provides  the  major  sources  of  poten?al  energy  to  rejoin  ADP  and  phosphate  ion  to  form  ATP.  

 •  Some  energy  for  ATP  resynthesis,  however,  comes  directly  from  the  anaerobic  splirng  of  a  phosphate  from  phosphocrea?ne  (PCr).

ATP   ADP  +  P  +   Energy  

ATPase  

PCr   ADP  +  P  +  

Crea?ne  phosphokinase  

Energy  

Where does the energy come…….. For the movement that we need to create?

Muscle Energy Pathway

Duration of Activity

Type of Activity (%MHR)

Immediate ATP in Muscles ATP+PCr

ATP+PCr+ Muscle Glycogen

1-6 sec 7-20 sec 20-45 sec

Surges and sprints (>80-90)

Short-Term Muscle Glycogen Muscle Glycogen +

Lactic Acid

45-120 sec 120-180 sec

Moderate intensity running (70-79)

Long-Term Muscle Glycogen + Free Fatty Acids

>30 min limited by Oxygen

Low-moderate-intensity running

(<69)

Carbohydrate  As  a  Fuel  Source    •  During  glycolysis,  a  net  of  2  ATP  molecules  forms  during  anaerobic  substrate-­‐level  phosphoryla?on.    

•  Pyruvate  converts  to  acetyl-­‐CoA  within  the  mitochondria.    

•  Acetyl-­‐CoA  then  progresses  through  the  citric  acid  cycle.  

     

Carbohydrate  As  a  Fuel  Source  

•  Hydrogen  atoms  released  during  glucose  breakdown  oxidize  via  the  respiratory  chain;  the  energy  generated  couples  to  ADP  phosphoryla?on.  

 •  Electron  transport  serves  as  the  final  common  pathway  where  the  electrons  extracted  from  hydrogen  pass  to  oxygen.  

Carbohydrate  As  a  Fuel  Source  •  More  than  90%  of  ATP  synthesis  takes  place  in  the  respiratory  chain  by  oxida?ve  reac?ons  coupled  with  phosphoryla?on.  

 •  The  complete  oxida?on  of  a  glucose  molecule  in  skeletal  muscle  theore?cally  yields  a  net  total  of  36  ATP  molecules.  

 

Where does the energy come…….. For the movement that we need to create?

Muscle Energy Pathway

Duration of Activity

Type of Activity (%MHR)

Immediate ATP in Muscles ATP+PCr

ATP+PCr+ Muscle Glycogen

1-6 sec 7-20 sec 20-45 sec

Surges and sprints (>80-90)

Short-Term Muscle Glycogen Muscle Glycogen +

Lactic Acid

45-120 sec 120-180 sec

Moderate intensity running (70-79)

Long-Term Glycogen + Free Fatty Acids

>30 min limited by Oxygen

Low-moderate-intensity running

(<69)

Lipid  As  a  Fuel  •  Stored  fat  represents  the  body’s  most  plen?ful  source  of  poten?al  energy.  

 •  The  complete  breakdown  of  a  triacylglycerol  molecule  yields  about  460  molecules  of  ATP.  

     

Moderate  Aerobic  Energy  Grams Kcals

Liver glycogen 110 451

Muscle glycogen 500 2050

Glucose 15 62

Total 625 2563

Subcutaneous and Visceral Fat

7,800 73,320

Intramuscular Fat

161 1513

Total 7961 74,833

From Wilmore and Costill

Lipid  As  a  Fuel  •  Numerous  interconversions  take  place  among  the  food  nutrients.    

•  Fawy  acids  represent  a  noteworthy  excep?on,  as  they cannot  be  synthesized  to  glucose.  

 

•  Fawy  acid  catabolism  requires  oxygen.  

Sources  for  Fat  Catabolism  •  Triacylglycerol  stored  within  the  muscle  fiber  •  Circula?ng  triacylglycerol  in  lipoprotein  

complexes  –  Hydrolyze  –  catalyzed  by  lipoprotein  lipase  

•  Circula?ng  free  fawy  acids  mobilized  from  adipose  ?ssue  

Glycerol  

•  Breakdown  of  a  single  glycerol  molecule  generates  a  total  of  19  ATP  molecules.    

•  Glycerol  provides  carbon  skeletons  for  glucose  synthesis.    

Fawy  Acids  •  Beta  (ß)-­‐oxida?on  converts  a  free  fawy  acid  to  mul?ple  acetyl-­‐CoA  molecules.    – Acetyl-­‐CoA  molecules  are  oxidized  further  in  the  citric  acid  cycle.  

– The  released  hydrogens  oxidize  through  the  respiratory  chain.  

– Each  18-­‐carbon  fawy  acid  molecule  generates  147  molecules  of  ATP.    

Triglyceride  

HORMONES:  Epinephrine,  Cor?sol,  Growth  Hormone  

Protein  •  Protein  serves  as  a  poten?ally  important  energy  substrate.    

•  Nitrogen  is  removed  from  the  amino  acid  molecule  via  deamina?on.  

•  The  remaining  carbon  skeletons  enter  metabolic  pathways  to  produce  ATP.    

Control  of  Metabolic  Pathways  •  Compounds  that  either  inhibit  or  ac?vate  enzymes  at  key  control  points  in  the  oxida?ve  pathways  modulate  control  of  glycolysis  and  the  citric  acid  cycle.  

•  Cellular  ADP  concentra?on  exerts  the  greatest  effect  on  the  rate-­‐limi?ng  enzymes  that  control  energy  metabolism.  

Control  of  Bioenerge/cs  

Pathway Rate-limiting

Enzyme Stimulators Inhibitors

ATP-PC Creatine kinase ADP ATP

Glycolysis Phosphofructo-kinase ADP, ↑pH ATP, ↓pH

Krebs Isocitrate Dehydrogenasese ADP, Ca, NAD ATP, NADH

E.T.C. Cytochrome oxidase ADP, P ATP

Fat  Burning  Zone?  

Running Speed

Energy from Fat

Kcals per minute

Fat kcals from 5 miles

Fat kcals in 30 minutes

Fat kcals in 45 minutes

6.67 mph 9 minutes per mile

60% 13.1 353.7

In 45 min 235.8 353.7

10 mph 6 minutes per mile

40% 17.3 207.6

In 30 min 207.6 311.4

Sport  Specific  Examples  

FOOTBALL  

©

DEMANDS  OF  FOOTBALL  

1.  Iosa,  MF.    2008  

COMPARISON  OF  ANTHROPMETRICS  

1.  Kaiser,  GE,  2008  2.    Kramer,  WJ,  2005  

ENERGY  SYSTEMS  

1.  Pincivero,  DM,  1997,  2.    Hitchcock,  2007  

• Previously, it has been assumed that football relies primarily on an anaerobic source of energy for adenosine triphosphate (ATP) resynthesis with approximately 90% coming from the phosphocreatine (PCr) energy system. • In lieu of research conducted specifically with football players, it appears that the energy contribution from the anaerobic glycolytic pathway in this sport has been underestimated. The elevated blood lactate levels observed in football players following game participation cast doubt on this hypothesis.

ENERGY  SYSTEMS  

1.  Pincivero,  DM,  1997,  2.    Hitchcock,  2007  

ENERGY  SYSTEMS  

1.  Pincivero,  DM,  1997,  2.    Hitchcock,  2007  

ENERGY/NUTRIENT  NEEDS  The  nutri?onal  needs  of  the  11  players  on  the  team  are  dependent  upon  posi?on  and  minutes  played.        Games  are  long,  there  are  many  stops,  and  there  is  a  half-­‐?me  break,  which  must  be  taken  into  considera?on  to  provide  op?mal  fuel.        A  stress  on  size  and  power  has  lead  to  an  increase  in  training;  therefore,  an  increase  in  energy  needs.    

BASKETBALL  

©

 

       

DEMANDS  OF  BASKETBALL  

•  Short,  intense  sequences,  which  reoccur  over  a  longer  period  such  as  the  course  of  a  game  or  a  prac?ce  using  both  the  aerobic  and  anaerobic  energy  systems.  

•  Physical  awributes  include:    –  quickness,  lateral  mobility,  agility  and  balance,  jumping  ability,  coordina?on,  physical  strength,  and  a  combina?on  of  aerobic  and  anaerobic  fitness.  

DEMANDS  OF  BASKETBALL  •  Played  by  teams  of  five  players  •  NBA  

•  40  minutes  playing  ?me    •  Comprised  of  four  quarters  of  10  minutes  each    

•  NCAA  •  1  hour  playing  ?me  •  2    -­‐  30  minute  halves  

•  With  ?me  outs  and  pauses  throughout  the  game,  players  will  ogen  be  on-­‐court  upwards  of  60  minutes  

What  are  players  doing?  •  105  +/-­‐  52  high-­‐intensity  runs  (mean  dura?on  1.7  s)  was  recorded  for  each  game,  resul?ng  in  one  high-­‐intensity  run  every  21  s  during  live  ?me.  

•  A  mean  total  of  Sixty  percent  of  live  ?me  was  spent  engaged  in  low-­‐intensity  ac?vity,  while  15%  was  spent  in  high-­‐intensity  ac?vity.  

•  75%  of  live  ?me  was  spent  with  a  HR  response  of  greater  than  85%  peak  HR  

•  The  mean  blood  lactate  concentra?on  was  6.8  +/-­‐  2.8  mM,  indica?ng  the  involvement  of  glycolysis  in  the  energy  demands  of  basketball  

TENNIS  

DEMANDS  OF  TENNIS  "  Mixture of anaerobic skills: speed, agility, power;

combined with high aerobic capabilities.

"  Work-to-rest ratios range between 1:3 and 1:5

"  Male athletes "  Maintain body fat <12% "  Have maximal oxygen uptake values >50 - 70 mL/kg/min

"  Average point length is >6 s

"  Advancements in the game - the avg point duration in professional tennis matches has decreased

DEMANDS  OF  TENNIS  "  Maximum time players are allowed to take between

points: "   20 seconds "   5.2 seconds is avg

"  Rest allowed 90sec every 2 games played

"   Taking into account average point durations and rest periods, players can therefore expect to rest for 2.3-3.2sec for every second of work performed.

"  Future Research: "  Fatigue "  Recovery "  Hormonal "  Injury  

TENNIS  DEMANDS  

"  Tennis  requires  anaerobic  power,  aerobic  condi?oning,  strength,  and  agility.  Dura?on  and  intensity  can  vary  each  match.  

 "  Male  professional  singles  players  must  win  three  of  five  sets  and  singles  typically  last  2-­‐4  hours.  Females  play  the  best  of  three  sets.  

 "  Most  tournaments  are  1  week  in  length  but  major  tournaments  are  2  weeks  long.  

RUGBY  

©

RUGBY  DEMANDS  

Figure 6. High-intensity work breakdown for the four positional groups (mean data, n=29). The figure illustrates the relative contributions of

various work activities to the total work performed.

1.  Simon,  2008  

RUGBY  DEMANDS  

Figure 2. Total distance (m) travelled over each 10-min period during match-play (n = 10). *Significantly different to 0-10 min (P < 0.05).

1.  Simon,  2008  

Figure 3. Distance travelled for 'running work' over each 10-min period of match-play (n = 10).

RUGBY  DEMANDS  

Figure 4. Time spent performing work activities during each 10-min period of match-play (n = 10).

1.  Simon,  2008  

Table IV. Data for selected work and rest variables (n=29; mean ± s).

Forwards Backs

Front Row Mean (S.D.)

Back Row Mean (S.D.)

Combined Mean (S.D.)

Inside Backs Mean (S.D.)

Outside Backs Mean (S.D.)

Combined Mean (S.D.)

Note: When the same superscript letter appears beside two or more positional groups, a significant difference is present.*Significant difference between forwards and backs.

Frequency (n) of Work 128.5 (27.6)a,b 113.5 (14.5)

c,d 121.9 (23.4)* 51.5 (10.9)a,c 41.6 (9.3)b,d 46.9 (10.8)*

Total Work (min.) 10.5 (1.7)a,b 9.9 (1.9)c,d 10.2 (1.8)* 3.6 (1.0)a,c 3.6 (1.1)b,d 3.6 (1.0)*

Mean Work (s.) 5.0 (0.5) 5.2 (0.6) 5.1 (0.6) 4.2 (0.9) 5.2 (1.3) 4.7 (1.1)

Maximum Work (s.) 21.9 (4.0)a,b 21.8 (5.1)c,d 21.9 (4.3)* 14.1 (2.7)a,c 12.9 (3.7)b,d 13.5 (3.1)*

Maximum Rest (min) 3.5 (0.7)a,b 3.3 (0.7)c,d 3.4 (0.7)* 6.1 (1.4)a,c 6.7 (1.2)b,d 6.4 (1.2)*

Mean Work: Rest Ratio (1: x) 7.3 (1.3)a,b 7.5 (1.8)c,d 7.4 (1.4)* 20.9 (6.5)a,c 22.8 (8.3)b,d 21.8 (7.5)*

1.  Simon,  2008  

ENERGY  SYSTEMS  

COMMON  CONCERNS  

HOCKEY  

©

HOCKEY  DEMANDS  •  45-­‐90  seconds  shigs  •  3    -­‐  20  min  periods  (15  min  breaks  between  periods)    

•  15-­‐30  minutes  of  ice  ?me  •  On  ice  heart  rate  avg  85%  of  VO2  max,  peak  at  90%  max  

•         Varies  with  player’s  efficiency    

•  Aerobic  and  Anaerobic  pathways  are  used  for  energy,  further  aerobic  training  ogen  needed  for  higher  levels  of  on-­‐ice  performance.  Stop  and  go  nature  of  the  sport  uses  both  types  of  muscle  fibers  

 •  Energy  expenditure  higher  for  forwards  in  comparison  to  

defensemen  because  they  cover  more  ice  and  require  more  intense  bursts  of  speed  

 

TYPICAL  HOCKEY  PLAYER  "  Professional  players  range  from  180-­‐210  lbs  and  burn  12-­‐14  calories/kg/hr  OR  about  4.5-­‐6.7  calories/lb/hr  

"  Players  can  expend  3,000-­‐6,000  Kcal/day    "  150  lb  player  requires  72  Kcal/Kg  which  equals  5400  Kcal/day  

 

 

Twist,  et  al.  A  Physiological  Analysis  of  Ice  Hockey  Posi?ons.  Na?onal  Strength  and  Condi?oning  Associa?on  Journal.    2008;15(6):44-­‐46.  

POSITION  SPECIFIC  Position Type of Movement

Goaltender Quick, explosive movements, short in

duration, interspersed w/periods of rest and sub- max activity (aerobic recovery) Predominantly type I muscle fiber

Forward Increased anaerobic activity, aerobic recovery between high intensity shifts (on ice 35% time)

Defensemen Skate slower generally, shorter recovery and higher off- ice heart rates than forwards (on ice 50% of time) Typically taller and heavier of the athletes

Twist,  et  al.  A  Physiological  Analysis  of  Ice  Hockey  Posi?ons.  Na?onal  Strength  and  Condi?oning  Associa?on  Journal.    2008;15(6):44-­‐46.  

PROFESSIONAL  HOCKEY  SCHEDULE  •  In  the  regular  season,  each  team  plays  82  games    

–  41  games  at  home  and  41  on  the  road    –  Each  team  plays  24  games  in  its  division  (6  against  each  divisional  opponent)  

–  40  games  against  non-­‐divisional  intra-­‐conference  opponents.    •  That  is,  4  games  against  each  team  in  its  conference,  but  not  in  its  own  division.    

–  Each  team  plays  every  team  in  the  other  conference  at  least  once  (one  game  each  against  12  teams  and  two  games  against  the  remaining  3  teams).    

•  Approximately  3  games/week  plus  travel  

SOCCER  CASE  STUDY    

Soccer:  What  defines  it?  

•  Short,  intense  bursts  of  ac?vity  combined  with  moderately  intense  exercise  and  occasional  rest  periods.    

•  The  field  is  larger  than  that  of  a  football  field  and  players  will  cover  ~5-­‐7  miles  in  a  game.  The  game  consists  of  two,  45  minute  halves  with  a  15  minute  halgime.  

•  A  75  kg  player  may  expend  1500  kcal  in  a  game  and  could  lose  about  1.5  L  of  flud.  

Energy  Demands  •  Typically  these  athletes  train  to  improve  endurance  capacity  as  

well  as  muscle  strength  and  condi?oning.  Both  anaerobic  and  aerobic  energy  produc?on  is  important.  

•  Anaerobic  energy  produc?on  is  essen?al  for  high-­‐intensity  exercise,  although  sprin?ng  occurs  less  than  1%  of  total  playing  ?me.  

•  Total  energy  expended  during  a  soccer  match  is  directly  related  to  the  distance  covered  during  the  90  minutes  of  the  game  (and  warm  up).    

•  The  stop  and  go  nature  uses  both  types  of  muscle  fibers,  the  fast  twitch  fibers  exhibit  the  greatest  degree  of  glycogen  deple?on  and  slow  twitch  are  ac?vated  at  lower  workloads.  

Energy  Demands  

PROFESSIONAL  PLAYERS    Walking      Defenders  0.62  mile  Midfielders  1.62  miles  Awackers    2.11  miles  

UNDER  18  JUNIORS    Walking      Defenders  1.86  miles  Midfielders  1.2  miles  Awackers      2.86  miles  

Soccer  Running  Work  and  Distance  Carried  Out  During  a  Game  

*  Data  from  Condi?oning  for  Soccer  by  Dr.  Raymond  Verheijen  

Energy  Demands  

PROFESSIONAL  PLAYERS    Jogging      Defenders  1.2  miles  Midfielders  3.2  miles  Awackers    1.2  miles  

UNDER  18  JUNIORS    Jogging      Defenders  1.6  miles  Midfielders  3.7  miles  Awackers    1.4  miles  

Soccer  Running  Work  and  Distance  Carried  Out  During  a  Game  

*  Data  from  Condi?oning  for  Soccer  by  Dr.  Raymond  Verheijen  

Energy  Demands  

PROFESSIONAL  PLAYERS    Running      Defenders  0.9  mile  Midfielders  1.1  miles  Awackers    1  mile  

UNDER  18  JUNIORS    Running      Defenders  0.75  mile  Midfielders  0.75  mile  Awackers    0.74  mile  

Soccer  Running  Work  and  Distance  Carried  Out  During  a  Game  

*  Data  from  Condi?oning  for  Soccer  by  Dr.  Raymond  Verheijen  

Energy  Demands  

Soccer  Running  Work  and  Distance  Carried  Out  During  a  Game  

PROFESSIONAL  PLAYERS    Sprin?ng      Defenders  0.87  mile  Midfielders  0.64  mile  Awackers    1.1  miles  

UNDER  18  JUNIORS    Sprin?ng      Defenders  0.56  mile  Midfielders  0.50  mile  Awackers    0.81  mile  

*  Data  from  Condi?oning  for  Soccer  by  Dr.  Raymond  Verheijen  

Energy  Demands  

Soccer  Running  Work  and  Distance  Carried  Out  During  a  Game  

PROFESSIONAL  PLAYERS    Total  Distance      Defenders  5.2  miles  Midfielders  6.8  miles  Awackers    6.1  miles  

UNDER  18  JUNIORS    Total  Distance      Defenders  5.0  miles  Midfielders  6.6  miles  Awackers    5.8  miles  

*  Data  from  Condi?oning  for  Soccer  by  Dr.  Raymond  Verheijen  

Energy  Demands  Soccer  Sprint  Work  Carried  Out  Over  Various  Distances  During  a  Game  

PROFESSIONAL  PLAYERS  Total  Number  of  Sprints      Defenders  162  Midfielders  127  Awackers    182  

UNDER  18  JUNIORS  Total  Number  of  Sprints      Defenders  101  Midfielders  094  Awackers    134  

Energy  Demands  Soccer  Sprint  Work  Carried  Out  Over  Various  Distances  During  a  Game  

Professional  soccer  players  make  150  sprints  during  a  game,  and  amateurs  50.      Players  in  the  first  group  therefore  make  an  average  of  2  sprints  per  minute,  and  those  in  the  second  group  0.5  sprints  per  minute.      These  are  average  values  but  players  may  need  to  make  3  to  5  sprints  per  minute  during  intensive  periods  of  play.  

hwp://www.spineuniverse.com/displayar?cle.php/ar?cle1469.html  

©  

Soccer  players  who  are  under-­‐fueled  tend  to  cover  less  ground  in  the  second  half    Soccer  players  who  are  op4mally  fueled  are  able  to  perform  33%  more  HIGH  intensity  running  during  games  and  prac?ces    Soccer  players  who  are  just  slightly  dehydrated  experienced:  

1.  Slower  running  speeds  2.  Deteriorated  dribbling  skills  3.  Training  and  play  seemed  harder    PROPER  NUTRITION  WILL  HELP  YOUR  PERFORMANCE  AND  

RECOVERY!    

Figure 1. Time-motion and intensity analysis of PM (Purposeful Movement) performed by players of different positions. Bloomfield et al., 2007. Physical Demands of Different Positions in FA Premier League Soccer. Journal of Sports Science and

Medicine. 6: 63-70

Muscle  Glycogen  Concentra?on  

Muscle  Glycogen  Concentra?on  

Muscle  Glycogen  Concentra?on  

The match is averaged at

70% of VO2 Max

Muscle Energy Pathway

Duration of Activity

Type of Activity (%MHR)

Immediate ATP in Muscles ATP+PCr

ATP+PCr+ Muscle Glycogen

1-6 sec 7-20 sec 20-45 sec

Surges and sprints (>80-90)

Short-Term Muscle Glycogen Muscle Glycogen +

Lactic Acid

45-120 sec 120-180 sec

Moderate intensity running (70-79)

Long-Term Muscle Glycogen + Free Fatty Acids

>30 min limited by Oxygen

Low-moderate-intensity running

(<69)

Energy  Expenditure  vs.  Intake      

•  German  Football  Club  (2006)  – Training  Day:  

•  Energy  Expenditure  =  3,859  +  823  kcal/day  •  Energy  Intake  =  2,780  +  823  kcal/day  •  CHO  Expenditure  =  444.57  +  18.2  g/day  •  CHO  Intake  =  327.00  +  168.3  g/day  

Energy  Expenditure  vs.  Intake      

•  German  Football  Club  (2006)  – Match  Day:    

•  Energy  Expenditure  =  5,021  +  1,269  kcal/day  •  Energy  Intake  =  2,809  +  1,178  kcal/day  •  CHO  Expenditure  =  663.93  +  338.57  g/day  •  CHO  Intake  =  318.62  +  132.87  g/day  •  ***Energy  expenditure  was  significantly  higher  during  the  second  half  (717  kcal)  vs.  the  first  half  (622  kcala)  

•  CHO  expenditure  was  significanly  higher  during  the  second  half  (152g)  vs.  the  first  half  (125g)  

Energy  Expenditure  vs.  Intake      

•  German  Football  Club  (2006)  – Rest  Day:  

•  Energy  Expenditure  =  2,985  kcal/day  +  434  kcal/day  •  Energy  Intake  =  2,485  +  857  kcal/day  •  No  significant  difference  between  CHO  intake  and  expenditure  

Energy  Expenditure  vs.  Intake    

 •  US  Professional  Soccer  Club  (2007)  

–  6  Players  of  Similar  Size  (190#)and  Energy  Needs  

Nutrient Intake Needs Energy (Kcal) 2617 3500

Carbohydrate (g) 333.9 5g/kg = 443.2 (51% kcal)

Dietary Fiber (g) 31.0 25-35 for health

Protein (g) 129.9 1.4g/kg = 124

Fat (g) 66.7 n/a

Sat Fat (g) 18.7 n/a

Energy  Expenditure  vs.  Intake    

 •  Qatar  Professional  Soccer  Club  

–  10  Players  of  Similar  Size  (147#)and  Energy  Needs  

Nutrient Intake Needs Energy (Kcal) 3387 3500

Carbohydrate (g) 458 5g/kg = 335 (51% kcal)

Dietary Fiber (g) 17.8 25-35 for health

Protein (g) 141 1.4g/kg = 124

Fat (g) 120 n/a

Sat Fat (g) 45 n/a

Interna?onal  Journal  of  Sports  Physiology  &  Performance,  Jun2007,  Vol.  2  Issue  2,  p111-­‐127  

Interna?onal  Journal  of  Sports  Physiology  &  Performance,  Jun2007,  Vol.  2  Issue  2,  p111-­‐127  

Journal  of  Sports  Sciences,  Jul2006,  Vol.  24  Issue  7,  p665-­‐674  

Breaking  Down  Performance  Nutri?on  

Training  Day  

Game  or  Race  Day  

Vs.

Everyday  Nutri?on/Hydra?on:  The  founda/on  to  performance  Nutri/on  

Performance  Nutri/on  

TIMING  

FUEL/FLUIDS  

©

“Sport  is  not  Science,  but  Science  may  improve  the  Level  of  

Sport”  (Modified  Bangsbo,  1993)  

1. Noun

1. The act or process of nourishing or being nourished: the sum of the

processes by which an animal or plant takes in and utilizes food

©

To  suckle,  nourish,  flow,  damp,  “it  drips”  

HABITUAL  INTAKE  

Amanda  Carlson,  MS,  RD,  CSSD  [email protected]  

480-­‐449-­‐9000  www.athletesperformance.com  www.coreperformance.com  

 For  more  info  on  our  educa@on  programs:  www.athletesperformance.com/educa?on