outline - harvard universityqpt.physics.harvard.edu/talks/goa.pdf · outline 1. quantum...

191

Upload: others

Post on 01-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 2: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 3: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 4: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 5: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ground state has long-range Néel order

Square lattice antiferromagnet

H =∑〈ij〉

Jij�Si · �Sj

Order parameter is a single vector field �ϕ = ηi�Si

ηi = ±1 on two sublattices

〈�ϕ〉 �= 0 in Neel state.

Page 6: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Antiferromagnetic (Neel) order in the insulator

No entanglement of spins

Page 7: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Weaken some bonds to induce spin

entanglement in a new quantum phase

Page 8: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Oxygen

SrCu2O3

Copper

Page 9: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 10: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ground state is a product of pairs

of entangled spins.

Page 11: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Phase diagram as a function of the ratio of

exchange interactions, λ

λ

Page 12: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ground state is a product of pairs

of entangled spins.

Page 13: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitation: S=1 triplon

Page 14: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitation: S=1 triplon

Page 15: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitation: S=1 triplon

Page 16: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitation: S=1 triplon

Page 17: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitation: S=1 triplon

Page 18: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

G. Xu, C. Broholm, Yeong-Ah Soh, G. Aeppli, J. F. DiTusa, Y. Chen, M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, and H. Takagi, Science 317, 1049 (2007).

Neutron scattering

Y2BaNiO5

Page 19: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Collision of triplons

Page 20: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Collision of triplons

Page 21: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Collision of triplons

-1

Collision S-matrix

Page 22: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Collision of triplons

Page 23: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Collision of triplons

Page 24: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

G. Xu, C. Broholm, Yeong-Ah Soh, G. Aeppli, J. F. DiTusa, Y. Chen, M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, and H. Takagi, Science 317, 1049 (2007).

Parameter free

prediction by K. Damle

and S. Sachdev, Phys.

Rev. B 57, 8307 (1998)

from multiple collisions

with universal,

quantum S-matrices

Neutron scattering linewidth

Y2BaNiO5

Page 25: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Phase diagram as a function of the ratio of

exchange interactions, λ

λλc

Quantum critical point with non-local

entanglement in spin wavefunction

Page 26: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Phase diagram as a function of the ratio of

exchange interactions, λ

λλc

Sϕ =

∫d2xdτ

[1

2

(c2 (∇x�ϕ)

2+ (∂τ �ϕ)

2+ s�ϕ2

)+ u

(�ϕ2

)2]

Landau-Ginzburg-Wilson Theory

Page 27: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Observation of longitudinal mode in

TlCuCl3Christian Ruegg, Bruce Normand, Masashige

Matsumoto, Albert Furrer, Desmond McMorrow,

Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm

Page 28: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ground state has long-range Néel order

Square lattice antiferromagnet

H =∑〈ij〉

Jij�Si · �Sj

Order parameter is a single vector field �ϕ = ηi�Si

ηi = ±1 on two sublattices

〈�ϕ〉 �= 0 in Neel state.

Page 29: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

H =∑〈ij〉

Jij�Si · �Sj

Square lattice antiferromagnet

Page 30: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

H =∑〈ij〉

Jij�Si · �Sj

Square lattice antiferromagnet

Page 31: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

LGW theory for quantum criticality

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

Sϕ =

∫d2xdτ

[1

2

(c2 (∇x�ϕ)

2+ (∂τ �ϕ)

2+ s�ϕ2

)+ u

(�ϕ2

)2]

Page 32: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

LGW theory for quantum criticality

Sϕ =

∫d2xdτ

[1

2

(c2 (∇x�ϕ)

2+ (∂τ �ϕ)

2+ s�ϕ2

)+ u

(�ϕ2

)2]

sNeel state

sc

〈�ϕ〉 �= 0〈�ϕ〉 = 0

State with no broken symmetries. Fluc-

tuations of �ϕ about �ϕ = 0 realize a sta-ble S = 1 quasiparticle with energy εk =√

s + c2k2

A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994)

Page 33: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

LGW theory for quantum criticality

Sϕ =

∫d2xdτ

[1

2

(c2 (∇x�ϕ)

2+ (∂τ �ϕ)

2+ s�ϕ2

)+ u

(�ϕ2

)2]

sNeel state

sc

〈�ϕ〉 �= 0〈�ϕ〉 = 0

A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994)

However, S = 1/2 antiferromagnets on

the square lattice have no such state.

Page 34: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 35: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

“Liquid” of valence bonds has

fractionalized S=1/2 excitations

=1√2

(|↑↓〉 − |↓↑〉)

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 36: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

“Liquid” of valence bonds has

fractionalized S=1/2 excitations

=1√2

(|↑↓〉 − |↓↑〉)

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 37: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

“Liquid” of valence bonds has

fractionalized S=1/2 excitations

=1√2

(|↑↓〉 − |↓↑〉)

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 38: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

“Liquid” of valence bonds has

fractionalized S=1/2 excitations

=1√2

(|↑↓〉 − |↓↑〉)

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 39: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

“Liquid” of valence bonds has

fractionalized S=1/2 excitations

=1√2

(|↑↓〉 − |↓↑〉)

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 40: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

“Liquid” of valence bonds has

fractionalized S=1/2 excitations

=1√2

(|↑↓〉 − |↓↑〉)

There is no state with a gapped, stable S=1 quasiparticle and no broken symmetries

Page 41: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Decompose the Neel order parameter into spinors

�ϕ = z∗α�σαβzβ

where �σ are Pauli matrices, and zα are complex spinors which carry

spin S = 1/2.

Key question: Can the zα become the needed S = 1/2 exci-

tations of a fractionalized phase ?

Effective theory for spinons must be invariant under the U(1) gauge

transformation

zα → eiθzα

Possible theory for fractionalization and topological order

Page 42: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Decompose the Neel order parameter into spinors

�ϕ = z∗α�σαβzβ

where �σ are Pauli matrices, and zα are complex spinors which carry

spin S = 1/2.

Key question: Can the zα become the needed S = 1/2 exci-

tations of a fractionalized phase ?

Effective theory for spinons must be invariant under the U(1) gauge

transformation

zα → eiθzα

Possible theory for fractionalization and topological order

Page 43: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Possible theory for fractionalization and topological order

Decompose the Neel order parameter into spinors

�ϕ = z∗α�σαβzβ

where �σ are Pauli matrices, and zα are complex spinors which carry

spin S = 1/2.

Key question: Can the zα become the needed S = 1/2 exci-

tations of a fractionalized phase ?

Effective theory for spinons must be invariant under the U(1) gauge

transformation

zα → eiθzα

Page 44: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Possible theory for fractionalization and topological order

Naive expectation: Low energy spinon theory for “quantum dis-

ordering” a Neel state is

Sz =

∫d2xdτ

[c2 |(∇x − iAx)zα|2 + |(∂τ − iAτ )zα|2 + s |zα|2

+ u(|zα|2

)2+

1

4e2(εμνλ∂νAλ)2

]

Page 45: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

s

〈zα〉 �= 0

Neel state

Possible theory for fractionalization and topological order

〈zα〉 = 0

Spin liquid state with stable S = 1/2 zα

spinons, and a gapless U(1) photon Aμ

representing the topological order.

sc

Naive expectation: Low energy spinon theory for “quantum dis-

ordering” a Neel state is

Sz =

∫d2xdτ

[c2 |(∇x − iAx)zα|2 + |(∂τ − iAτ )zα|2 + s |zα|2

+ u(|zα|2

)2+

1

4e2(εμνλ∂νAλ)2

]

Page 46: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Spin liquid state with stable S = 1/2 zα

spinons, and a gapless U(1) photon Aμ

representing the topological order.

s

〈zα〉 �= 0

Neel state

Possible theory for fractionalization and topological order

〈zα〉 = 0

sc

Naive expectation: Low energy spinon theory for “quantum dis-

ordering” a Neel state is

Sz =

∫d2xdτ

[c2 |(∇x − iAx)zα|2 + |(∂τ − iAτ )zα|2 + s |zα|2

+ u(|zα|2

)2+

1

4e2(εμνλ∂νAλ)2

]

However, monopoles in the Aμ field will

proliferate because of the gap to zα exci-

tations, and lead to confinement of zα.

Page 47: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 48: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 49: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Z2 gauge theory for fractionalization and topological order

• Discrete gauge theories do have deconfined phases in 2+1 dimensions.

• Find a collective excitation Φ with the gauge transformation

Φ → e2iθΦ

• Higgs state with 〈Φ〉 �= 0 is described by the fractionalized phase of a

Z2 gauge theory in the which the spinons zα carry Z2 gauge charges (E.

Fradkin and S. Shenker, Phys. Rev. D 19, 3682 (1979)).

• What is Φ in the antiferromagnet ? Its physical interpretation becomes

clear from its allowed coupling to the spinons:

Sz,Φ =

∫d2rdτ [λΦ∗εαβzα∂xzβ + c.c.]

From this coupling it follows that the states with 〈Φ〉 �= 0 have coplanarspin correlations.

Page 50: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Z2 gauge theory for fractionalization and topological order

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)A. Chubukov, T. Senthil, and S. Sachdev Phys. Rev. Lett. 72, 2089 (1994).

• Discrete gauge theories do have deconfined phases in 2+1 dimensions.

• Find a collective excitation Φ with the gauge transformation

Φ → e2iθΦ

• Higgs state with 〈Φ〉 �= 0 is described by the fractionalized phase of a

Z2 gauge theory in the which the spinons zα carry Z2 gauge charges (E.

Fradkin and S. Shenker, Phys. Rev. D 19, 3682 (1979)).

• What is Φ in the antiferromagnet ? Its physical interpretation becomes

clear from its allowed coupling to the spinons:

Sz,Φ =

∫d2rdτ [λΦ∗εαβzα∂xzβ + c.c.]

From this coupling it follows that the states with 〈Φ〉 �= 0 have coplanarspin correlations.

Page 51: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Z2 gauge theory for fractionalization and topological order

• Discrete gauge theories do have deconfined phases in 2+1 dimensions.

• Find a collective excitation Φ with the gauge transformation

Φ → e2iθΦ

• Higgs state with 〈Φ〉 �= 0 is described by the fractionalized phase of a

Z2 gauge theory in the which the spinons zα carry Z2 gauge charges (E.

Fradkin and S. Shenker, Phys. Rev. D 19, 3682 (1979)).

• What is Φ in the antiferromagnet ? Its physical interpretation becomes

clear from its allowed coupling to the spinons:

Sz,Φ =

∫d2rdτ [λΦ∗εαβzα∂xzβ + c.c.]

From this coupling it follows that the states with 〈Φ〉 �= 0 have coplanarspin correlations.

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)A. Chubukov, T. Senthil, and S. Sachdev Phys. Rev. Lett. 72, 2089 (1994).

Page 52: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 53: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Experimental realization: CsCuCl3

Page 54: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

U(1) spin liquid unstable to confinement

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+ |(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]

s1

s2

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

Page 55: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

U(1) spin liquid unstable to confinement

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+ |(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]

s1

s2

Page 56: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

U(1) spin liquid unstable to confinement

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

s1

s2

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+ |(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]

Page 57: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Characteristics of Z2 spin liquid

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

• Two classes of gapped excitations:

– Bosonic spinons zα which carry Z2 gauge charge

– Z2 vortex associated with 2πn winding in phase of Φ. This vortex

appears as a π flux-tubes to spinons

• Ground state degeneracy is sensitive to topology: a Φ-vortex can be

inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

• Formulation in lattice model as an ‘odd’ Z2 gauge theory (R. Jalabert

and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.

Fisher, Phys. Rev. B 62, 7850 (2000))

• Structure identical to that found later in exactly solvable model: the Z2

toric code (A. Kitaev, quant-ph/9707021).

• Same states (without spinons) and Z2 gauge theories found to describe

liquid phases of quantum dimer models (R. Moessner and S. L. Sondhi,

Phys. Rev. Lett. 86, 1881 (2001).

Page 58: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Characteristics of Z2 spin liquid

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

• Two classes of gapped excitations:

– Bosonic spinons zα which carry Z2 gauge charge

– Z2 vortex associated with 2πn winding in phase of Φ. This vortex

appears as a π flux-tubes to spinons

• Ground state degeneracy is sensitive to topology: a Φ-vortex can be

inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

• Formulation in lattice model as an ‘odd’ Z2 gauge theory (R. Jalabert

and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.

Fisher, Phys. Rev. B 62, 7850 (2000))

• Structure identical to that found later in exactly solvable model: the Z2

toric code (A. Kitaev, quant-ph/9707021).

• Same states (without spinons) and Z2 gauge theories found to describe

liquid phases of quantum dimer models (R. Moessner and S. L. Sondhi,

Phys. Rev. Lett. 86, 1881 (2001).

Page 59: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Characteristics of Z2 spin liquid

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

• Two classes of gapped excitations:

– Bosonic spinons zα which carry Z2 gauge charge

– Z2 vortex associated with 2πn winding in phase of Φ. This vortex

appears as a π flux-tubes to spinons

• Ground state degeneracy is sensitive to topology: a Φ-vortex can be

inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

• Formulation in lattice model as an ‘odd’ Z2 gauge theory (R. Jalabert

and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.

Fisher, Phys. Rev. B 62, 7850 (2000))

• Structure identical to that found later in exactly solvable model: the Z2

toric code (A. Kitaev, quant-ph/9707021).

• Same states (without spinons) and Z2 gauge theories found to describe

liquid phases of quantum dimer models (R. Moessner and S. L. Sondhi,

Phys. Rev. Lett. 86, 1881 (2001).

Page 60: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Characteristics of Z2 spin liquid

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

• Two classes of gapped excitations:

– Bosonic spinons zα which carry Z2 gauge charge

– Z2 vortex associated with 2πn winding in phase of Φ. This vortex

appears as a π flux-tubes to spinons

• Ground state degeneracy is sensitive to topology: a Φ-vortex can be

inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

• Formulation in lattice model as an ‘odd’ Z2 gauge theory (R. Jalabert

and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.

Fisher, Phys. Rev. B 62, 7850 (2000))

• Structure identical to that found later in exactly solvable model: the Z2

toric code (A. Kitaev, quant-ph/9707021).

• Same states (without spinons) and Z2 gauge theories found to describe

liquid phases of quantum dimer models (R. Moessner and S. L. Sondhi,

Phys. Rev. Lett. 86, 1881 (2001).

Page 61: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Characteristics of Z2 spin liquid

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

• Two classes of gapped excitations:

– Bosonic spinons zα which carry Z2 gauge charge

– Z2 vortex associated with 2πn winding in phase of Φ. This vortex

appears as a π flux-tubes to spinons

• Ground state degeneracy is sensitive to topology: a Φ-vortex can be

inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

• Formulation in lattice model as an ‘odd’ Z2 gauge theory (R. Jalabert

and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.

Fisher, Phys. Rev. B 62, 7850 (2000))

• Structure identical to that found later in exactly solvable model: the Z2

toric code (A. Kitaev, quant-ph/9707021).

• Same states (without spinons) and Z2 gauge theories found to describe

liquid phases of quantum dimer models (R. Moessner and S. L. Sondhi,

Phys. Rev. Lett. 86, 1881 (2001).

Page 62: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 63: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 64: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

U(1) spin liquid unstable to confinement

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

s1

s2

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+ |(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]

Page 65: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

U(1) spin liquid unstable to confinement

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

s1

s2

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+ |(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]

Page 66: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Partition function on cubic lattice in spacetime

LGW theory: weights in partition function are those of a classical ferromagnet at a “temperature” g

Quantum theory for destruction of Neel order

Z =∏a

∫d�ϕaδ

(�ϕ2

a − 1)exp

(1

g

∑a,μ

�ϕa · �ϕa+μ

)

Page 67: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

eiA/2

Page 68: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Partition function on cubic lattice in spacetime

LGW theory: weights in partition function are those of a classical ferromagnet at a “temperature” g

Quantum theory for destruction of Neel order

Z =∏a

∫d�ϕaδ

(�ϕ2

a − 1)exp

(1

g

∑a,μ

�ϕa · �ϕa+μ

)

Page 69: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Coherent state path integral on cubic lattice in spacetime

Modulus of weights in partition function: those of a classical ferromagnet at a “temperature” g

Quantum theory for destruction of Neel order

Z =∏a

∫d�ϕaδ

(�ϕ2

a − 1)exp

(1

g

∑a,μ

�ϕa · �ϕa+μ + iSBerry

)

Page 70: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Partition function on cubic lattice

Quantum theory for destruction of Neel order

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Z =∏a

∫d�ϕaδ

(�ϕ2

a − 1)exp

(1

g

∑a,μ

�ϕa · �ϕa+μ + iSBerry

)

Page 71: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Partition function on cubic lattice

Quantum theory for destruction of Neel order

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Partition function expressed as a gauge theory of spinor degrees of freedom

Z =∏a

∫d�ϕaδ

(�ϕ2

a − 1)exp

(1

g

∑a,μ

�ϕa · �ϕa+μ + iSBerry

)

Z =∏a

∫dzaαdAaμδ

(∑α

|zaα|2 − 1

)

× exp

(1

g

∑a,μ

z∗aαeiAaµza+μ,α + i∑

a

ηaAaτ

)

Page 72: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Large g effective action for the Aaμ after integrating z μ

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).

K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).

Z =∏a,μ

∫dAaμ exp

(1

2e2

∑�

cos (ΔμAaν − ΔνAaμ) + i∑

a

ηaAaτ

)

Page 73: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 74: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 75: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 76: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 77: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 78: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 79: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 80: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 81: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 82: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 83: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 84: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ψvbs(i) =∑〈ij〉

�Si · �Sjei arctan(rj−ri)

Page 85: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

U(1) spin liquid unstable to confinement

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

s1

s2

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+ |(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]

Page 86: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

s1

s2

U(1) spin liquid unstable to VBS order

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+|(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]+ monopoles + SBerry

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

Page 87: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Monopole

fugacity

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

Page 88: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

s1

s2

U(1) spin liquid unstable to VBS order

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+|(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]+ monopoles + SBerry

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)

Page 89: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel state

Phase diagram of gauge theory of spinons

〈zα〉 �= 0 , 〈Φ〉 = 0

Spiral state

〈zα〉 �= 0 , 〈Φ〉 �= 0

〈zα〉 = 0 , 〈Φ〉 = 0

〈zα〉 = 0 , 〈Φ〉 �= 0

Z2 spin liquid with bosonic spinons zα

s1

s2

U(1) spin liquid unstable to VBS order

Sz,Φ =

∫d2xdτ

[|(∂μ − iAμ)zα|2 + s1 |zα|2 + u

(|zα|2)2

+1

4e2(εμνλ∂νAλ)2

+|(∂μ − 2iAμ)Φ|2 + s2|Φ|2 + u|Φ|4 + λΦ∗εαβzα∂xzβ + c.c.

]+ monopoles + SBerry

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

Page 90: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Probability distribution

of VBS order vbs at

quantum critical point

Emergent circular

symmetry is

evidence for U(1)

photon and

topological order

A.W. Sandvik, Phys. Rev. Lett. 98, 2272020 (2007).

Re[Ψvbs]

Im[Ψvbs]

Page 91: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 92: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 93: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 94: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Outline

1. Quantum “disordering” magnetic order Collinear order and confinement

2. Z2 spin liquids Noncollinear order and fractionalization

3. U(1) spin liquids Valence bond solid (VBS) order

4. Doped spin liquids Superconductors with topological order

Page 95: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Hole dynamics in an antiferromagnet across a deconfined quantum critical point, R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75 , 235122 (2007)

Algebraic charge liquids and the underdoped cuprates, R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil, arXiv:0706.2187, Nature Physics, in press.

Page 96: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

La2CuO4

or

Phase diagram of doped antiferromagnets

Hole density x

s1g

Page 97: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel VBS

A = (2π)2x/8

Phase diagram of lightly doped antiferromagnet

Neel VBS

A = (2π)2x/4

s

sc

P

0

Neel

VBS

Holon metal

x

g

gc

Page 98: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Pictorial explanation of factor of 2:

• In the Neel phase, sublattice index is identical to spin index.

So for each valley and momentum, degeneracy of the hole

state is 2.

• In the VBS state, the sublattice index and the spin index are

distinct. So for each valley and momentum, degeneracy of

the hole state is 4.

Page 99: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

• Begin with the representation of the quantum antiferromagnet

as the lattice CP1 model:

Sz = −1

g

∑a,μ

z∗aαeiAaµza+μ,α + i∑

a

ηaAaτ

• Write the electron operator at site r, cα(r) in terms of fermionicholon operators f±

cα(r) =

{f†+(r)zrα for r on sublattice A

εαβf†−(r)z∗rβ for r on sublattice B

Note that the holons fs have charge s under the U(1) gauge field

Aμ.

Page 100: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

• Include the hopping between opposite sublattices (Shraiman-

Siggia term):

St = −t∑〈rr′〉

c†α(r)cα(r′) + h.c.

= −t∑〈rr′〉

(f†+(r)zrα)†εαβf†

−(r′)z∗rβ

• Complete theory for doped antiferromagnet:

S = Sz + Sf + St

• Choose the dispersion, ε(�k) of the f± in momentum space so that

its minima are at (±π/2,±π/2). To avoid double-counting, thesedispersions must be restricted to be within the diamond Brillouinzone.

Sf =

∫dτ

∑s=±

∫♦

d2k

4π2f†

s (�k)

(∂τ − isAτ + ε(�k − s �A)

)fs(�k)

Page 101: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel VBS

A = (2π)2x/8

Phase diagram of lightly doped antiferromagnet

s

sc

P

0

Neel

VBS

Holon metal

Neel VBS

A = (2π)2x/4

x

g

gc

Page 102: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Neel VBS

A = (2π)2x/8

Phase diagram of lightly doped antiferromagnet

s

sc

P

0

Neel

VBS

Holon metal

Neel VBS

A = (2π)2x/4

x

g

gc

Page 103: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

A new non-Fermi liquid phase:

The holon metal

An algebraic charge liquid.

K1

K4

K3

K2

Area of each Fermi pocket,

A = (2π)2x/4.

The Fermi pocket will show sharp

magnetoresistance oscillations, but

it is invisible to photoemission.

• Ignore compactness in Aμ and Berry phase term.

• Neutral spinons zα are gapped.

• Charge e fermions fs form Fermi surfaces and carry charges s = ±1

under the U(1) gauge field Aμ.

• Quasi-long range order in a variety of VBS and pairing correlations.

Page 104: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

N. Doiron-Leyraud, C. Proust,

D. LeBoeuf, J. Levallois,

J.-B. Bonnemaison, R. Liang,

D. A. Bonn, W. N. Hardy, and

L. Taillefer, Nature 447, 565

(2007)

Quantum oscillations and

the Fermi surface in an

underdoped high Tc su-

perconductor (ortho-II or-

dered YBa2Cu3O6.5).

Page 105: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Holon pairing leading to d-wave superconductivity

First consider holon pairing in the Neel state, where holon=hole.

This was studied in V. V. Flambaum, M. Yu. Kuchiev, and O. P. Sushkov, Physica C 227, 267 (1994); V. I. Belincher et al., Phys. Rev. B 51, 6076 (1995). They found p-wave pairing of holons, induced by spin-wave exchange from the sublattice mixing term . This corresponds to d-wave pairing of physical electrons

St

Page 106: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Holon pairing leading to d-wave superconductivity

K1

K4

K3

K2

Page 107: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Holon pairing leading to d-wave superconductivity

K1

K4

K3

K2

++

-

-

Gap

nodes

Page 108: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Holon pairing leading to d-wave superconductivity

K1

K4

K3

K2

++

-

-

Gap

nodes

We assume the same pairing holds across a transition involving loss

of long-range Neel order. The resulting phase is another algebraic

charge liquid - the holon superconductor. This superconductor

has gapped spinons with no electrical charge, and spinless, nodal

Bogoliubov-Dirac quasiparticles. The superconductivity does notgap the U(1) gauge field Aμ, because the Cooper pairs are gauge

neutral.

Page 109: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Low energy theory of holon superconductor

4 two-component Dirac quasiparticles coupled to a U(1) gauge field

Sholon superconductor =

∫dτd2r

[1

2e20

(εμνλ∂νAλ)2

+

4∑i=1

ψ†i (Dτ − ivF (∂x − iAx)τx − ivF (∂y − iAy)τy) ψi

]

Page 110: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Low energy theory of holon superconductor

External vector potential �A couples as

HA = �j · �A

where

jx = vF

(ψ†

3ψ3 − ψ†1ψ1

), jx = vF

(ψ†

4ψ4 − ψ†2ψ2

)are conserve charges of Sholon superconductor.

Fundamental property: The superfluid density, ρs, has the fol-

lowing x and T dependence:

ρs(x, T ) = cx −RkBT

where c is a non-universal constant and R is a universal constant

obtained in a 1/N expansion (N = 4 is the number of Dirac

fermions):

R = 0.4412 +0.307

N+ . . .

Page 111: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 112: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

x

T

AFMott

Insulator AFMetal

AF+dSC

Algebraic charge liquid

Superconducting algebraic charge liquid

Page 113: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Conclusions

1. Theory for Z2 and U(1) spin liquids in quantum antiferromagnets, and evidence for their realization in model spin systems.

2. Algebraic charge liquids appear naturally upon adding fermionic carriers to spin liquids with bosonic spinons. These are conducting states with topological order.

3. The holon metal/superconductor, obtained by doping a Neel-ordered insulator, matches several observed characteristics of the underdoped cuprates.

Page 114: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 115: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 116: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 117: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 118: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb atoms - bosons

Page 119: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

The insulator:

Page 120: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitations of the insulator:

Page 121: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Excitations of the insulator:

S =

∫d2rdτ

[|∂τψ|2 + c2|�∇ψ|2 + s|ψ|2 +

u

2|ψ|4

]

Page 122: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

S =

∫d2rdτ

[|∂τψ|2 + c2|�∇ψ|2 + s|ψ|2 +

u

2|ψ|4

]

Page 123: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

S =

∫d2rdτ

[|∂τψ|2 + c2|�∇ψ|2 + s|ψ|2 +

u

2|ψ|4

]

Page 124: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Superfluid-insulator transition at fractional filling f

f =1/2 Superfluid

Insulator

Possible continuous superfluid-insulator transition is described by a more complex CFT

L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Physical Review B 71, 144508 (2005)

Page 125: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Superfluid-insulator transition at fractional filling f

f =1/16

Insulator

Possible continuous superfluid-insulator

transition is described by a more

complex CFT

(a) (b)

(c) (d)y

x

L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Physical Review

B 71, 144508 (2005)

Page 126: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Dope the antiferomagnets with charge carriers of density x by applying a chemical potential μ

Page 127: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

μSuperconductor

Page 128: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

μSuperconductor

Scanning tunnelling microscopy

Page 129: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

STM studies of the underdoped superconductor

Page 130: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

12 nm

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Y. Kohsaka et al. Science 315, 1380 (2007)

Topograph

Page 131: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Intense Tunneling-Asymmetry (TA)

variation are highly similar

dI/dV Spectra

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Y. Kohsaka et al. Science 315, 1380 (2007)

Page 132: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

12 nm

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Y. Kohsaka et al. Science 315, 1380 (2007)

Topograph

Page 133: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

12 nm

Tunneling Asymmetry (TA)-map at E=150meV

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Y. Kohsaka et al. Science 315, 1380 (2007)

Page 134: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

12 nm

Tunneling Asymmetry (TA)-map at E=150meV

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Y. Kohsaka et al. Science 315, 1380 (2007)

Page 135: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

12 nm

Tunneling Asymmetry (TA)-map at E=150meV

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Y. Kohsaka et al. Science 315, 1380 (2007)

Indistinguishable bond-centered TA contrast

with disperse 4a0-wide nanodomains

Page 136: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ca1.88Na0.12CuO2Cl2, 4 KR map (150 mV)

4a0

12 nm

TA Contrast is at oxygen site (Cu-O-Cu bond-centered)

Y. Kohsaka et al. Science 315, 1380 (2007)

Page 137: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ca1.88Na0.12CuO2Cl2, 4 KR map (150 mV)

4a0

12 nm

TA Contrast is at oxygen site (Cu-O-Cu bond-centered)

S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).

Evidence for VBS order - a valence bond supersolid

Page 138: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

μSuperconductor

Page 139: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

g

μSuperconductor

Insulator x =1/8

Page 140: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

g

μSuperconductor

Insulator x =1/8

Page 141: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 142: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 143: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

S =

∫d2rdτ

[|∂τψ|2 + c2|�∇ψ|2 + s|ψ|2 +

u

2|ψ|4

]

Page 144: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

g

T

gc

0InsulatorSuperfluid

Quantumcritical

TKT

Page 145: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

g

T

gc

0InsulatorSuperfluid

Quantumcritical

TKT

Wave oscillations of the condensate (classical Gross-

Pitaevski equation)

Page 146: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

g

T

gc

0InsulatorSuperfluid

Quantumcritical

TKT

Dilute Boltzmann gas of particle and holes

Page 147: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

g

T

gc

0InsulatorSuperfluid

Quantumcritical

TKT

CFT at T>0

Page 148: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

D. B. Haviland, Y. Liu, and A. M. Goldman,

Phys. Rev. Lett. 62, 2180 (1989)

Resistivity of Bi films

M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

Conductivity σ

σSuperconductor(T → 0) = ∞σInsulator(T → 0) = 0

σQuantum critical point(T → 0) ≈ 4e2

h

Page 149: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Density correlations in CFTs at T >0

Two-point density correlator, χ(k, ω)

Kubo formula for conductivity σ(ω) = limk→0

−iω

k2χ(k, ω)

Page 150: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Density correlations in CFTs at T >0

Two-point density correlator, χ(k, ω)

Kubo formula for conductivity σ(ω) = limk→0

−iω

k2χ(k, ω)

Page 151: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Density correlations in CFTs at T >0

Two-point density correlator, χ(k, ω)

Kubo formula for conductivity σ(ω) = limk→0

−iω

k2χ(k, ω)

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Page 152: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Density correlations in CFTs at T >0

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Page 153: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 154: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 155: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 156: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)

Imχ(k, ω)/k2 ImK√

k2 − ω2

Collisionless to hydrodynamic crossover of SYM3

Page 157: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)

Imχ(k, ω)/k2

ImDχc

Dk2 − iω

Collisionless to hydrodynamic crossover of SYM3

Page 158: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Universal constants of SYM3

σ(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

4e2

hK , �ω � kBT

4e2

hΘ1Θ2 , �ω kBT

χc =kBT

(hv)2Θ1

D =hv2

kBTΘ2

K =

√2N3/2

3

Θ1 =8π2

√2N3/2

9

Θ2 =3

8π2

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)

C. Herzog, JHEP 0212, 026 (2002)

Page 159: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Electromagnetic self-duality

Page 160: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 161: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

1. Superfluid-insulator transitionInteger and fractional filling

2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s

3. SYM3 with N = 8 supersymmetry

4. Nernst effect in the cuprate superconductorsQuantum criticality and dyonic black holes

Outline

Page 162: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Ca1.90Na0.10CuO2Cl2

Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy

Dope the antiferomagnets with charge carriers of density x by applying a chemical potential μ

Page 163: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

μSuperconductor

Page 164: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

μSuperconductor

Nernst measurements

Page 165: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Nernst experiment

H

ey

Hm

Page 166: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

g

μSuperconductor

Insulator x =1/8

Page 167: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

T

g

μSuperconductor

Insulator x =1/8

Nernst measurements

Page 168: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

For experimental applications, we must move away from the ideal CFT

e.g.

• A chemical potential μ

• A magnetic field BCFT

Page 169: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 170: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 171: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Conservation laws/equations of motion

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 172: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Constitutive relations which follow from Lorentz transformation to moving frame

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 173: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Single dissipative term allowed by requirement of positive entropy production. There is only one

independent transport co-efficient

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 174: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

For experimental applications, we must move away from the ideal CFT

e.g.

CFT

• A chemical potential μ

• A magnetic field B

CFT

Page 175: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

For experimental applications, we must move away from the ideal CFT

e.g.

• A chemical potential μ

• A magnetic field B

• An impurity scattering rate 1/ imp (its T dependence

follows from scaling arguments)

CFTCFT

Page 176: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 177: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 178: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 179: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 180: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 181: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 182: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 183: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 184: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

From these relations, we obtained results for the transport co-efficients, expressed in terms of a “cyclotron” frequency and damping:

Transverse thermoelectric co-efficient(h

2ekB

)αxy = ΦsB (kBT )2

(2πτimp

)2ρ2 + ΦσΦε+P (kBT )3 �/2πτimp

Φ2ε+P (kBT )6 + B

2ρ2(2πτimp/�)2

,

where

B = Bφ0/(�v)2 ; ρ = ρ/(�v)2.

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 185: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

LSCO - Theory

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 186: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

LSCO - Experiments

N. P. Ong et al.

Page 187: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Only input parameters Output

LSCO - Theory

�v = 47 meV A

τimp ≈ 10−12 sωc = 6.2GHz · B

1T

(35K

T

)3

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 188: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

Only input parameters Output

LSCO - Theory

�v = 47 meV A

τimp ≈ 10−12 sωc = 6.2GHz · B

1T

(35K

T

)3

Similar to velocity estimates by A.V. Balatsky and Z-X. Shen, Science 284, 1137 (1999).

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 189: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear

To the solvable supersymmetric, Yang-Mills theory CFT, we add

• A chemical potential μ

• A magnetic field B

After the AdS/CFT mapping, we obtain the Einstein-Maxwell theory of a black hole with

• An electric charge

• A magnetic charge

The exact results are found to be in precise accord with

all hydrodynamic results presented earlier

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 190: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear
Page 191: Outline - Harvard Universityqpt.physics.harvard.edu/talks/goa.pdf · Outline 1. Quantum “disordering” magnetic order Collinear order and confinement 2. Z 2 spin liquids Noncollinear