oscillations beyond three-neutrino mixing carlo giunti · lsnd [prl 75 (1995) 2650; prc 54 (1996)...

46
Oscillations Beyond Three-Neutrino Mixing Carlo Giunti INFN, Sezione di Torino [email protected] Neutrino Unbound: http://www.nu.to.infn.it Neutrino 2016 XXVII International Conference on Neutrino Physics and Astrophysics 4-9 July 2016 – London, UK C. Giunti - Oscillations Beyond Three-Neutrino Mixing - Neutrino 2016 - 5 July 2016 - 1/37

Upload: others

Post on 29-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Oscillations Beyond Three-Neutrino MixingCarlo Giunti

INFN, Sezione di Torino

[email protected]

Neutrino Unbound: http://www.nu.to.infn.it

Neutrino 2016XXVII International Conference on Neutrino Physics and Astrophysics

4-9 July 2016 – London, UK

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 1/37

Page 2: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Oscillations Beyond Three-Neutrino Mixing

I Light Sterile Neutrinos.

I Non-Unitarity of Mixing Matrix.

I Non-Standard Interactions.

I Magnetic Moments.

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 2/37

Page 3: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Indications of SBL Oscillations Beyond 3ν

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 3/37

Page 4: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

LSND[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

νµ → νe 20MeV ≤ E ≤ 60MeV

I Well-known source of νµ

µ+ at rest → e+ + νe + νµ

νe + p → n + e+

Well-known detection process of νe

I But signal not seen by KARMEN atL ' 18m with the same method

[PRD 65 (2002) 112001]

L ' 30m

≈ 3.8σ excess ∆m2SBL & 0.2 eV2 � ∆m2

ATM � ∆m2SOL

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 4/37

Page 5: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE

νe Sources: e− + 51Cr → 51V + νe e− + 37Ar → 37Cl + νe

Test of Solar νe Detection: νe +71Ga → 71Ge + e−

E ' 0.75MeV E ' 0.81MeV

0.7

0.8

0.9

1.0

1.1

R=N

expN

cal

Cr1GALLEX

CrSAGE

Cr2GALLEX

ArSAGE

R = 0.84 ± 0.05

〈L〉GALLEX = 1.9m

〈L〉SAGE = 0.6m

≈ 2.9σ deficit

∆m2SBL & 1 eV2 � ∆m2

ATM � ∆m2SOL

[SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807]

[Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344;MPLA 22 (2007) 2499; PRD 78 (2008) 073009;

PRC 83 (2011) 065504]

I 3He+ 71Ga → 71Ge+ 3H cross section measurement [Frekers et al., PLB 706 (2011) 134]

I Eth(νe +71Ga → 71Ge + e−) = 233.5± 1.2 keV [Frekers et al., PLB 722 (2013) 233]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 5/37

Page 6: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Reactor Electron Antineutrino Anomaly[Mention et al, PRD 83 (2011) 073006; updated in White Paper, arXiv:1204.5379]

New reactor νe fluxes [Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617]

0.6

0.8

1.0

1.2

L [m]

R=N

expN

cal

10 102

103

R = 0.933 ± 0.021

Bugey−3Bugey−4Rovno91

GosgenILLKrasno

Rovno88SRPChooz

Palo VerdeDouble ChoozDaya Bay

NuciferNeutrino−4

≈ 3.2σ deficit ∆m2SBL & 0.5 eV2 � ∆m2

ATM � ∆m2SOL

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 6/37

Page 7: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Beyond Three-Neutrino Mixing: Sterile Neutrinos

νe νµ ντ

∆m2

SOL

∆m2

ATM

...νs2

νs1

∆m2

SBL

ν4

ν3

ν2

ν1

...ν5

m

& 1 eV2

≃ 2.5× 10−3 eV2

≃ 7.4× 10−5 eV2

Terminology: a eV-scale sterile neutrinomeans: a eV-scale massive neutrino which is mainly sterile

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 7/37

Page 8: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Four-Neutrino Schemes: 2+2, 3+1 and 1+3

ν1

ν2

∆m2

SOL

∆m2

SBL

ν4

ν3

∆m2

ATM

m

∆m2

SBL

∆m2

SOL

ν1

ν2

ν4

ν3

∆m2

ATM

m

ν1

ν2

ν3

ν4

∆m2

ATM

∆m2

SOL

∆m2

SBL

m

ν3

ν2

ν4

∆m2

ATM

∆m2

SBL

∆m2

SOL

ν1

m

∆m2

SBL

∆m2

ATM

ν1

ν2

ν3

ν4

∆m2

SOL

m

∆m2

SBL

ν4

∆m2

SOL

ν1

ν2

ν3

∆m2

ATM

m

2+2 3+1 1+3

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 8/37

Page 9: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

2+2 Four-Neutrino Schemes

ν1

ν2

∆m2

SOL

∆m2

SBL

ν4

ν3

∆m2

ATM

m

∆m2

SBL

∆m2

SOL

ν1

ν2

ν4

ν3

∆m2

ATM

m

I After LSND (1995) 2+2 was preferred to 3+1, because of the 3+1appearance-disappearance tension

[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

I This is not a perturbation of 3-ν Mixing =⇒ Large active–sterileoscillations for solar or atmospheric neutrinos!

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 9/37

Page 10: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

2+2 Schemes are Strongly Disfavored

0 0.2 0.4 0.6 0.8 1

ηs

0

10

20

30

40

50

∆χ

2

99% CL (1 dof)

sola

r + K

am

LA

ND

sola

r

sola

r (pr

e SNO

sal

t)

0 0.2 0.4 0.6 0.8 1

ηs

χ2

PG

χ2

PCatm + K2K + SBL

global

sola

r + K

am

LA

ND

0 0.05 0.1 0.15 0.2

atm

osp

heric

+ K

2K

99% CL (1 dof)

Solar: Matter Effects + SNO NC Atmospheric: Matter Effects

ηs = |Us1|2 + |Us2|2 = 1− |Us3|2 + |Us4|2

99% CL:

{ηs < 0.25 (Solar + KamLAND)ηs > 0.75 (Atmospheric + K2K)

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 10/37

Page 11: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

3+1 and 1+3 Four-Neutrino Schemes

ν1

ν2

ν3

ν4

∆m2

ATM

∆m2

SOL

∆m2

SBL

m

ν3

ν2

ν4

∆m2

ATM

∆m2

SBL

∆m2

SOL

ν1

m

∆m2

SBL

∆m2

ATM

ν1

ν2

ν3

ν4

∆m2

SOL

m

∆m2

SBL

ν4

∆m2

SOL

ν1

ν2

ν3

∆m2

ATM

m

3+1 1+3

I Perturbation of 3-ν Mixing: |Ue4|2, |Uµ4|2, |Uτ4|2 � 1 |Us4|2 ' 1I 1+3 schemes are disfavored by cosmology (ΛCDM):

3∑k=1

mk < 0.21 eV (95%, Planck TT + lowP + BAO) [arXiv:1502.01589]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 11/37

Page 12: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Effective 3+1 SBL Oscillation Probabilities

Appearance (α 6= β)

PSBL(−)

να→(−)

νβ

' sin2 2ϑαβ sin2

(∆m2

41L

4E

)

sin2 2ϑαβ = 4|Uα4|2|Uβ4|2

Disappearance

PSBL(−)

να→(−)

να

' 1− sin2 2ϑαα sin2(∆m2

41L

4E

)

sin2 2ϑαα = 4|Uα4|2(1− |Uα4|2

)

U =

Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4

SBL

I 6 mixing angles

I 3 Dirac CP phases

I 3 Majorana CP phases

I CP violation is not observable in SBLexperiments!

I Observable in LBL accelerator exp.sensitive to ∆m2

ATM [de Gouvea et al, PRD 91 (2015)

053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD

91 (2015) 073017, PLB 757 (2016) 142; Gandhi et al, JHEP 1511

(2015) 039] and solar exp. sensitive to ∆m2SOL

[Long, Li, CG, PRD 87, 113004 (2013) 113004]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 12/37

Page 13: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

3+1 Appearance-Disappearance Tension

νe DISsin2 2ϑee ' 4|Ue4|2

νµ DISsin2 2ϑµµ ' 4|Uµ4|2

νµ → νe APP

sin2 2ϑeµ = 4|Ue4|2|Uµ4|2 ' 14 sin

2 2ϑee sin2 2ϑµµ

[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

sin22ϑeµ

∆m

412

[e

V2]

10−4

10−3

10−2

10−1

1

10−1

1

10

+

+

10−4

10−3

10−2

10−1

1

10−1

1

10

3+1 GLO

νe DISνµ DIS

DISAPP

I νµ → νe is quadratically suppressed!

I Similar constraint in

3+2, 3+3, . . . , 3+Ns

[CG, Zavanin, MPLA 31 (2015) 1650003]

Update of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (2016) 033001]with improved treatment of the MiniBooNE background disappearancedue to neutrino oscillations according to information from Bill Louis(thanks!)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 13/37

Page 14: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Collin, Arguelles, Conrad, Shaevitz[NPB 908 (2016) 354]

Our FitUpdate of [Gariazzo, CG, Laveder, Li, Zavanin,

JPG 43 (2016) 033001]

sin22ϑeµ

∆m

412 [e

V2]

10−4

10−3

10−2

10−1

1

10−2

10−1

1

10

102

+

3+1 GLO

90% CL

99% CL

Best Fit: ∆m241 = 1.75 eV2

|Ue4|2 = 0.027 |Uµ4|2 = 0.014

GoF = 57% (χ2min/NDF = 306.8/312)

GoFnull = 4.4% (χ2/NDF = 359.2/315)

∆χ2/NDF = 52.3/3 (≈ 6.7σ)

Best Fit: ∆m241 = 1.6 eV2

|Ue4|2 = 0.028 |Uµ4|2 = 0.014

GoF = 6% (χ2min/NDF = 304.0/268)

GoFnull = 0.04% (χ2/NDF = 355.2/271)

∆χ2/NDF = 51.2/3 (≈ 6.6σ)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 14/37

Page 15: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Kopp, Machado, Maltoni, Schwetz[JHEP 1305 (2013) 050]

Our FitUpdate of [Gariazzo, CG, Laveder, Li, Zavanin,

JPG 43 (2016) 033001]

sin22ϑeµ

∆m

412 [e

V2]

10−4

10−3

10−2

10−1

10−1

1

10APP 90.00% CL

APP 99.00% CL

APP 99.73% CL

DIS 90.00% CL

DIS 99.00% CL

DIS 99.73% CL

Best Fit: ∆m241 = 0.93 eV2

|Ue4|2 = 0.023 |Uµ4|2 = 0.029

GoF = 19% (χ2min/NDF = 712/680)

GoFPG = 0.01% (χ2PG/NDF = 18.0/2)

Best Fit: ∆m241 = 1.6 eV2

|Ue4|2 = 0.028 |Uµ4|2 = 0.014

GoF = 6% (χ2min/NDF = 304.0/268)

GoFPG = 0.06% (χ2/NDF = 15.0/2)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 15/37

Page 16: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

MiniBooNE Low-Energy Anomaly

νµ → νe [PRL 102 (2009) 101802]

LSND signal

νµ → νe [PRL 110 (2013) 161801]

LSND signal

I Fit of MB Low-Energy Excess requires small ∆m241 and large sin2 2ϑeµ, in

contradiction with disappearance data

I MB low-energy excess is the main cause of bad APP-DIS GoFPG = 0.06%

I Multinucleon effects in neutrino energy reconstruction are not enough to solvethe problem [Martini et al, PRD 85 (2012) 093012; PRD 87 (2013) 013009; PRD 93 (2016) 073008]

I Pragmatic Approach: discard the Low-Energy Excess because it is likely notdue to oscillations [CG, Laveder, Li, Long, PRD 88 (2013) 073008]

I MicroBooNE is crucial for checking the MiniBooNE Low-Energy Anomaly andthe consistency of different short-baseline data

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 16/37

Page 17: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

sin22ϑeµ

∆m

412 [e

V2]

10−4

10−3

10−2

10−1

10−1

1

103σ

DISAPP−GLOAPP−PrGLO

I APP-GLO: all MiniBooNE data

I APP-PrGLO: only MiniBooNE E > 475MeV data (Pragmatic)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 17/37

Page 18: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Pragmatic Global 3+1 FitUpdate of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (2016) 033001]

(−)νe →(−)

νe

sin22ϑee

∆m

412

[e

V2]

10−2

10−1

1

10−1

1

10

+

3+1 PrGLO

νe DIS

(−)νµ →(−)

νe

sin22ϑeµ

∆m

412

[e

V2]

10−4

10−3

10−2

10−1

1

10

+

+

3+1 PrGLO

APPDIS

(−)νµ →(−)

νµ

sin22ϑµµ

∆m

412

[e

V2]

10−2

10−1

1

10−1

1

10

+

3+1 PrGLO

νµ DIS (99.73% CL)

IceCube (99% CL)MINOS (95% CL)

GoF = 24% PGoF = 7%No Osc. disfavored at ≈ 6.2σ

∆χ2/NDF = 46.6/3

Not yet included:– IceCube, arXiv:1605.01990– MINOS Preliminary, arXiv:1605.04544

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 18/37

Page 19: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

SBL + IceCube

[Collin, Arguelles, Conrad, Shaevitz, arXiv:1607.00011]

SBL SBL + IceCube

Red: 90% CL Blue: 99% CL 4

3+1 ∆m2

41 |Ue4| |Uµ4| |Uτ4| Nbins χ2

min χ2

null ∆χ2 (dof)

SBL 1.75 0.163 0.117 - 315 306.81 359.15 52.34 (3)SBL+IC 1.75 0.164 0.119 0.00 524 518.59 568.84 50.26 (4)

IC 5.62 - 0.314 - 209 207.11 209.69 2.58 (2)

TABLE I: The oscillation parameter best-fit points for 3 + 1 for the combined SBL and IceCube data sets compared to SBLalone. Units of ∆m2 are eV2.

∆m2/eV2 |Ue4| |Uµ4| |Uτ4| θ346 [0.17,0.21] [0.10,0.13] [0.00,0.05] < 6◦

2 [0.13,0.20] [0.09,0.15] [0.00,0.70] < 80◦

TABLE II: The 90% CL regions for matrix elements and theupper limit on θ34 for the two allowed regions in ∆m2. For∆m2 = 1 eV2 there are no allowed regions at 90%CL

limits extends to sin22θ24 ≤ 0.02 at ∆m2 ∼ 0.3 eV2 at90% CL for θ34 = 0 [29]. To incorporate this result intothe fit, we must relate the mixing angles θ14, θ24, andθ34 to the short-baseline neutrino oscillation probabili-ties. The oscillation amplitudes in this parameterizationare found by substituting the matrix elements in Eq. (5)into Eq. (2); e.g., sin2 2θµe = sin2 2θ14 sin

2 θ24. Since theshort baseline anomalies imply sin2 2θµe #= 0, it followsthat we cannot assume θ14 = 0 in a global fit.

It has been shown [43] that the presence of the MSWresonance critically depends on the value of θ34. In par-ticular, when θ34 is maximal, there is no matter inducedresonant enhancement. On the other hand, as noted byRef. [32], increasing θ34 distorts the atmospheric νµ to ντneutrino oscillation. The interplay between these effectsmakes the IceCube data sensitive to θ34. We obtain theconstraint on this parameter by sampling logarithmicallyin sin2(2θ34) from 10−3 to 1. The CP phases have a sub-leading contribution in comparison to the θ34 effect [32];thus, they have been set to zero.

We describe the specific techniques of including theIceCube into the fits in the electronic appendix to this ar-ticle. In short, the IceCube likelihood must be convertedto a χ2 that can be combined with the SBL data. Thehigh computational cost of propagating neutrino fluxesthrough the Earth with nuSQuIDS prevents the analysisfrom being directly included into the global fitting soft-ware. Instead, the global fits were used to find a reducedset of parameters (“test points”) that could be evalu-ated directly. This assumes that the effect of IceCube onthe global fit is a small perturbation, which is reasonablegiven that the IceCube-only ∆χ2 is small compared tothe SBL only global fit ∆χ2 (see Table I).

RESULTS

Figs. 1 and 2 show the SBL+IceCube global 3 + 1 fitresult. The former shows ∆m2

41vs sin2 2θµe, as defined

in Eq. 3. The latter presents the result as a function ofmixing matrix element. The |Uτ4| result is presented on alinear scale because one test point, the preferred solution,is |Uτ4| = 0.

The IceCube data excludes the solution at ∼ 1 eV2

at 90% CL, although that solution persists at 99% CL.This has important implications for future sterile neu-trino searches, in particular the Fermilab SBN programwhere the position of the ICARUS T600 detector waschosen to align with a large potential signal for 1 eV2

sterile neutrinos [25].As discussed, the SBL experiments constrain |Ue4| and

|Uµ4|, while the IceCube analysis has strong dependenceon |Uµ4| and |Uτ4| through the MSW resonance. Thus,including IceCube provides insight into the less explored|Uτ4| parameter. Using |Uτ4| = cos θ14 cos θ24 sin θ34, weconvert the results to the 90% C.L. ranges in Tab. II. At∆m2 ∼ 5 eV2, our limit improves the bound of θ34 < 25◦

at 90% C.L. from MINOS [44] by a factor of two.For the first time, this new result on |Uτ4| allows us to

have a complete picture of the extended lepton mixingmatrix:|U | =

0.79 → 0.83 0.53 → 0.57 0.14 → 0.15 0.13 (0.17) → 0.20 (0.21)0.25 → 0.50 0.46 → 0.66 0.64 → 0.77 0.09 (0.10) → 0.15 (0.13)0.26 → 0.54 0.48 → 0.69 0.56 → 0.75 0.0 (0.0) → 0.7 (0.05)

. . . . . . . . . . . .

.

(6)

Above, “. . . ” represents parameters constrained by theoverall unitarity of the 4 × 4 matrix. The ranges in thematrix correspond are a 90% confidence interval. Theentries in the last column correspond to this work andare given for ∆m2 ∼ 2 eV2 (∆m2 ∼ 6 eV2). The inter-vals shown in each entry for the standard 3×3 submatrixwere obtained from Ref. [36], and are independent of ourfit. As a check of consistency, our values in the fourthcolumn can be compared with the upper bounds fromthe 3× 3 non-unitarity analysis in Ref. [36], which gave|Ue4| < 0.27, |Uµ4| < 0.73, and |Uτ4| < 0.623 at 90%CL.Our results in Eq. 6 are fully compatible with these up-per limits, which are based on standard 3-neutrino os-cillation measurements exclusive of any sterile neutrino

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 19/37

Page 20: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

The Race for the Light Sterile

(−)νe →(−)

νe

sin22ϑee

∆m

412

[e

V2]

10−2

10−1

1

10−1

1

10

+

KATRIN − 2σ

CeSOX (95% CL)

BEST (95% CL)

IsoDAR@KamLAND (5yr, 3σ)

IsoDAR@C−ADS (5yr, 3σ)

DANSS (1yr, 95% CL)

NEOS (0.5yr, 95% CL)

Neutrino−4 (1yr, 95% CL)

PROSPECT phase 1 (3yr, 3σ)

PROSPECT phase 2 (3yr, 3σ)

SoLiD phase 1 (1yr, 95% CL)

SoLiD phase 2 (3yr, 3σ)

STEREO (1yr, 95% CL)

(−)νµ →(−)

νe

sin22ϑeµ

∆m

412

[e

V2]

10−4

10−3

10−2

10−1

1

10

+

3+1 PrGLO

SBN (3yr, 3σ)nuPRISM (3σ)

JSNS2 (3σ)

(−)νµ →(−)

νµ

sin22ϑµµ

∆m

412

[e

V2]

10−2

10−1

1

10−1

1

10

+

3+1 PrGLO

SBN (3yr, 3σ)KPipe (3yr, 3σ)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 20/37

Page 21: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Effective 3+2 SBL Oscillation Probabilities[Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004]

PSBL(−)νµ→

(−)νe

= 4|Ue4|2|Uµ4|2sin2∆41 + 4|Ue5|2|Uµ5|2sin2∆51

+8|Uµ4Ue4Uµ5Ue5|sin∆41sin∆51cos(∆54

(+)− η)

PSBL(−)να→

(−)να

= 1− 4(1− |Uα4|2 − |Uα5|2)(|Uα4|2sin2∆41 + |Uα5|2sin2∆51)

−4|Uα4|2|Uα5|2sin2∆54

∆kj = ∆m2kjL/4E η = arg[U∗

e4Uµ4Ue5U∗µ5]

I Good: CP violationI Bad: Two massive sterile neutrinos at the eV scale!

4 more parameters: ∆m241, |Ue4|2, |Uµ4|2,︸ ︷︷ ︸

3+1

∆m251, |Ue5|2, |Uµ5|2, η

[Conrad, Shaevitz et al, PRD 75 (2007) 013011, PRD 80 (2009) 073001, AHEP 2013 (2013) 163897, NPB 908 (2016) 354;Maltoni, Schwetz, et al, PRD 76 (2007) 093005, PRL 107 (2011) 091801, JHEP 1305 (2013) 050; Bandyopadhyay, Choubey,arXiv:0707.2481; Akhmedov, Schwetz, JHEP 1010 (2010) 115; Laveder et al, PRD 84 (2011) 073008, PRD 88 (2013) 073008,JPG 43 (2016) 033001; Donini et al, JHEP 1107 (2011) 105, JHEP 1207 (2012) 161; Archidiacono et al, PRD 86 (2012) 065028,PRD 87 (2013) 125034; Jacques, Krauss, Lunardini, PRD 87 (2013) 083515; Girardi, Meroni, Petcov, JHEP 1311 (2013) 146]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 21/37

Page 22: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

3+2 Appearance-Disappearance Tension

Global Fits Our Fit KMMS3+1 3+2 3+1 3+2

GoF 6% 10% 19% 23%

PGoF 0.06% 0.3% 0.01% 0.003%

I Our Fit: Update of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (2016) 033001]

I KMMS: [Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050]

4|Ue4|2|Uµ4|

2

4|U

e5|2

|Uµ

5|2

+

+10

−410

−310

−210

−110

−4

10−3

10−2

10−1

3+2 − 3σ

APP

DIS

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 22/37

Page 23: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

3+2 cannot fit MiniBooNE Low-Energy Excess

−0

.20

.00

.20

.40

.6

E [MeV]

Exce

ss E

ve

nts

/ M

eV

200 400 600 800 1000 1200 1400 3000

MiniBooNE − νe

Data

3+1

3+2

−0

.10

.00

.10

.20

.3

E [MeV]

Exce

ss E

ve

nts

/ M

eV

200 400 600 800 1000 1200 1400 3000

MiniBooNE − νe

Data

3+1

3+2

I Note difference between 3+2 νe and νe histograms due to CP violation

I 3+2 can fit slightly better the small νe excess at about 600 MeV

I 3+2 fit of low-energy excess as bad as 3+1

I Claims that 3+2 can fit low-energy excess do not take into accountconstraints from other data

I Conclusion: with current data 3+2 is not needed

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 23/37

Page 24: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Effects of light sterile neutrinos should also be seen in:

I β Decay Experiments[Hannestad et al, JCAP 1102 (2011) 011, PRC 84 (2011) 045503, Formaggio, Barrett, PLB 706 (2011) 68; Esmaili, Peres,PRD 85 (2012) 117301; Gastaldo et al, JHEP 1606 (2016) 061]

I Neutrinoless Double-β Decay Experiments[Rodejohann et al, JHEP 1107 (2011) 091; Li, Liu, PLB 706 (2012) 406; Meroni et al, JHEP 1311 (2013) 146, PRD 90(2014) 053002; Pascoli et al, PRD 90 (2014) 093005 CG, Zavanin, JHEP 1507 (2015) 171; Guzowski et al, PRD 92 (2015)012002]

I Long-baseline Neutrino Oscillation Experiments[de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017,PLB 757 (2016) 142, arXiv:1601.05995, arXiv:1603.03759, arXiv:1605.04299; Gandhi et al, JHEP 1511 (2015) 039; Pant etal, arXiv:1509.04096, Choubey, Pramanik, arXiv:1604.04731]

I Solar neutrinos[Dooling et al, PRD 61 (2000) 073011, Gonzalez-Garcia et al, PRD 62 (2000) 013005; Palazzo, PRD 83 (2011) 113013,PRD 85 (2012) 077301; Li et al, PRD 80 (2009) 113007, PRD 87, 113004 (2013), JHEP 1308 (2013) 056; Kopp et al,JHEP 1305 (2013) 050]

I Atmospheric neutrinos[Goswami, PRD 55 (1997) 2931; Bilenky et al, PRD 60 (1999) 073007; Maltoni et al, NPB 643 (2002) 321, PRD 67 (2003)013011; Choubey, JHEP 0712 (2007) 014; Razzaque, Smirnov, JHEP 1107 (2011) 084, PRD 85 (2012) 093010; Gandhi,Ghoshal, PRD 86 (2012) 037301; Barger et al, PRD 85 (2012) 011302; Esmaili et al, JCAP 1211 (2012) 041, JCAP 1307(2013) 048, JHEP 1312 (2013) 014; Rajpoot et al, EPJC 74 (2014) 2936; Lindner et al, JHEP 1601 (2016) 124; Behera etal, arXiv:1605.08607]

I Supernova neutrinos[Caldwell, Fuller, Qian, PRD 61 (2000) 123005; Peres, Smirnov, NPB 599 (2001); Sorel, Conrad, PRD 66 (2002) 033009;Tamborra et al, JCAP 1201 (2012) 013; Wu et al, PRD 89 (2014) 061303; Esmaili et al, PRD 90 (2014) 033013]

I Cosmic neutrinos[Cirelli et al, NPB 708 (2005) 215; Donini, Yasuda, arXiv:0806.3029; Barry et al, PRD 83 (2011) 113012]

I Indirect dark matter detection [Esmaili, Peres, JCAP 1205 (2012) 002]

I Cosmology [see: Wong, ARNPS 61 (2011) 69; Archidiacono et al, AHEP 2013 (2013) 191047]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 24/37

Page 25: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Effective 3+1 LBL Oscillation Probabilities[de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017,

PLB 757 (2016) 142, arXiv:1601.05995, arXiv:1603.03759, arXiv:1605.04299; Gandhi et al, JHEP 1511 (2015) 039]

|Ue3| ' sinϑ13 ' 0.15 ∼ ε =⇒ ε2 ∼ 0.03

|Ue4| ' sinϑ14 ' 0.17 ∼ ε

|Uµ4| ' sinϑ24 ' 0.11 ∼ ε

α ≡ ∆m221

|∆m231|

' 7× 10−5

2.4× 10−3' 0.031 ∼ ε2

At order ε3: [Klop, Palazzo, PRD 91 (2015) 073017] ∆kj ≡ ∆m2kjL/4E

PLBLνµ→νe ' 4 sin2 ϑ13 sin

2 ϑ23 sin2∆31 ∼ ε2

+2 sinϑ13 sin 2ϑ12 sin 2ϑ23(α∆31) sin∆31 cos(∆32 + δ13) ∼ ε3

+4 sinϑ13sinϑ14sinϑ24 sinϑ23 sin∆31 sin(∆31 + δ13 − δ14) ∼ ε3

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 25/37

Page 26: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

CP Violation in T2K and NOνA[Capozzi, CG, Laveder, Palazzo, in preparation]

0.0 0.1 0.2 0.31.0−

0.5−

0.0

0.5

1.0

0.0 0.1 0.2 0.31.0−

0.5−

0.0

0.5

1.0

0.0 0.1 0.2 0.31.0−

0.5−

0.0

0.5

1.0

0.0 0.1 0.2 0.31.0−

0.5−

0.0

0.5

1.0

68%90%

Rea.90%

13θ22sin 13θ22sin

π13δ

π13δ

Norm

al Ordering

Inverted Ordering

ν3 ν4

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.31.0−

0.5−

0.0

0.5

1.0

1.0−

0.5−

0.0

0.5

1.0

0.07 0.08 0.09 0.101.0−

0.5−

0.0

0.5

1.0

0.07 0.08 0.09 0.101.0−

0.5−

0.0

0.5

1.0

0.07 0.08 0.09 0.101.0−

0.5−

0.0

0.5

1.0

0.07 0.08 0.09 0.101.0−

0.5−

0.0

0.5

1.0

68%90%

13θ22sin 13θ22sin

π13δ

π13δ

Norm

al Ordering

Inverted Ordering

ν3 ν4

0.07 0.08 0.09 0.10 0.07 0.08 0.09 0.101.0−

0.5−

0.0

0.5

1.0

1.0−

0.5−

0.0

0.5

1.0

LBL + Reactors

NormalOrdering

π14

δ

π13

δ

13θ2

2sin

13

θ2

2sin

1.0− 0.5− 0.0 0.5 1.0

68%

90%

0.07 0.08 0.09 0.10

0.07

0.08

0.09

0.10

1.0−

0.5−

0.0

0.5

1.0

π14

δ

π13

δ

13θ2

2sin

13

θ2

2sin

1.0− 0.5− 0.0 0.5 1.0

68%

90%

0.07 0.08 0.09 0.10

0.07

0.08

0.09

0.10

1.0−

0.5−

0.0

0.5

1.0

InvertedOrdering

Better agreement of LBL & Reactors for δ14 ≈ −π/2C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 26/37

Page 27: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

New Physics

Small (Majorana)Neutrino Masses

Neutrino Oscillations

Non-StandardInteractions

MagneticMoments

SterileNeutrinos

light

Non-UnitaryMixing

heavy

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 27/37

Page 28: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Non-Unitary Mixing

Standard Light Massive Neutrinosν1, ν3, ν3

Heavy Neutral Leptons (mk & 100GeV)ν4, . . . , νN

Ns = N − 3 Heavy Sterile Neutrinosνs1 , . . . , νNs

UN×N =

Ue1 Ue2 Ue3 · · · UeN

Uµ1 Uµ2 Uµ3 · · · UµN

Uτ1 Uτ2 Uτ3 · · · UτN

.

.

.

.

.

.

.

.

.. . .

.

.

.

UsNs1 UsNs

2 UsNs3 · · · UsNs

N

U

Effective Low-Energy Mixing of Active Neutrinos (α = e, µ, τ)

|να〉 =3∑

k=1

UN×Nαk |νk〉 =

3∑k=1

Uαk |νk〉

Non-Unitary Effective 3× 3 Mixing Matrix U

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 28/37

Page 29: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Global Non-Unitary Fit of Oscillation Data[Parke, Ross-Lonergan, PRD 93 (2016) 113009]

These Cauchy-Schwartz constraints enable precision mea-

surements in a single sector to be passed subsequently to all

elements of the mixing matrix [25].

To perform the analysis, for each experiment considered

[26] we take the observed amplitude of the να → νβ (or

να → νβ) oscillation alongside its published uncertainty and

construct a chi-squared for the associated nonunitary

amplitudes, along with any necessary normalization sys-

tematics as pull factors. For short-baseline (SBL) sterile

searches, if an experiment publishes the resultant χ2 surface

of their analyses in a 3þ N format then this is used as a

prior to bound any nonunitarity. Otherwise an appropriate

prior is estimated by performing a 3þ N fit to published

data.

We minimize the constructed χ2 over all parameters,

satisfying the Cauchy-Schwartz constraints, using a

Markov chain Monte Carlo minimizer. The results of the

analyses are shown in Fig. 1, without unitarity (red solid

line) and with the assumption of unitarity (black dashed

line). The nonunitary analysis was performed under the

strict assumption that any nonunitarity comes solely from

an extendedUPMNS and that no new interactions, such as an

additionalUð1Þ0 which can lead to strongly modified matter

effects, are active at oscillation energies [62].

Upon minimization the best fit points agree in both

unitary and nonunitary fits. To compare how the precision

varies we consider the frequentist 3σ ranges of the one-

dimensional Δχ2 projections without unitarity assumed

(with unitarity), where we marginalize over all parameters

except the one in question, we obtain

jUjw=o Unitarityðwith UnitarityÞ

¼

0

B

B

B

B

B

@

0.76 → 0.85ð0.79→0.85Þ

0.50 → 0.60ð0.50→0.59Þ

0.13 → 0.16ð0.14→0.16Þ

0.21 → 0.54ð0.22→0.52Þ

0.42 → 0.70ð0.43→0.70Þ

0.61 → 0.79ð0.62→0.79Þ

0.18 → 0.58ð0.24→0.54Þ

0.38 → 0.72ð0.47→0.72Þ

ð0.40 → 0.78Þð0.60→0.77Þ

1

C

C

C

C

C

A

:

The ranges for the individual elements, assuming unitarity

(bracketed numbers in above expression), are in good

agreement with published results in contemporary global

fits such as ν-fit [12].

If we define the shift in the range of allowed values as

the ratio of the difference in 3σ ranges without and with

unitarity to the range derived solely with unitarity, the

increases in parameter space for jUeij; i ¼ 2, 3 and

jUμij; i¼ 1, 2, 3 are all ≤10% (4%, 8%, 8%, 7% and 4%

FIG. 1. Marginalized 1-D Δχ2 for each of the magnitudes of the 3 × 3 neutrino mixing matrix elements, without (red solid) and with

(black dashed) the assumption of unitarity. The x-axis is the magnitude of each individual matrix element, and the y-axis is the associated

Δχ2 after marginalization over all parameters other than the one in question. This analysis was performed for the normal hierarchy, the

inverse hierarchy providing the same qualitative result.

UNITARITY AND THE THREE FLAVOR NEUTRINO … PHYSICAL REVIEW D 93, 113009 (2016)

113009-3

Assumption: ∆m221 = 7.6× 10−5 eV2 |∆m2

31| = 2.4× 10−3 eV2[PDG 2014]

See also: [Langacker, London, PRD 38 (1988) 907; Bilenky, CG, PLB 300 (1993) 137; Antusch, Biggio, Fernandez-Martinez,Gavela, Lopez-Pavon, JHEP 0610 (2006) 084; Xing, PLB 718 (2013) 1447; Qian, Zhang, Diwan, Vogel, arXiv:1308.5700]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 29/37

Page 30: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Bounds on Non-Unitarity of the Mixing MatrixI Any matrix can be parameterized as a product of a Hermitian and a

Unitary matrix: [Fernandez-Martinez, Gavela, Lopez-Pavon, Yasuda, PLB 649 (2007) 427]

U = (1− η)U with η = η†

U = Standard Unitary 3× 3 Mixing MatrixI Since massive neutrinos are not observed in flavor neutrinos interactions

observables depend on∑k

Uαk U†kα ≈ δαβ − 2ηαβ for |ηαβ| � 1

I From electroweak and LFV measurements:

2|η| ≤

2.5× 10−3 2.4× 10−5 2.7× 10−3

2.4× 10−5 4.0× 10−4 1.2× 10−3

2.7× 10−3 1.2× 10−3 5.6× 10−3

at 2σ

[Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon, arXiv:1605.08774]

See also: [Langacker, London, PRD 38 (1988) 886; Nardi, Roulet, Tommasini, PLB 327 (1994) 319; Antusch, Biggio,Fernandez-Martinez, Gavela, Lopez-Pavon, JHEP 0610 (2006) 084; Rodejohann, PLB 684 (2010) 40; Alonso, Dhen, Gavela,Hambye, JHEP 1301 (2013) 118; Akhmedov, Kartavtsev, Lindner, Michaels, Smirnov, JHEP 1305 (2013) 081; Abada, Das,Teixeira, Vicente, Weiland, JHEP 1302 (2013) 048; Basso, Fischer, van der Bij, Europhys.Lett. 105 (2014) 11001; Abada,Teixeira, Vicente, Weiland, JHEP 1402 (2014) 091; Antusch, Fischer, JHEP 1410 (2014) 094, JHEP 1505 (2015) 053; Abada,De Romeri, Teixeira, JHEP 1602 (2016) 083]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 30/37

Page 31: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Non-Unitarity CP-Violation Ambiguity

I Another parameterization: U = TNPU[Schechter, Valle, PRD 22 (1980) 2227; Xing, PLB660 (2008) 515; Escrihuela, Forero, Miranda, Tor-tola, Valle PRD 92 (2015) 053009]

TNP =

αee 0 0αµe αµµ 0ατe ατµ αττ

Real: αee , αµµ, αττ

Complex: αµe , ατe , ατµ

I Pµe = α2eeα

2µµP

3×3µe −α2

eeαµµ|αµe |P Iµe + α2

ee |αµe |2zero-distanceeffect

P Iµe = 2 sin 2θ13 sin θ23 sin∆31 sin (∆31 + δCP + φ)

+ cos θ13 cos θ23 sin 2θ12 sin 2∆21 sinφ φ = − arg(αµe)

0 200 400 600 800

L/E (km/GeV)

0

0.02

0.04

0.06

0.08

0.1

e

Pµe

3x3 with δ

CP = 0

δCP

= 7π/4, φ = 5π/3

δCP

= 3π/2, φ = π

δCP

= 4π/3, φ = 6π/5

Vertical lines indicate the mean value ofL/E for NOνA (405), DUNE (433) andT2K (490 km/GeV)

[Miranda, Tortola, Valle, arXiv:1604.05690]

See also: [Fernandez-Martinez, Gavela, Lopez-Pavon, Yasuda,PLB 649 (2007) 427; Antusch, Blennow, Fernandez-Martinez,Lopez-Pavon, PRD 80 (2009) 033002; Ge, Pasquini, Tortola,Valle, arXiv:1605.01670]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 31/37

Page 32: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Non-Standard InteractionsI Observable non-renormalizable effective NSI of left-handed neutrinos:

Charged-Current-like NSI: (α, β = e, µ, τ)

HCCNSI = 2

√2GFVud

∑α,β

(`αLγρνβL

) [εudLαβ uLγ

ρdL + εudRαβ uRγρdR

]+H.c.

+2√2GF

∑α,β

(ναLγρνβL)∑γ 6=δ

[εγδLαβ `γLγ

ρ`δL + εγδRαβ `γRγρ`δR

]Neutral-Current-like or Matter NSI: (εfPαβ = εfP∗

βα )

HNCNSI = 2

√2GF

∑α,β

(ναLγρνβL)∑

f=e,u,d

[εfLαβfLγ

ρfL + εfRαβfRγρfR

]I Bounds from non-oscillation data:

[Davidson, Pena-Garay, Rius, Santamaria, JHEP 0303 (2003) 011;Biggio, Blennow, Fernandez-Martinez, JHEP 0908 (2009) 090;

Forero, Guzzo, PRD 84 (2011) 013002; Khan, PRD 93 (2016) 093019]

I Reviews: [Ohlsson, RPP 76 (2013) 044201;

Miranda, Nunokawa, NJP 17 (2015) 095002]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 32/37

Page 33: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Neutrino flavor evolution equation in matter with NSI: (∆kj = ∆m2kj/2E)

id

dx

νeνµντ

=

U0 0 00 ∆21 00 0 ∆31

U† +∑

f=e,u,d

Vf

δef + εfee εfeµ εfeτεf ∗eµ εfµµ εfµτεf ∗eτ εf ∗µτ εfττ

νeνµντ

unpolarized matter: εfαβ = εfLαβ + εfRαβ vector couplings

Global Analysis of Neutrino Oscillation Data[Gonzalez-Garcia, Maltoni, JHEP 1309 (2013) 152; Gonzalez-Garcia, Maltoni, Schwetz, NPB 908 (2016) 199]

0.2 0.3 0.4 0.5 0.6 0.7 0.8

sin2

θ12

6

6.5

7

7.5

8

8.5

∆m

2 21 [

10

-5 e

V2]

0 0.01 0.02 0.03 0.04

sin2

θ13

0.3 0.4 0.5 0.6 0.7

sin2

θ23

-3

-2.5

-2

2

2.5

3

∆m

2 31 [

10

-3 e

V2] ★

f=u

w/o Solar & KamLAND[90%, 3σ]

All data[90%, 95%, 99%, 3σ]

All data, no NSI[90%, 95%, 99%, 3σ]

w/o NSI in Atmospheric sector[90%, 3σ]

0

5

10

15

20

∆χ

2

f=u

-2 -1 0 1

εf

ee− ε

f

µµ

0

5

10

15

20

∆χ

2

-0.25 0 0.25

εf

ττ− ε

f

µµ

-0.2 0 0.2

εf

-0.5 0 0.5

εf

-0.05 0 0.05

εf

µτ

f=d

LMA LMA-D

I “Dark-Side” LMA-D with ϑ12 > 45◦ and large NSI.[Miranda, Tortola, Valle, JHEP 0610 (2006) 008]

I NSI have small effects on the determination of the othermixing parameters.

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 33/37

Page 34: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Electromagnetic Interactions

I Effective Hamiltonian: H(ν)em (x) = j (ν)µ (x)Aµ(x) =

∑k,j=1

νk(x)Λkjµ νj(x)A

µ(x)

I Effective electromagnetic vertex: νi (pi )

Λ

γ(q)

νf (pf )

〈νf (pf )|j (ν)µ (0)|νi (pi )〉 = uf (pf )Λfiµ(q)ui (pi )

q = pi − pf

I Vertex function:

Λµ(q) =(γµ − qµ/q/q

2) [fQ(q

2) + fA(q2)q2γ5

]− iσµνq

ν[fM(q2) + ifE (q

2)γ5]

form factors:Lorentz-invariant

charge anapole magnetic electric

q2 = 0 =⇒ q a � �

I Hermitian form factor matrices =⇒ � = �† � = �† q = q† a = a†

I Majorana neutrinos =⇒ � = −�T � = −�T q = −qT a = aT

no diagonal charges and electric and magnetic moments

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 34/37

Page 35: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

I Extended Standard Model with right-handed neutrinos and ∆L = 0:

�Dkk ' 3.2× 10−19µB

(mk

eV

)�Dkk = 0

�Dkj

i�Dkj

}' −3.9× 10−23µB

(mk ±mj

eV

) ∑`=e,µ,τ

U∗`kU`j

(m`

)2

off-diagonal moments are GIM-suppressed[Fujikawa, Shrock, PRL 45 (1980) 963; Pal, Wolfenstein, PRD 25 (1982) 766; Shrock, NPB 206 (1982) 359;

Dvornikov, Studenikin, PRD 69 (2004) 073001, JETP 99 (2004) 254]

I Extended Standard Model with Majorana neutrinos (|∆L| = 2):

�Mkj ' −7.8× 10−23µBi (mk +mj)

∑`=e,µ,τ

Im [U∗`kU`j ]

m2`

m2W

�Mkj ' 7.8× 10−23µBi (mk −mj)∑

`=e,µ,τ

Re [U∗`kU`j ]

m2`

m2W

[Shrock, NPB 206 (1982) 359]

GIM-suppressed, but additional model-dependent contributions of the scalar sector

can enhance the Majorana transition dipole moments [Pal, Wolfenstein, PRD 25 (1982) 766; Barr,

Freire, Zee, PRL 65 (1990) 2626; Pal, PRD 44 (1991) 2261]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 35/37

Page 36: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

24

Method Experiment Limit CL Reference

Reactor νe-e−

Krasnoyarsk µνe < 2.4× 10−10 µB 90% Vidyakin et al. (1992)

Rovno µνe < 1.9× 10−10 µB 95% Derbin et al. (1993)

MUNU µνe < 9× 10−11 µB 90% Daraktchieva et al. (2005)

TEXONO µνe < 7.4× 10−11 µB 90% Wong et al. (2007)

GEMMA µνe < 2.9× 10−11 µB 90% Beda et al. (2012)

Accelerator νe-e− LAMPF µνe < 1.1× 10−9 µB 90% Allen et al. (1993)

Accelerator (νµ, νµ)-e− BNL-E734 µνµ < 8.5× 10−10 µB 90% Ahrens et al. (1990)

LAMPF µνµ < 7.4× 10−10 µB 90% Allen et al. (1993)

LSND µνµ < 6.8× 10−10 µB 90% Auerbach et al. (2001)

Accelerator (ντ , ντ )-e− DONUT µντ < 3.9× 10−7 µB 90% Schwienhorst et al. (2001)

Solar νe-e−

Super-Kamiokande µS(Eν & 5MeV) < 1.1× 10−10 µB 90% Liu et al. (2004)

Borexino µS(Eν . 1MeV) < 5.4× 10−11 µB 90% Arpesella et al. (2008)

TABLE III Experimental limits for different neutrino effective magnetic moments.

the Super-Kamiokande (Liu et al., 2004) and Borexino(Arpesella et al., 2008) experiments to search for neu-trino magnetic moment effects, one must take into ac-count the matter effects discussed in Subsection II.D.The state which describes the neutrinos emerging fromthe Sun is the following generalization of the state inEq. (2.61) which takes into account three-neutrino mix-ing and the squared-mass hierarchy in Eq. (2.65):

|νS〉 =3

k=1

(UM

ek)∗|νk〉, (4.44)

with

UM

e1 = cosϑ13 cosϑ0

M, (4.45)

UM

e2 = cosϑ13 sinϑ0

M, (4.46)

UM

e3 = Ue3 = sinϑ13e−iδ13 , (4.47)

where ϑ0M

is the effective mixing angle at the point ofneutrino production inside the Sun. Following the samereasoning that led to Eq. (4.36), we obtain that the ef-fective magnetic moment measured by an experiment onEarth is

µ2

S(L,Eν) =∑

j

k

(UM

ek)∗e−i∆m2

kjL/2Eν (µjk − iεjk)

2

,

(4.48)where L is the Sun-Earth distance. Since the Sun-Earthdistance is much larger than the oscillation lengths, theinterference terms in Eqs. (4.48) are washed out by thefinite energy resolution of the detector and we obtain theeffective magnetic moment

µ2

S(Eν) =∑

k

|UM

ek|2∑

j

|µjk − iεjk|2. (4.49)

This expression is similar to that in Eq. (4.42), but takesinto account the effective mixing at the point of neutrino

production inside the Sun. Note that µS depends on theneutrino energy through the dependence of ϑ0

Mon Eν (see

Eq. (2.54)). As remarked before Eq. (2.63), in practicewe have ϑ0

M≃ ϑ12 for Eν . 1MeV and ϑ0

M≃ π/2 for

Eν & 5MeV. Therefore,

µS(Eν . 1MeV) ≃ µνe(∞), (4.50)

and

µ2

S(Eν & 5MeV) ≃ cos2 ϑ13

j

|µj2 − iεj2|2

+ sin2 ϑ13

j

|µj3 − iεj3|2. (4.51)

E. Experimental limits

The constraints on the neutrino magnetic moment indirect laboratory experiments have been obtained so farfrom the lack of any observable distortion of the recoilelectron energy spectrum. Experiments of this type havestarted in the 50’s at the Savannah River Laboratorywhere the νe-e

− elastic scattering process was studied(Cowan et al., 1954; Cowan and Reines, 1957; Reineset al., 1976) with somewhat controversial results, as dis-cussed by Vogel and Engel (1989). The most significantexperimental limits on the effective magnetic moment µνe

which have been obtained in reactor νe-e− after about

1990 are listed in Tab. III (some details of the differ-ent experimental setups are reviewed in Broggini et al.

(2012))9.

9 An attempt to improve the experimental bound on µνe in re-actor experiments was undertaken in Wong et al. (2010), whereit was suggested that in νe interactions on an atomic target theatomic electron binding (“atomic-ionization effect”) can signifi-cantly increase the electromagnetic contribution to the differen-

[CG, Studenikin, RMP 87 (2015) 531]

I Gap of about 8 orders of magnitude between the experimental limits andthe . 10−19 µB prediction of the minimal Standard Model extensions.

I �ν � 10−19 µB discovery ⇐⇒ non-minimal new physics beyond theStandard Model.

I Neutrino spin-flavor precession in a magnetic field[Lim, Marciano, PRD 37 (1988) 1368; Akhmedov, PLB 213 (1988) 64]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 36/37

Page 37: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Conclusions

I Exciting indications of light sterile neutrinos at the eV scale:I LSND νµ → νe signal.I Reactor νe disappearance.I Gallium νe disappearance.

I Vigorous experimental program to check conclusively in a few years:I νe and νe disappearance with reactors and radioactive sources.I νµ → νe transitions with accelerator neutrinos.I νµ disappearance with accelerator neutrinos.

I Neutrinos provide a Window to the New Physics beyond the StandardModel through:I Small (Majorana) Masses.I Sterile Neutrinos.I Non-Unitarity of Mixing Matrix.I Non-Standard Interactions.I Electromagnetic Interactions.I . . .

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 37/37

Page 38: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Backup Slides

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 38/37

Page 39: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Reactor Rates

sin22ϑee

∆m

412

[e

V2]

+

10−3

10−2

10−1

1

10−2

10−1

1

10

102

Reactor Rates − 99% CL

Bugey−3 (1995)

Bugey−4 (1994) + Rovno (1991)

Gosgen (1986) + ILL (1995)

Krasnoyarsk (1994)

Rovno (1988)

SRP (1996)

Nucifer (2016)

Neutrino−4 (2016)

Chooz (1999) + Palo Verde (2001)

Double Chooz (2014)Daya Bay (2014)

Combined

90% CL95% CL99% CL

No Oscillations

χ2/NDF = 34.9/30

GoF = 25%

Oscillations

χ2min/NDF = 18.1/28

GoF = 92%

Best Fit

∆m241 = 0.47 eV2

sin2 2ϑee = 0.14

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 39/37

Page 40: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

0.6

0.8

1.0

1.2

L [m]

Pνe→

νe

1 10 102

103

DC

DBDB

R

E ≈ 4MeV

∆m412

= 0.47eV2, sin

22ϑee = 0.14

Bugey−4

Rovno91

Bugey−3

Gosgen

ILL

Krasno

Rovno88

SRP

Nucifer

Neutrino−4

sin2 2ϑee = 4|Ue4|2(1− |Ue4|2

)= sin2 2ϑ14

PSBL(−)

νe→(−)

νe

' 1− sin2 2ϑ14 sin2(∆m2

41L

4E

)

PLBL(−)

νe→(−)

νe

' 1− 1

2sin2 2ϑ14 − cos4 ϑ14 sin2 2ϑ13 sin2

(∆m2

31L

4E

)C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 40/37

Page 41: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Reactor Rates + Bugey-3 Spectrum

sin22ϑee

∆m

412

[e

V2] +

10−3

10−2

10−1

1

10−2

10−1

1

10

102

99% CL

Reactor RatesBugey−3 Spectrum

Combined

90% CL95% CL99% CL

No Oscillationsχ2/NDF = 50.3/54

GoF = 62%

Oscillationsχ2min/NDF = 39.4/52

GoF = 90%

Best Fit∆m2

41 = 2.7 eV2

sin2 2ϑee = 0.14

We use the Bugey-340 m / 15 m

spectral ratio, which isindependent from the

5 MeV bump!

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 41/37

Page 42: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

0.6

0.8

1.0

1.2

L [m]

Pνe→

νe

1 10 102

103

DC

DBDB

R

E ≈ 4MeV

∆m412

= 0.47eV2, sin

22ϑee = 0.14

∆m412

= 2.7eV2, sin

22ϑee = 0.14

Bugey−4

Rovno91

Bugey−3

Gosgen

ILL

Krasno

Rovno88

SRP

Nucifer

Neutrino−4

1 2 3 4 5 6

0.1

10

.12

0.1

30

.14

0.1

50

.16

Ee+ [MeV]

R

Bugey−3 Spectral Ratio: 40 m / 15 m

∆m41

2= 0.47eV

2, sin

22ϑee = 0.14

∆m41

2= 2.7eV

2, sin

22ϑee = 0.14

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 42/37

Page 43: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Global νe and νe Disappearance

sin22ϑee

∆m

412 [e

V2] +

10−2

10−1

1

10−1

1

10

102

νe & νe DIS

90% CL

95% CL

99% CL

99% CL

Rea

GalνeC

Sun

T2K

sin22ϑee

∆m

412 [e

V2] +

10−2

10−1

1

10−1

1

10

102

νe & νe DIS + β

90% CL

95% CL

99% CL

99% CL

νe & νe DIS

β decay

KARMEN + LSND νe + 12C → 12Ng.s. + e−

[Conrad, Shaevitz, PRD 85 (2012) 013017][CG, Laveder, PLB 706 (2011) 200]

solar νe + KamLAND νe + ϑ13[CG, Li, PRD 80 (2009) 113007]

[Palazzo, PRD 83 (2011) 113013; PRD 85 (2012) 077301][CG, Laveder, Li, Liu, Long, PRD 86 (2012) 113014]

T2K Near Detector νe disappearance[T2K, PRD 91 (2015) 051102]

Mainz + Troitsk Tritium β decay[Mainz, EPJC 73 (2013) 2323]

[Troitsk, JETPL 97 (2013) 67; JPG 41 (2014) 015001]

No Osc. excluded at 2.9σ(∆χ2/NDF = 11.4/2)

7 cm .Losc41

E [MeV]. 6m (2σ)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 43/37

Page 44: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

The Race for νe and νe Disappearance

sin22ϑee

∆m

412 [e

V2]

10−2

10−1

1

10−1

1

10

102

+

KATRIN − 2σ

νe & νe DIS + β

90% CL

95% CL

99% CL

CeSOX shape (95% CL)

CeSOX rate (95% CL)

CeSOX rate+shape (95% CL)

BEST (95% CL)

IsoDAR@KamLAND (5yr, 3σ)

sin22ϑee

∆m

412 [e

V2]

10−2

10−1

1

10−1

1

10

102

+

KATRIN − 2σ

νe & νe DIS + β

90% CL

95% CL

99% CL

STEREO (1yr, 95% CL)

SoLiD phase 1 (1yr, 95% CL)

SoLiD phase 2 (3yr, 3σ)

Neutrino−4 (1yr, 95% CL)

PROSPECT phase 1 (3yr, 3σ)

PROSPECT phase 2 (3yr, 3σ)

DANSS (1yr, 95% CL)

NEOS (0.5yr, 95% CL)

CeSOX (Gran Sasso, Italy)144Ce → νe

BOREXINO: L ' 5-12m [Vivier@TAUP2015]

BEST (Baksan, Russia)51Cr → νe

L ' 5-12m [PRD 93 (2016) 073002]

IsoDAR@KamLAND (Kamioka, Japan)8Li → νe L ' 16m [arXiv:1511.05130]

KATRIN (Karlsruhe, Germany)3H → νe

Mass Measurement [Mertens@TAUP2015]

STEREO (ILL, France) L ' 8-12m [arXiv:1602.00568]

SoLid (SCK-CEN, Belgium) L ' 5-8m [arXiv:1510.07835]

Neutrino-4 (RIAR, Russia) L ' 6-11m [JETP 121 (2015) 578]

PROSPECT (ORNL, USA) L ' 7-12m [arXiv:1512.02202]

DANSS (Kalinin, Russia) L ' 10-12m [arXiv:1606.02896]

NEOS (Hanbit, Korea) L ' 25m [Oh@WIN2015]

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 44/37

Page 45: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

νµ → νe and νµ → νe Appearance

sin22ϑeµ

∆m

412 [e

V2]

+

10−3

10−2

10−1

1

10−2

10−1

1

10

102

99% CL

LSNDMiniBooNEKARMENNOMADBNL−E776ICARUSOPERA

νµ → νe

90% CL95% CL99% CL

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 45/37

Page 46: Oscillations Beyond Three-Neutrino Mixing Carlo Giunti · LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e 20MeV E 60MeV I Well-known source

Origin of Appearance SignalWithout LSND Without MiniBooNE

sin22ϑeµ

∆m

412

[e

V2]

10−4

10−3

10−2

10−1

10−1

1

10

+

+

10−4

10−3

10−2

10−1

10−1

1

103+1 − GLO−noLSND

DISAPP

sin22ϑeµ

∆m

412

[e

V2]

10−4

10−3

10−2

10−1

10−1

1

10

+

+

10−4

10−3

10−2

10−1

10−1

1

103+1 − GLO−noMB

DISAPP

Best Fit: ∆m241 = 1.6 eV2

|Ue4|2 = 0.022 |Uµ4|2 = 0.0080GoF = 13% (χ2

min/NDF = 289.7/264)GoFPG = 0.5% (χ2/NDF = 10.7/2)GoFnull = 7%(χ2/NDF = 302.7/267)

∆χ2/NDF = 13.0/3 (≈ 2.8σ)

Best Fit: ∆m241 = 1.6 eV2

|Ue4|2 = 0.028 |Uµ4|2 = 0.014GoF = 16% (χ2

min/NDF = 251.2/230)GoFPG = 5%(χ2/NDF = 6.2/2)

GoFnull = 0.2% (χ2/NDF = 299.2/233)∆χ2/NDF = 48.1/3 (≈ 6.4σ)

C. Giunti − Oscillations Beyond Three-Neutrino Mixing − Neutrino 2016 − 5 July 2016 − 46/37