orbital resonance - wikipedia, the free encyclopedia

Upload: explorer1698060

Post on 03-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    1/15

    rbital resonancem Wikipedia, the free encyclopedia

    elestial mechanics, an orbital resonanceoccurs when two orbiting bodies exert a regular, periodic

    vitational influence on each other, usually due to their orbital periods being related by a ratio of two small

    gers. The physics principle behind orbital resonance is similar in concept to pushing a child on a swing,

    ere the orbit and the swing both have a natural frequency, and the other body doing the "pushing" will act

    eriodic repetition to have a cumulative effect on the motion. Orbital resonances greatly enhance the

    tual gravitational influence of the bodies, i.e., their ability to alter or constrain each other's orbits. In mostes, this results in an unstableinteraction, in which the bodies exchange momentum and shift orbits until

    resonance no longer exists. Under some circumstances, a resonant system can be stable and self-

    recting, so that the bodies remain in resonance. Examples are the 1:2:4 resonance of Jupiter's moons

    nymede, Europa and Io, and the 2:3 resonance between Pluto and Neptune. Unstable resonances with

    urn's inner moons give rise to gaps in the rings of Saturn. The special case of 1:1 resonance (between

    ies with similar orbital radii) causes large Solar System bodies to eject most other bodies sharing their

    its; this is partof the much more extensive process of clearing the neighbourhood, an effect that is used

    he current definition of a planet.

    ceptas noted in the Laplace resonance figure (below), a resonance ratio in this article should be

    rpreted asthe ratio of number of orbitscompleted in the same time interval, rather than as the ratio of

    ital periods(which would be the inverse ratio). The 2:3 ratio above means Pluto completes two orbits in

    time it takes Neptune to complete three.

    ontents

    1 History2 Types of resonance3 Mean-motion resonances in the Solar System

    3.1 The Laplace resonance3.2 Plutino resonances

    4 Mean-motion resonances among extrasolar planets5 Coincidental 'near' ratios of mean motion6 Possible past mean-motion resonances7 See also8 References9 External links

    istory

    ce the discovery of Newton's law of universal gravitation in the 17th century, the stability of the Solar

    tem has preoccupied many mathematicians, starting withLaplace. The stable orbits that arise in a two-

    y approximation ignore the influence of other bodies. The effect of these added interactions on the

    bility of the Solar System is very small, but at first it was not known whether they might add up overger periods to significantly change the orbital parameters and lead toa completely different configuration,

    whether some other stabilising effects might maintain the configuration of the orbits of the planets.

    http://en.wikipedia.org/wiki/Solar_Systemhttp://en.wikipedia.org/wiki/N-body_problemhttp://en.wikipedia.org/wiki/N-body_problemhttp://en.wikipedia.org/wiki/Stability_of_the_Solar_Systemhttp://en.wikipedia.org/wiki/Orbital_resonance#External_linkshttp://en.wikipedia.org/wiki/Orbital_resonance#Referenceshttp://en.wikipedia.org/wiki/Orbital_resonance#See_alsohttp://en.wikipedia.org/wiki/Orbital_resonance#Possible_past_mean-motion_resonanceshttp://en.wikipedia.org/wiki/Orbital_resonance#Mean-motion_resonances_among_extrasolar_planetshttp://en.wikipedia.org/wiki/Orbital_resonance#Plutino_resonanceshttp://en.wikipedia.org/wiki/Orbital_resonance#Plutino_resonanceshttp://en.wikipedia.org/wiki/Orbital_resonance#The_Laplace_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#The_Laplace_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#Mean-motion_resonances_in_the_Solar_Systemhttp://en.wikipedia.org/wiki/Definition_of_planethttp://en.wikipedia.org/wiki/Natural_frequencyhttp://en.wikipedia.org/wiki/Integerhttp://en.wikipedia.org/wiki/Gravitationalhttp://en.wikipedia.org/wiki/Orbital_periodhttp://en.wikipedia.org/wiki/Celestial_mechanicshttp://en.wikipedia.org/wiki/Orbithttp://en.wikipedia.org/wiki/Solar_Systemhttp://en.wikipedia.org/wiki/N-body_problemhttp://en.wikipedia.org/wiki/Pierre-Simon_Laplacehttp://en.wikipedia.org/wiki/Stability_of_the_Solar_Systemhttp://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitationhttp://en.wikipedia.org/wiki/Orbital_resonance#External_linkshttp://en.wikipedia.org/wiki/Orbital_resonance#Referenceshttp://en.wikipedia.org/wiki/Orbital_resonance#See_alsohttp://en.wikipedia.org/wiki/Orbital_resonance#Possible_past_mean-motion_resonanceshttp://en.wikipedia.org/wiki/Orbital_resonance#Coincidental_.27near.27_ratios_of_mean_motionhttp://en.wikipedia.org/wiki/Orbital_resonance#Mean-motion_resonances_among_extrasolar_planetshttp://en.wikipedia.org/wiki/Orbital_resonance#Plutino_resonanceshttp://en.wikipedia.org/wiki/Orbital_resonance#The_Laplace_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#Mean-motion_resonances_in_the_Solar_Systemhttp://en.wikipedia.org/wiki/Orbital_resonance#Types_of_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#Historyhttp://en.wikipedia.org/wiki/Definition_of_planethttp://en.wikipedia.org/wiki/Clearing_the_neighbourhoodhttp://en.wikipedia.org/wiki/Solar_Systemhttp://en.wikipedia.org/wiki/Rings_of_Saturnhttp://en.wikipedia.org/wiki/Saturnhttp://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Plutohttp://en.wikipedia.org/wiki/Io_(moon)http://en.wikipedia.org/wiki/Europa_(moon)http://en.wikipedia.org/wiki/Ganymede_(moon)http://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Momentumhttp://en.wikipedia.org/wiki/Natural_frequencyhttp://en.wikipedia.org/wiki/Integerhttp://en.wikipedia.org/wiki/Orbital_periodhttp://en.wikipedia.org/wiki/Gravitationalhttp://en.wikipedia.org/wiki/Orbithttp://en.wikipedia.org/wiki/Celestial_mechanics
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    2/15

    The semimajor axes of resonant trans-Neptunian

    objects (red) are clumped at locations of low-integer

    resonances with Neptune (vertical red bars near

    top), in contrast to those of cubewanos (blue) and

    nonresonant (or not known to be resonant) scattered

    objects (grey).

    A chart of the distribution of asteroid semimajor

    axes, showing the Kirkwood gaps where orbits are

    destabilized by resonances with Jupiter.

    was Laplace who found the first answers explaining the remarkable dance of the Galilean moons (see

    ow). It is fair to say that this general field of study has remained very active since then, with plenty more

    to be understood (e.g., how interactions of moonlets with particles of the rings of giant planets result in

    ntaining the rings).

    ypes of resonance

    general, an orbital resonance may

    involve one or any combination of the orbitparameters (e.g. eccentricity versus semimajoraxis, or eccentricity versus orbital inclination).act on any time scale from short term,commensurable with the orbit periods, to secular,

    measured in 104to 106years.lead to either long term stabilization of the orbitsor be the cause of their destabilization.

    mean-motion orbital resonanceoccurs when twoies have periods of revolution that are a simple

    ger ratio of each other. Depending on the details, this

    either stabilize or destabilize the orbit. Stabilization

    y occur when the two bodies move in such a

    chronised fashion that they never closely approach.

    instance:

    The orbits of Pluto and the plutinos are stable,

    despite crossing that of the much larger Neptune,because they are in a 2:3 resonance with it. Theresonance ensures that, when they approachperihelion and Neptune's orbit, Neptune isconsistently distant (averaging a quarter of itsorbit away). Other (much more numerous)Neptune-crossing bodies that were not inresonance were ejected from that region by strongperturbations due to Neptune. There are alsosmaller but significant groups of resonant trans-

    Neptunian objects occupying the 1:1 (Neptunetrojans), 3:5, 4:7, 1:2 (twotinos) and 2:5resonances, among others, with respect toNeptune.In the asteroid belt beyond 3.5 AU from the Sun,the 3:2, 4:3 and 1:1 resonances with Jupiter are populated by clumpsof asteroids (the Hilda family,279 Thule, and the Trojan asteroids, respectively).

    bital resonances can also destabilizeone of the orbits. For small bodies, destabilization is actually far

    re likely. For instance:

    In the asteroid belt within 3.5 AU from the Sun, the major mean-motion resonances with Jupiter arelocations of gapsin the asteroid distribution, the Kirkwood gaps (most notably at the 3:1, 5:2, 7:3 and2:1 resonances). Asteroids have been ejected from these almost empty lanes by repeated perturbations.However, there are still populations of asteroids temporarily present in or near these resonances. Forexample, asteroids of the Alinda family are in or close to the 3:1 resonance, with their orbital

    http://en.wikipedia.org/wiki/Alinda_familyhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Kirkwood_gaphttp://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Asteroid_belthttp://en.wikipedia.org/wiki/Trojan_asteroidhttp://en.wikipedia.org/wiki/279_Thulehttp://en.wikipedia.org/wiki/Hilda_familyhttp://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Asteroid_belthttp://en.wikipedia.org/wiki/Resonant_Kuiper_belt_object#2:5_resonance_.28period_.7E410_years.29http://en.wikipedia.org/wiki/Resonant_Kuiper_belt_object#1:2_resonance_.28.22twotinos.22.2C_period_.7E330_years.29http://en.wikipedia.org/wiki/Resonant_Kuiper_belt_object#4:7_resonance_.28period_.7E290_years.29http://en.wikipedia.org/wiki/Resonant_Kuiper_belt_object#3:5_resonance_.28period_.7E275_years.29http://en.wikipedia.org/wiki/Neptune_trojanhttp://en.wikipedia.org/wiki/Resonant_trans-Neptunian_objecthttp://en.wikipedia.org/wiki/Perturbation_(astronomy)http://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Plutinohttp://en.wikipedia.org/wiki/Plutohttp://en.wikipedia.org/wiki/Orbithttp://en.wikipedia.org/wiki/Secular_phenomenahttp://en.wikipedia.org/wiki/Semimajor_axishttp://en.wikipedia.org/wiki/Eccentricity_(orbit)http://en.wikipedia.org/wiki/Galilean_moonhttp://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Kirkwood_gaphttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/File:Kirkwood_Gaps.svghttp://en.wikipedia.org/wiki/Scattered_diskhttp://en.wikipedia.org/wiki/Cubewanohttp://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Resonant_trans-Neptunian_objecthttp://en.wikipedia.org/wiki/Semimajor_axishttp://en.wikipedia.org/wiki/File:TheKuiperBelt_75AU_All.svg
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    3/15

    Spiral density waves in Saturn's A Ring excited by

    resonances with inner moons. Such waves propagate

    away from the planet (towards upper left). The large

    set of waves just below center is due to the 6:5

    resonance with Janus.

    eccentricity steadily increased by interactions with Jupiter until they eventually have a close encounterwith an inner planet that ejects them from the resonance.In the rings of Saturn, the Cassini Division is a gap between the inner B Ring and the outer A Ringthat has been cleared by a 2:1 resonance with the moon Mimas. (More specifically, the site of theresonance is the Huygens Gap, which bounds the outer edge of the B Ring.)In the rings of Saturn, the Encke and Keeler gaps within the A Ring are cleared by 1:1 resonances withthe embedded moonlets Pan and Daphnis, respectively. The A Ring's outer edge is maintained by adestabilizing 7:6 resonance with the moon Janus.

    st bodies that are in resonance orbit in the same direction; however, a few retrograde damocloids haven found that are temporarily captured in mean-motion resonance with Jupiter or Saturn.[4]Such orbital

    ractions are weaker than the corresponding

    ractions between bodies orbiting in the same

    ection.[4]

    Laplace resonanceoccurs when three or more

    iting bodies have a simple integer ratio between their

    ital periods. For example, Jupiter's moons Ganymede,

    opa and Io are in a 1:2:4 orbital resonance. Therasolar planets Gliese 876 e, b and c are also in a

    4 orbital resonance.[5]

    Lindblad resonancedrives spiral density waves both

    alaxies (where stars are subject to forcing by the

    al arms themselves) and in Saturn's rings (where ring

    ticles are subject to forcing by Saturn's moons).

    ecular resonanceoccurs when the precession of two

    its is synchronised (usually a precession of the

    ihelion or ascending node). A small body in secular

    onance with a much larger one (e.g. a planet) will

    cess at the same rate as the large body. Over long

    es (a million years, or so) a secular resonance will

    nge the eccentricity and inclination of the small body.

    eral prominent examples of secular resonance involve Saturn. A resonance between the precession of

    urn's rotational axis and that of Neptune's orbital axis (both of which have periods of about 1.87 million

    rs) has been identified as the likely source of Saturn's large axial tilt (26.7).[6][7][8]Initially, Saturnbably had a tilt closer to that of Jupiter (3.1). The gradual depletion of the Kuiper belt would have

    reased the precession rate of Neptune's orbit; eventually, the frequencies matched, and Saturn's axial

    cession was captured into the spin-orbit resonance, leading to an increase in Saturn's obliquity. (The

    ular momentum of Neptune's orbit is 104times that of Saturn's spin, and thus dominates the interaction.)

    e perihelion secular resonance between asteroids and Saturn (!6= g -g6) helps shape the asteroid belt.

    eroids which approach it have their eccentricity slowly increased until they become Mars-crossers, at

    ch point they are usually ejected from the asteroid belt by a close pass to Mars. This resonance forms the

    er and "side" boundaries of the asteroid belt around 2 AU, and at inclinations of about 20.

    merical simulations have suggested that the eventual formation of a perihelion secular resonance between

    rcury and Jupiter (g1=g5) has the potential to greatly increase Mercury's eccentricity and possibly

    tabilize the inner Solar System several billion years from now.[9][10]

    http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Laskar2009-10http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Laskar2008-9http://en.wikipedia.org/wiki/Mercury_(planet)http://en.wikipedia.org/wiki/Inclinationhttp://en.wikipedia.org/wiki/Astronomical_unithttp://en.wikipedia.org/wiki/Asteroid_belthttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/Asteroid_belthttp://en.wikipedia.org/wiki/Mars-crossing_asteroidhttp://en.wikipedia.org/wiki/Saturnhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Secular_resonance#.CE.BD6_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-8http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-7http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-6http://en.wikipedia.org/wiki/Axial_tilthttp://en.wikipedia.org/wiki/Inclinationhttp://en.wikipedia.org/wiki/Eccentricity_(orbit)http://en.wikipedia.org/wiki/Planethttp://en.wikipedia.org/wiki/Ascending_nodehttp://en.wikipedia.org/wiki/Perihelionhttp://en.wikipedia.org/wiki/Precession#Astronomyhttp://en.wikipedia.org/wiki/Secular_resonancehttp://en.wikipedia.org/wiki/Moons_of_Saturnhttp://en.wikipedia.org/wiki/Rings_of_Saturnhttp://en.wikipedia.org/wiki/Harmonic_oscillatorhttp://en.wikipedia.org/wiki/Galaxieshttp://en.wikipedia.org/wiki/Density_wave_theoryhttp://en.wikipedia.org/wiki/Lindblad_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-rivera2010-5http://en.wikipedia.org/wiki/Gliese_876http://en.wikipedia.org/wiki/Extrasolar_planethttp://en.wikipedia.org/wiki/Io_(moon)http://en.wikipedia.org/wiki/Europa_(moon)http://en.wikipedia.org/wiki/Ganymede_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Morais_2013-4http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Morais_2013-4http://en.wikipedia.org/wiki/Saturnhttp://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Damocloid_asteroidhttp://en.wikipedia.org/wiki/Retrograde_motionhttp://en.wikipedia.org/wiki/Janus_(moon)http://en.wikipedia.org/wiki/Daphnis_(moon)http://en.wikipedia.org/wiki/Pan_(moon)http://en.wikipedia.org/wiki/Rings_of_Saturn#Keeler_Gaphttp://en.wikipedia.org/wiki/Rings_of_Saturn#Encke_Gaphttp://en.wikipedia.org/wiki/Rings_of_Saturn#B_Ringhttp://en.wikipedia.org/wiki/Rings_of_Saturn#Huygens_Gaphttp://en.wikipedia.org/wiki/Mimas_(moon)http://en.wikipedia.org/wiki/Rings_of_Saturn#A_Ringhttp://en.wikipedia.org/wiki/Rings_of_Saturn#B_Ringhttp://en.wikipedia.org/wiki/Rings_of_Saturn#Cassini_Divisionhttp://en.wikipedia.org/wiki/Rings_of_Saturnhttp://en.wikipedia.org/wiki/Janus_(moon)http://en.wikipedia.org/wiki/Moons_of_Saturn#Ring_shepherdshttp://en.wikipedia.org/wiki/Rings_of_Saturn#A_Ringhttp://en.wikipedia.org/wiki/Spiral_density_wavehttp://en.wikipedia.org/wiki/File:PIA10452_-_Saturn_A_ring_spiral_density_waves.jpg
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    4/15

    The eccentric Titan Ringlet[1]in

    the Columbo Gap of Saturn's C

    Ring (center) and the inclined

    orbits of resonant particles in the

    bending wave[2][3]just inside it

    have apsidal and nodal

    precessions, respectively,commensurate with Titan's mean

    motion.

    Depiction of Haumea's presumed 7:12 resonancewith Neptune in a rotating frame, with Neptune

    (blue dot at lower right) held stationary. Haumea's

    shifting orbital alignment relative to Neptune

    periodically reverses (librates), preserving the

    resonance.

    e Titan Ringlet within Saturn's C Ring represents another type of

    onance in which the rate of apsidal precession of one orbit exactly

    ches the speed of revolution of another. The outer end of this

    entric ringlet always points towards Saturn's major moon Titan.[1]

    Kozai resonanceoccurs when the inclination and eccentricity of a

    turbed orbit oscillate synchronously (increasing eccentricity while

    reasing inclination and vice versa). This resonance applies only to

    ies on highly inclined orbits; as a consequence, such orbits tend to

    unstable, since the growing eccentricity would result in small

    icenters, typically leading to a collision or (for large moons)

    truction by tidal forces.

    n example of another type of resonance involving orbital

    entricity, the eccentricities of Ganymede and Callisto vary with a

    mmon period of 181 years, although with opposite phases.[11]

    ean-motion resonances in the Solar Systemere are only a few known mean-motion resonances in the Solar

    tem involving planets, dwarf planets or larger satellites (a much

    ater number involve asteroids, planetary rings,

    onlets and smaller Kuiper belt objects, including

    ny possible dwarf planets).

    2:3 PlutoNeptune2:4 TethysMimas (Saturns moons)

    1:2 DioneEnceladus (Saturns moons)3:4 HyperionTitan (Saturn's moons)1:2:4 GanymedeEuropaIo (Jupiters moons).

    ditionally, Haumea is believed to be in a 7:12

    onance with Neptune,[12][13]and Eris and Makemake

    y be in 5:17 and 6:11 resonances with Neptune,

    pectively.[14]

    e simple integer ratiosbetween periods are avenient simplification hiding more complex

    tions:

    the point of conjunction can oscillate (librate)around an equilibrium point defined by theresonance.given non-zero eccentricities, the nodes orperiapsides can drift (a resonance related, short period, not secular precession).

    illustration of the latter, consider the well known 2:1 resonance of Io-Europa. If the orbiting periods werehis relation, the mean motions (inverse of periods, often expressed in degrees per day) would satisfy

    following

    http://en.wikipedia.org/wiki/Mean_motionhttp://en.wikipedia.org/wiki/Perihelionhttp://en.wikipedia.org/wiki/Orbital_nodehttp://en.wikipedia.org/wiki/Eccentricity_(orbit)http://en.wikipedia.org/wiki/Librationhttp://en.wikipedia.org/wiki/Astronomical_conjunctionhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-10th_Planet-14http://en.wikipedia.org/wiki/Makemake_(dwarf_planet)http://en.wikipedia.org/wiki/Eris_(dwarf_planet)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Ragozzine-13http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Brown_2007-12http://en.wikipedia.org/wiki/Haumea_(dwarf_planet)http://en.wikipedia.org/wiki/Io_(moon)http://en.wikipedia.org/wiki/Europa_(moon)http://en.wikipedia.org/wiki/Ganymede_(moon)http://en.wikipedia.org/wiki/Titan_(moon)http://en.wikipedia.org/wiki/Hyperion_(moon)http://en.wikipedia.org/wiki/Enceladus_(moon)http://en.wikipedia.org/wiki/Dione_(moon)http://en.wikipedia.org/wiki/Mimas_(moon)http://en.wikipedia.org/wiki/Tethys_(moon)http://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Plutohttp://en.wikipedia.org/wiki/Possible_dwarf_planetshttp://en.wikipedia.org/wiki/Kuiper_belthttp://en.wikipedia.org/wiki/Inner_satellitehttp://en.wikipedia.org/wiki/Planetary_ringhttp://en.wikipedia.org/wiki/Asteroidhttp://en.wikipedia.org/wiki/Natural_satellitehttp://en.wikipedia.org/wiki/Dwarf_planethttp://en.wikipedia.org/wiki/Solar_Systemhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Musotto2002-11http://en.wikipedia.org/wiki/Tidal_forceshttp://en.wikipedia.org/wiki/Apsishttp://en.wikipedia.org/wiki/Perturbation_theoryhttp://en.wikipedia.org/wiki/Kozai_resonancehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Porco1984-1http://en.wikipedia.org/wiki/Titan_(moon)http://en.wikipedia.org/wiki/Apsidal_precessionhttp://en.wikipedia.org/wiki/Rings_of_Saturn#C_Ringhttp://en.wikipedia.org/wiki/Rings_of_Saturn#Colombo_Gap_and_Titan_Ringlethttp://en.wikipedia.org/wiki/Librationhttp://en.wikipedia.org/wiki/Rotating_framehttp://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Haumea_(dwarf_planet)http://en.wikipedia.org/wiki/File:Haumea.GIFhttp://en.wikipedia.org/wiki/Titan_(moon)http://en.wikipedia.org/wiki/Nodal_precessionhttp://en.wikipedia.org/wiki/Apsidal_precessionhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Chakrabarti2001-3http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Rosen1988-2http://en.wikipedia.org/wiki/Rings_of_Saturn#C_Ringhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Porco1984-1http://en.wikipedia.org/wiki/Rings_of_Saturn#Colombo_Gap_and_Titan_Ringlethttp://en.wikipedia.org/wiki/File:PIA17173_Titan_resonances_in_Saturn%27s_C_ring.jpg
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    5/15

    The Laplace resonance exhibited by three of the Galilean

    moons. The ratios in the figure are of orbital periods.

    Illustration of Io-Europa-Ganymede resonance.

    From the centre outwards: Io (yellow), Europa

    (gray) and Ganymede (dark)

    bstituting the data (from Wikipedia) one will get !0.7395 day!1, a value substantially different from

    o!

    ually, the resonance isperfect but it involves also the precession of perijove (the point closest to Jupiter),

    The correct equation (part of the Laplace equations) is:

    other words, the mean motion of Io is

    eed double of that of Europa taking intoount the precession of the perijove. An

    erver sitting on the (drifting) perijove will

    the moons coming into conjunction in the

    me place (elongation). The other pairs listed

    ve satisfy the same type of equation with

    exception of Mimas-Tethys resonance. In

    case, the resonance satisfies the equation

    e point of conjunctions librates around the midpoint between the nodesof the two moons.

    e Laplace resonance

    e most remarkable resonance involving Io-Europa-

    nymede includes the following relation locking the

    ital phaseof the moons:

    ere are mean longitudes of the moons. This relationkes a triple conjunction impossible. The graph

    strates the positions of the moons after 1, 2 and 3 Io

    iods. (The Laplace resonance in the Gliese 876

    tem, in contrast, is associated with one triple

    junction per orbit of the outermost planet.[5])

    utino resonances

    e dwarf planet Pluto is following an orbit trapped in a web of resonances with Neptune. The resonances

    ude:

    A mean-motion resonance of 2:3The resonance of the perihelion (libration around 90), keeping the perihelion above the eclipticThe resonance of the longitude of the perihelion in relation to that of Neptune

    http://en.wikipedia.org/wiki/Ecliptichttp://en.wikipedia.org/wiki/Librationhttp://en.wikipedia.org/wiki/Perihelionhttp://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Plutohttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-rivera2010-5http://en.wikipedia.org/wiki/Gliese_876http://en.wikipedia.org/wiki/Mean_longitudehttp://en.wikipedia.org/wiki/Orbital_nodehttp://en.wikipedia.org/wiki/Perihelionhttp://en.wikipedia.org/wiki/File:TheLaplaceResonance2.pnghttp://en.wikipedia.org/wiki/Galilean_moonhttp://en.wikipedia.org/wiki/File:Galilean_moon_Laplace_resonance_animation.gif
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    6/15

    e consequence of these resonances is that a separation of at least 30 AU is maintained when Pluto crosses

    ptune's orbit. The minimum separation between the two bodies overall is 17 AU, while the minimum

    aration between Pluto and Uranus is just 11 AU[15](see Pluto's orbit for detailed explanation and

    phs).

    e next largest body in a similar 2:3 resonance with Neptune, called aplutino, is the probable dwarf planet

    us. Orcus has an orbit similar in inclination and eccentricity to Pluto's. However, the two are constrained

    heir mutual resonance with Neptune to always be in opposite phases of their orbits; Orcus is thus

    metimes described as the "anti-Pluto".[16]

    ean-motion resonances among extrasolar planets

    ile most extrasolar planetary systems discovered have not been found to have planets in mean-motion

    onances, some remarkable examples have been uncovered:

    As mentioned above, Gliese 876 e, b and c are in a 1:2:4 orbital resonance, with periods of 124.3, 61.1

    and 30.0 days.[5][17]

    KOI-730 d, b, c and e appear to be in a 3:4:6:8 resonance, with periods of 19.72, 14.79, 9.85 and 7.38days.[18][19][20]

    KOI-500 c, b, e, d and f appear to be in or close to a 20:27:41:62:193 resonance, with periods of

    9.522, 7.053, 4.645, 3.072 and 0.9868 days.[20][21][22]

    Both KOI-738 and KOI-787 appear to have pairs of planets in a 7:9 resonance (ratios of 1/1.285871

    and 1/1.284008, respectively).[20]

    Kepler-37 d, c and b are within one percent of a 5:8:15 resonance, with periods of 39.792187,

    21.301886 and 13.367308 days.[23]

    es of extrasolar planets close to a 1:2 mean-motion resonance are fairly common. Sixteen percent of

    tems found by the transit method are reported to have an example of this (with period ratios in the range

    3-2.18),[20]as well as one sixth of planetary systems characterized by Doppler spectroscopy (with in this

    e a narrower period ratio range).[24]Due to incomplete knowledge of the systems, the actual proportions

    likely to be higher.[20]Overall, about a third of radial velocity characterized systems appear to have a

    r of planets close to a commensurability.[20][24]It is much more common for pairs of planets to have

    ital period ratios a few percent larger than a mean-motion resonance ratio than a few percent smaller

    rticularly in the case of first order resonances, in which the integers in the ratio differ by one).[20]This

    predicted to be true in cases where tidal interactions with the star are significant.[25]

    oincidental 'near' ratios of mean motion

    umber of near-integer-ratio relationships between the orbital frequencies of the planets or major moons

    sometimes pointed out (see list below). However, these have no dynamical significance because there is

    appropriate precession of perihelion or other libration to make the resonance perfect (see the detailed

    cussion in the section above). Such near resonances are dynamically insignificant even if the mismatch is

    te small because (unlike a true resonance), after each cycle the relative position of the bodies shifts.

    en averaged over astronomically short timescales, their relative position is random, just like bodies thatnowhere near resonance. For example, consider the orbits of Earth and Venus, which arrive at almost the

    me configuration after 8 Earth orbits and 13 Venus orbits. The actual ratio is 0.61518624, which is only

    32% away from exactly 8:13. The mismatch after 8 years is only 1.5 of Venus' orbital movement. Still,

    is enough that Venus and Earth find themselves in the opposite relative orientation to the original every

    such cycles, which is 960 years. Therefore, on timescales of thousands of years or more (still tiny by

    http://en.wikipedia.org/wiki/Orbital_resonance#Mean-motion_resonances_in_the_Solar_Systemhttp://en.wikipedia.org/wiki/Perihelionhttp://en.wikipedia.org/wiki/Integerhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Terquem_2007-25http://en.wikipedia.org/wiki/Tidal_accelerationhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Wright_2011-24http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/wiki/Commensurability_(astronomy)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Wright_2011-24http://en.wikipedia.org/wiki/Doppler_spectroscopyhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/wiki/Transit_methodhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-BarclayRowe2013-23http://en.wikipedia.org/wiki/Kepler-37http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/w/index.php?title=KOI-787&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=KOI-738&action=edit&redlink=1http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Choi_2012-22http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-EPE-KOI500-21http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/wiki/KOI-500http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Lissauer_2011-20http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Beatty-19http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-EPE-KOI730-18http://en.wikipedia.org/wiki/KOI-730http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Marcy_2001-17http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-rivera2010-5http://en.wikipedia.org/wiki/Gliese_876http://en.wikipedia.org/wiki/Extrasolar_planethttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-MBP-16http://en.wikipedia.org/wiki/90482_Orcushttp://en.wikipedia.org/wiki/Plutinohttp://en.wikipedia.org/wiki/Pluto#Orbit_and_rotationhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-15http://en.wikipedia.org/wiki/Uranus
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    7/15

    Depiction of asteroid Pallas' 18:7 near resonance

    with Jupiter in a rotating frame (click for

    animation). Jupiter (pink loop at upper left) is held

    nearly stationary. The shift in Pallas' orbital

    alignment relative to Jupiter increases steadily over

    time; it never reverses course (i.e., there is no

    libration).

    onomical standards), their relative position is effectively random.

    e presence of a near resonance may reflect that a perfect resonance existed in the past, or that the system

    volving towards one in the future.

    me orbital frequency coincidences include:

    http://en.wikipedia.org/wiki/2_Pallashttp://en.wikipedia.org/wiki/File:PallasJupiter.GIF
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    8/15

    Depiction of the Earth:Venus 8:13 near resonance.

    With Earth held stationary at the center of a

    nonrotating frame, the successive inferiorconjunctions of Venus over eight Earth years trace a

    pentagrammic pattern (reflecting the difference

    between the numbers in the ratio).

    Diagram of the orbits of Pluto's small outer fourmoons, which follow a remarkable 3:4:5:6 sequence

    of near resonances relative to the period of its large

    inner satellite Charon.

    (Ratio) and Bodies Mismatch after one cycle[a] Randomization time[b] Probability[c]

    Planets

    23) Venus!Mercury 4.0 200 y 0.19

    13) Earth!Venus[26][27][d] 1.5 1000 y 0.065

    43:395) Earth!Venus[26][28] 0.8 50,000 y 0.68

    3) Mars!Venus 20.6 20 y 0.11

    2) Mars!Earth 42.9 8 y 0.24

    http://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/Venushttp://en.wikipedia.org/wiki/Marshttp://en.wikipedia.org/wiki/Yearhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Shortt-31http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Langford-29http://en.wikipedia.org/wiki/Venushttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Yearhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-32http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Bazs.C3.B3-30http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Langford-29http://en.wikipedia.org/wiki/Venushttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Yearhttp://en.wikipedia.org/wiki/Mercury_(planet)http://en.wikipedia.org/wiki/Venushttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-28http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-27http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-26http://en.wikipedia.org/wiki/Charon_(moon)http://en.wikipedia.org/wiki/Plutohttp://en.wikipedia.org/wiki/File:Moons_of_Pluto.pnghttp://en.wikipedia.org/wiki/Pentagramhttp://en.wikipedia.org/wiki/Inferior_conjunctionhttp://en.wikipedia.org/wiki/Venushttp://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/File:Venus_pentagram.png
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    9/15

    12) Jupiter!Earth[e] 49.1 40 y 0.28

    5) SaturnJupiter[f] 12.8 800 y 0.13

    7) Uranus!Jupiter 31.1 500 y 0.18

    20) Uranus!Saturn 5.7 20,000 y 0.20

    28) Neptune!Saturn 1.9 80,000 y 0.052

    2) Neptune!Uranus 14.0 2000 y 0.078

    Mars system

    4) Deimos!Phobos 14.9 0.04 y 0.083

    Major asteroids

    1) Pallas !Ceres[29][30] 1.2 700 y 0.0066

    18) Jupiter !Pallas[31] 4.1 4000 y 0.15

    87 Sylvia system[g]

    7:45) Romulus!Remus 0.7 40 y 0.067

    Jupiter system

    6) Io!Metis 0.6 2 y 0.0031

    5) Amalthea!Adrastea 3.9 0.2 y 0.064

    7) Callisto!Ganymede[32] 0.7 30 y 0.012

    Saturn system

    3) Enceladus!Mimas 33.2 0.04 y 0.33

    3) Dione!Tethys[h] 36.2 0.07 y 0.36

    5) Rhea!Dione 17.1 0.4 y 0.26

    7) Titan!Rhea 21.0 0.7 y 0.22

    5) Iapetus!Titan 9.2 4 y 0.051

    Major centaurs[i]

    4) Uranus!Chariklo 4.5 10,000 y 0.073

    Uranus system

    5) Rosalind!Cordelia[34] 0.22 4 y 0.0037

    3) Umbriel!Miranda[j] 24.5 0.08 y 0.14

    5) Umbriel!Ariel[k] 24.2 0.3 y 0.35

    2) Titania!Umbriel 36.3 0.1 y 0.20

    3) Oberon!Titania 33.4 0.4 y 0.34

    Neptune system

    20) Triton!Naiad 13.5 0.2 y 0.075

    2) Proteus!Larissa[37][38] 8.4 0.07 y 0.047

    6) Proteus!S/2004 N 1 2.1 1 y 0.057

    Pluto system

    3) Styx!Charon[39] 58.5 0.2 y 0.33

    http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Matson-50http://en.wikipedia.org/wiki/Charon_(moon)http://en.wikipedia.org/wiki/Styx_(moon)http://en.wikipedia.org/wiki/S/2004_N_1http://en.wikipedia.org/wiki/Proteus_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-ZhangHamilton2008-49http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-ZhangHamilton2007-48http://en.wikipedia.org/wiki/Larissa_(moon)http://en.wikipedia.org/wiki/Proteus_(moon)http://en.wikipedia.org/wiki/Naiad_(moon)http://en.wikipedia.org/wiki/Triton_(moon)http://en.wikipedia.org/wiki/Titania_(moon)http://en.wikipedia.org/wiki/Oberon_(moon)http://en.wikipedia.org/wiki/Umbriel_(moon)http://en.wikipedia.org/wiki/Titania_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-47http://en.wikipedia.org/wiki/Ariel_(moon)http://en.wikipedia.org/wiki/Umbriel_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-45http://en.wikipedia.org/wiki/Miranda_(moon)http://en.wikipedia.org/wiki/Umbriel_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Murray_1990-43http://en.wikipedia.org/wiki/Cordelia_(moon)http://en.wikipedia.org/wiki/Rosalind_(moon)http://en.wikipedia.org/wiki/10199_Chariklohttp://en.wikipedia.org/wiki/Uranushttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-42http://en.wikipedia.org/wiki/Centaur_(minor_planet)http://en.wikipedia.org/wiki/Titan_(moon)http://en.wikipedia.org/wiki/Iapetus_(moon)http://en.wikipedia.org/wiki/Rhea_(moon)http://en.wikipedia.org/wiki/Titan_(moon)http://en.wikipedia.org/wiki/Dione_(moon)http://en.wikipedia.org/wiki/Rhea_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-41http://en.wikipedia.org/wiki/Tethys_(moon)http://en.wikipedia.org/wiki/Dione_(moon)http://en.wikipedia.org/wiki/Mimas_(moon)http://en.wikipedia.org/wiki/Enceladus_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Goldreich_1965-39http://en.wikipedia.org/wiki/Ganymede_(moon)http://en.wikipedia.org/wiki/Callisto_(moon)http://en.wikipedia.org/wiki/Adrastea_(moon)http://en.wikipedia.org/wiki/Amalthea_(moon)http://en.wikipedia.org/wiki/Metis_(moon)http://en.wikipedia.org/wiki/Io_(moon)http://en.wikipedia.org/wiki/Remus_(moon)http://en.wikipedia.org/wiki/Romulus_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-38http://en.wikipedia.org/wiki/87_Sylviahttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Taylor1982-37http://en.wikipedia.org/wiki/2_Pallashttp://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Kova.C4.8Devi.C4.87-36http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Goffin2001-35http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)http://en.wikipedia.org/wiki/2_Pallashttp://en.wikipedia.org/wiki/Phobos_(moon)http://en.wikipedia.org/wiki/Deimos_(moon)http://en.wikipedia.org/wiki/Uranushttp://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Saturnhttp://en.wikipedia.org/wiki/Neptunehttp://en.wikipedia.org/wiki/Saturnhttp://en.wikipedia.org/wiki/Uranushttp://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Uranushttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-34http://en.wikipedia.org/wiki/Jupiterhttp://en.wikipedia.org/wiki/Saturnhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-33http://en.wikipedia.org/wiki/Earthhttp://en.wikipedia.org/wiki/Jupiter
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    10/15

    4) Nix!Charon[39][40] 39.1 0.3 y 0.22

    5) Kerberos!Charon[39] 9.2 2 y 0.05

    6) Hydra!Charon[39][40] 6.6 3 y 0.037

    Haumea system

    8) Hi"iaka!Namaka[l] 42.5 2 y 0.55

    a. ^Mismatch in orbital longitude of the inner body, as compared to its position at the beginning of the cycle (with the

    cycle defined as norbits of the outer body see below). Circular orbits are assumed (i.e., precession is ignored).b. ^The time needed for the mismatch from the initial relative longitudinal orbital positions of the bodies to grow to

    180, rounded to the nearest first significant digit.

    c. ^The probability of obtaining an orbital coincidence of equal or smaller mismatch by chance at least once in n

    attempts, where nis the integer number of orbits of the outer body per cycle, and the mismatch is assumed to vary

    between 0 and 180 at random. The value is calculated as 1- (1- mismatch/180)^n. The smaller the probability, the

    more remarkable the coincidence. This is a crude calculation that only attempts to give a rough idea of relative

    probabilities.

    d. ^The two near commensurabilities listed for Earth and Venus are reflected in the timing of transits of Venus, which

    occur in pairs 8 years apart, in a cycle that repeats every 243 years.[26][28]

    e. ^The near 1:12 resonance between Jupiter and Earth causes the Alinda asteroids, which occupy (or are close to) the3:1 resonance with Jupiter, to be close to a 1:4 resonance with Earth.

    f. ^This near resonance has been termed the Great Inequality. It was first described by Laplace in a series of papers

    published 17841789.

    g. ^87 Sylvia is the first asteroid discovered to have more than one moon.

    h. ^This resonance may have been occupied in the past.[33]

    i. ^Some definitions of centaurs stipulate that they are nonresonant bodies.

    j. ^This resonance may have been occupied in the past.[35]

    k. ^This resonance may have been occupied in the past.[36]

    l. ^The results for the Haumea system aren't very meaningful because, contrary to the assumptions implicit in the

    calculations, Namaka has an eccentric, non-Keplerian orbit that precesses rapidly (see below). Hi"iaka and Namakaare much closer to a 3:8 resonance than indicated, and may actually be in it.[41]

    e most remarkable (least probable) orbital correlation in the list is that between Io and Metis, followed by

    se between Rosalind and Cordelia, Pallas and Ceres, Callisto and Ganymede, and Hydra and Charon,

    pectively.

    ossible past mean-motion resonances

    ast resonance between Jupiter and Saturn may have played a dramatic role in early Solar System history.004 computer model by Alessandro Morbidelli of the Observatoire de la Cte d'Azur in Nice suggested

    the formation of a 1:2 resonance between Jupiter and Saturn (due to interactions with planetesimals that

    sed them to migrate inward and outward, respectively) created a gravitational push that propelled both

    nus and Neptune into higher orbits, and in some scenarios caused them to switch places, which would

    e doubled Neptune's distance from the Sun. The resultant expulsion of objects from the proto-Kuiper belt

    Neptune moved outwards could explain the Late Heavy Bombardment 600 million years after the Solar

    tem's formation and the origin of Jupiter's Trojan asteroids.[42]An outward migration of Neptune could

    o explain the current occupancy of some of its resonances (particularly the 2:5 resonance) within the

    per belt.

    ile Saturn's mid-sized moons Dione and Tethys are not close to an exact resonance now, they may have

    n in a 2:3 resonance early in the Solar System's history. This would have led to orbital eccentricity and

    l heating that may have warmed Tethys' interior enough to form a subsurface ocean. Subsequent freezing

    http://en.wikipedia.org/wiki/Tidal_acceleration#Tidal_heatinghttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-54http://en.wikipedia.org/wiki/Trojan_asteroidhttp://en.wikipedia.org/wiki/Late_Heavy_Bombardmenthttp://en.wikipedia.org/wiki/Planetesimalshttp://en.wikipedia.org/wiki/Nicehttp://en.wikipedia.org/wiki/C%C3%B4te_d%27Azur_Observatoryhttp://en.wikipedia.org/wiki/Alessandro_Morbidelli_(astronomer)http://en.wikipedia.org/wiki/Nice_modelhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Ragozzine.26Brown2009-52http://en.wikipedia.org/wiki/Osculating_orbithttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-53http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Tittemore1988-46http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-47http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Tittemore_Wisdom_1990-44http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-45http://en.wikipedia.org/wiki/Centaur_(minor_planet)#Classificationhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-42http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Chen2008-40http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-41http://en.wikipedia.org/wiki/87_Sylviahttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-38http://en.wikipedia.org/wiki/Pierre-Simon_Laplacehttp://en.wikipedia.org/wiki/Great_Inequalityhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-34http://en.wikipedia.org/wiki/Alinda_familyhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-33http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Shortt-31http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Langford-29http://en.wikipedia.org/wiki/Transit_of_Venushttp://en.wikipedia.org/wiki/Commensurability_(astronomy)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-32http://en.wikipedia.org/wiki/Probabilityhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-28http://en.wikipedia.org/wiki/Significant_digithttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-27http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-26http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-53http://en.wikipedia.org/wiki/Namaka_(moon)http://en.wikipedia.org/wiki/Hi%27iaka_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-WardCanup2006-51http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Matson-50http://en.wikipedia.org/wiki/Charon_(moon)http://en.wikipedia.org/wiki/Hydra_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Matson-50http://en.wikipedia.org/wiki/Charon_(moon)http://en.wikipedia.org/wiki/Kerberos_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-WardCanup2006-51http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Matson-50http://en.wikipedia.org/wiki/Charon_(moon)http://en.wikipedia.org/wiki/Nix_(moon)
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    11/15

    he ocean after the moons escaped from the resonance may have generated the extensional stresses that

    ated the enormous graben system of Ithaca Chasma on Tethys.[33]

    e satellite system of Uranus is notably different from those of Jupiter and Saturn in that it lacks precise

    onances among the larger moons, while the majority of the larger moons of Jupiter (3 of the 4 largest) and

    Saturn (6 of the 8 largest) are in mean-motion resonances. In all three satellite systems, moons were likely

    tured into mean-motion resonances in the past as their orbits shifted due to tidal dissipation (a process by

    ch satellites gain orbital energy at the expense of the primary's rotational energy, affecting inner moons

    proportionately). In the Uranus System, however, due to the planet's lesser degree of oblateness, and the

    ger relative size of its satellites, escape from a mean-motion resonance is much easier. Lower oblateness

    he primary alters its gravitational field in such a way that different possible resonances are spaced more

    sely together. A larger relative satellite size increases the strength of their interactions. Both factors lead

    more chaotic orbital behavior at or near mean-motion resonances. Escape from a resonance may be

    ociated with capture into a secondary resonance, and/or tidal evolution-driven increases in orbital

    entricity or inclination.

    an-motion resonances that probably once existed in the Uranus System include (3:5) Ariel-Miranda, (1:3)

    briel-Miranda, (3:5) Umbriel-Ariel, and (1:4) Titania-Ariel.[36][35]Evidence for such past resonances

    udes the relatively high eccentricities of the orbits of Uranus' inner satellites, and the anomalously highital inclination of Miranda. High past orbital eccentricities associated with the (1:3) Umbriel-Miranda

    (1:4) Titania-Ariel resonances may have led to tidal heating of the interiors of Miranda and Ariel,[43]

    pectively. Miranda probably escaped from its resonance with Umbriel via a secondary resonance, and the

    chanism of this escape is believed to explain why its orbital inclination is more than 10 times those of the

    er regular Uranian moons (see Uranus' natural satellites).[44][45]

    milar to the case of Miranda, the present inclinations of Jupiter's moonlets Amalthea and Thebe are

    ught to be indications of past passage through the 3:1 and 4:2 resonances with Io, respectively.[46]

    ptune's regular moons Proteus and Larissa are thought to have passed through a 1:2 resonance a few

    dred million years ago; the moons have drifted away from each other since then because Proteus is

    side a synchronous orbit and Larissa is within one. Passage through the resonance is thought to have

    ited both moons' eccentricities to a degree that has not since been entirely damped out.[37][38]

    he case of Pluto's satellites, it has been proposed that the present near resonances are relics of a previous

    cise resonance that was disrupted by tidal damping of the eccentricity of Charon's orbit (see Pluto's

    ural satellites for details). The near resonances may be maintained by a 15% local fluctuation in the Pluto-

    aron gravitational field. Thus, these near resonances may not be coincidental.

    e smaller inner moon of the dwarf planet Haumea, Namaka, is one tenth the mass of the larger outer

    on, Hi"iaka. Namaka revolves around Haumea in 18 days in an eccentric, non-Keplerian orbit, and as of

    8 is inclined 13 from Hi"iaka.[41]Over the timescale of the system, it should have been tidally damped

    o a more circular orbit. It appears that it has been disturbed by resonances with the more massive Hi"iaka,

    to converging orbits as it moved outward from Haumea because of tidal dissipation. The moons may

    e been caught in and then escaped from orbital resonance several times. They probably passed through

    3:1 resonance relatively recently, and currently are in or at least close to an 8:3 resonance. Namaka's

    it is strongly perturbed, with a current precession of about !6.5 per year.[41]

    e also

    1685 Toro, an asteroid in 5:8 resonance with the Earth

    http://en.wikipedia.org/wiki/1685_Torohttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Ragozzine.26Brown2009-52http://en.wikipedia.org/wiki/Perturbation_(astronomy)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Ragozzine.26Brown2009-52http://en.wikipedia.org/wiki/Osculating_orbithttp://en.wikipedia.org/wiki/Hi%27iaka_(moon)http://en.wikipedia.org/wiki/Namaka_(moon)http://en.wikipedia.org/wiki/Haumea_(dwarf_planet)http://en.wikipedia.org/wiki/Dwarf_planethttp://en.wikipedia.org/wiki/Pluto%27s_natural_satelliteshttp://en.wikipedia.org/wiki/Plutohttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-ZhangHamilton2008-49http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-ZhangHamilton2007-48http://en.wikipedia.org/wiki/Synchronous_orbithttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Burns2004-58http://en.wikipedia.org/wiki/Thebe_(moon)http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-57http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Tittemore1989-56http://en.wikipedia.org/wiki/Uranus%27_natural_satelliteshttp://en.wikipedia.org/wiki/Regular_moonhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Tittemore_1990-55http://en.wikipedia.org/wiki/Tidal_acceleration#Tidal_heatinghttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Tittemore_Wisdom_1990-44http://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Tittemore1988-46http://en.wikipedia.org/wiki/Inclinationhttp://en.wikipedia.org/wiki/Orbital_eccentricityhttp://en.wikipedia.org/wiki/Oblate_spheroidhttp://en.wikipedia.org/wiki/Tidal_accelerationhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_note-Chen2008-40http://en.wikipedia.org/wiki/Ithaca_Chasmahttp://en.wikipedia.org/wiki/Graben
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    12/15

    3753 Cruithne, an asteroid in 1:1 resonance with the EarthCommensurability (astronomy)Dermott's LawHorseshoe orbit, followed by an object in another type of 1:1 resonanceKozai resonanceLagrangian pointsMercury, which has a 3:2 spinorbit resonanceMusica universalis ("music of the spheres")Resonant trans-Neptunian object

    Tidal lockingTidal resonanceTitiusBode lawTrojan object, a body in a type of 1:1 resonance

    eferences

    1. ^ abPorco, C.; Nicholson, P. D.; Borderies, N.; Danielson, G. E.; Goldreich, P.; Holdberg, J. B.; Lane, A. L. (1984-

    10). "The eccentric Saturnian ringlets at 1.29Rsand 1.45Rs"

    (http://www.sciencedirect.com/science/article/pii/0019103584901349).Icarus60(1): 116. Retrieved 2014-01-09.2. ^Rosen, P. A.; Lissauer, J. J. (1988-08-05). "The Titan -1:0 Nodal Bending Wave in Saturn's Ring C". Science241

    (4866): 690694. doi:10.1126/science.241.4866.690 (http://dx.doi.org/10.1126%2Fscience.241.4866.690).

    PMID 17839081 (//www.ncbi.nlm.nih.gov/pubmed/17839081).

    3. ^Chakrabarti, S. K.; Bhattacharyya, A. (2001). "Constraints on the C ring parameters of Saturn at the Titan !1:0

    resonance".Monthly Notices of the Royal Astronomical Society326(2): L23. doi:10.1046/j.1365-8711.2001.04813.x

    (http://dx.doi.org/10.1046%2Fj.1365-8711.2001.04813.x).

    4. ^ abMorais, M. H. M.; Namouni, F. "Asteroids in retrograde resonance with Jupiter and Saturn"

    (http://arxiv.org/abs/1308.0216).Monthly Notices of the Royal Astronomical Society Letters (in press).

    arXiv:arXiv:1308.0216 (//arxiv.org/abs/arXiv:1308.0216).

    5. ^abcRivera, Eugenio J.; Laughlin, Gregory; Butler, R. Paul; Vogt, Steven S.; Haghighipour, Nader; Meschiari,

    Stefano (June 2010). "The Lick-Carnegie Exoplanet Survey: A Uranus-mass Fourth Planet for GJ 876 in an

    Extrasolar Laplace Configuration". arXiv:1006.4244v1 (http://arxiv.org/abs/1006.4244v1) [astro-ph.EP

    (http://arxiv.org/archive/astro-ph.EP)].

    6. ^Beatty, J. K. (2003-07-23). "Why Is Saturn Tipsy?" (http://www.skyandtelescope.com/news/3306806.html?

    page=1&c=y). SkyAndTelescope.Com. Retrieved 2009-02-25.

    7. ^Ward, W. R.; Hamilton, D. P. (November 2004). "Tilting Saturn. I. Analytic Model"

    (http://www.iop.org/EJ/abstract/1538-3881/128/5/2501/).Astronomical Journal(American Astronomical Society)

    128(5): 25012509. Bibcode:2004AJ....128.2501W (http://adsabs.harvard.edu/abs/2004AJ....128.2501W).

    doi:10.1086/424533 (http://dx.doi.org/10.1086%2F424533). Retrieved 2009-02-25.

    8. ^Hamilton, D. P.; Ward, W. R. (November 2004). "Tilting Saturn. II. Numerical Model"

    (http://www.iop.org/EJ/abstract/1538-3881/128/5/2510).Astronomical Journal128(5): 25102517.

    Bibcode:2004AJ....128.2510H (http://adsabs.harvard.edu/abs/2004AJ....128.2510H). doi:10.1086/424534

    (http://dx.doi.org/10.1086%2F424534). Retrieved 2009-02-25.

    9. ^Laskar, J. (2008-03-18). "Chaotic diffusion in the Solar System". Icarus196(1): 115. arXiv:0802.3371

    (//arxiv.org/abs/0802.3371). Bibcode:2008Icar..196....1L (http://adsabs.harvard.edu/abs/2008Icar..196....1L).

    doi:10.1016/j.icarus.2008.02.017 (http://dx.doi.org/10.1016%2Fj.icarus.2008.02.017).

    0. ^Laskar, J.; Gastineau, M. (2009-06-11). "Existence of collisional trajectories of Mercury, Mars and Venus with the

    Earth".Nature459(7248): 817819. Bibcode:2009Natur.459..817L

    (http://adsabs.harvard.edu/abs/2009Natur.459..817L). doi:10.1038/nature08096

    (http://dx.doi.org/10.1038%2Fnature08096). PMID 19516336 (//www.ncbi.nlm.nih.gov/pubmed/19516336).

    1. ^Musotto, S.; Varadi, F.; Moore, W.; Schubert, G. (2002). "Numerical Simulations of the Orbits of the Galilean

    Satellites".Icarus159(2): 500504. Bibcode:2002Icar..159..500M

    (http://adsabs.harvard.edu/abs/2002Icar..159..500M). doi:10.1006/icar.2002.6939

    (http://dx.doi.org/10.1006%2Ficar.2002.6939).

    http://dx.doi.org/10.1006%2Ficar.2002.6939http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2002Icar..159..500Mhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Icarus_(journal)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Musotto2002_11-0http://www.ncbi.nlm.nih.gov/pubmed/19516336http://en.wikipedia.org/wiki/PubMed_Identifierhttp://dx.doi.org/10.1038%2Fnature08096http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2009Natur.459..817Lhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Nature_(journal)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Laskar2009_10-0http://dx.doi.org/10.1016%2Fj.icarus.2008.02.017http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2008Icar..196....1Lhttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/0802.3371http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/Icarus_(journal)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Laskar2008_9-0http://dx.doi.org/10.1086%2F424534http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2004AJ....128.2510Hhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Astronomical_Journalhttp://www.iop.org/EJ/abstract/1538-3881/128/5/2510http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-8http://dx.doi.org/10.1086%2F424533http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2004AJ....128.2501Whttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/American_Astronomical_Societyhttp://en.wikipedia.org/wiki/Astronomical_Journalhttp://www.iop.org/EJ/abstract/1538-3881/128/5/2501/http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-7http://www.skyandtelescope.com/news/3306806.html?page=1&c=yhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-6http://arxiv.org/archive/astro-ph.EPhttp://arxiv.org/abs/1006.4244v1http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-rivera2010_5-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-rivera2010_5-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-rivera2010_5-0http://arxiv.org/abs/arXiv:1308.0216http://en.wikipedia.org/wiki/ArXivhttp://arxiv.org/abs/1308.0216http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Morais_2013_4-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Morais_2013_4-0http://dx.doi.org/10.1046%2Fj.1365-8711.2001.04813.xhttp://en.wikipedia.org/wiki/Digital_object_identifierhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Chakrabarti2001_3-0http://www.ncbi.nlm.nih.gov/pubmed/17839081http://en.wikipedia.org/wiki/PubMed_Identifierhttp://dx.doi.org/10.1126%2Fscience.241.4866.690http://en.wikipedia.org/wiki/Digital_object_identifierhttp://en.wikipedia.org/wiki/Jack_J._Lissauerhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Rosen1988_2-0http://en.wikipedia.org/wiki/Icarus_(journal)http://www.sciencedirect.com/science/article/pii/0019103584901349http://en.wikipedia.org/wiki/Peter_Goldreichhttp://en.wikipedia.org/wiki/Phil_Nicholsonhttp://en.wikipedia.org/wiki/Carolyn_Porcohttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Porco1984_1-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Porco1984_1-0http://en.wikipedia.org/wiki/Trojan_(astronomy)http://en.wikipedia.org/wiki/Titius%E2%80%93Bode_lawhttp://en.wikipedia.org/wiki/Tidal_resonancehttp://en.wikipedia.org/wiki/Tidal_lockinghttp://en.wikipedia.org/wiki/Resonant_trans-Neptunian_objecthttp://en.wikipedia.org/wiki/Musica_universalishttp://en.wikipedia.org/wiki/Mercury_(planet)#Spin.E2.80.93orbit_resonancehttp://en.wikipedia.org/wiki/Lagrangian_pointhttp://en.wikipedia.org/wiki/Kozai_mechanismhttp://en.wikipedia.org/wiki/Horseshoe_orbithttp://en.wikipedia.org/wiki/Dermott%27s_Lawhttp://en.wikipedia.org/wiki/Commensurability_(astronomy)http://en.wikipedia.org/wiki/3753_Cruithne
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    13/15

    2. ^Brown, M. E.; Barkume, K. M.; Ragozzine, D.; Schaller, E. L. (2007-03-15). "A collisional family of icy objects in

    the Kuiper belt" (http://www.nature.com/nature/journal/v446/n7133/abs/nature05619.html).Nature446(7133): 294

    296. Bibcode:2007Natur.446..294B (http://adsabs.harvard.edu/abs/2007Natur.446..294B). doi:10.1038/nature05619

    (http://dx.doi.org/10.1038%2Fnature05619). PMID 17361177 (//www.ncbi.nlm.nih.gov/pubmed/17361177).

    Retrieved 2012-02-18.

    3. ^Ragozzine, D.; Brown, M. E. (2007-10-18). "Candidate members and age estimate of the family of Kuiper Belt

    object 2003 EL61" (http://iopscience.iop.org/1538-3881/134/6/2160). The Astronomical Journal134(6): 2160

    2167. arXiv:0709.0328 (//arxiv.org/abs/0709.0328). Bibcode:2007AJ....134.2160R

    (http://adsabs.harvard.edu/abs/2007AJ....134.2160R). doi:10.1086/522334 (http://dx.doi.org/10.1086%2F522334).

    Retrieved 2012-02-18.

    4. ^Dunn, T. "The 10th Planet" (http://www.orbitsimulator.com/gravity/articles/newtno.html). GravitySimulator.Com

    (http://www.orbitsimulator.com/gravity/articles/what.html). Retrieved 2012-02-18.

    5. ^Renu Malhotra (1997). "Pluto's Orbit" (http://www.nineplanets.org/plutodyn.html). Retrieved 2007-03-26.

    6. ^Michael E. Brown (2009-03-23). "S/2005 (90482) 1 needs your help"

    (http://www.mikebrownsplanets.com/2009/03/s1-90482-2005-needs-your-help.html). Mike Brown's Planets (blog).

    Retrieved 2009-03-25.

    7. ^Marcy, Geoffrey W.; Butler, R. Paul; Fischer, Debra; Vogt, Steven S.; Lissauer, Jack J.; Rivera, Eugenio J. (2001).

    "A Pair of Resonant Planets Orbiting GJ 876". The Astrophysical Journal556(1): 296301.

    Bibcode:2001ApJ...556..296M (http://adsabs.harvard.edu/abs/2001ApJ...556..296M). doi:10.1086/321552

    (http://dx.doi.org/10.1086%2F321552).

    8. ^Extrasolar Planets Encyclopaedia, KOI-730 (http://exoplanet.eu/star.php?st=KOI-730)9. ^Beatty, Kelley (2011-03-05). "Kepler Finds Planets in Tight Dance"

    (http://www.skyandtelescope.com/news/117467488.html). Sky and Telescope. Retrieved 2012-10-16.

    0. ^ abcdefgLissauer, J.; Ragozzine, D.; Fabrycky, D. C.; et al.(2011-10-13). "Architecture and dynamics of

    Kepler's candidate multiple transiting planet systems" (http://iopscience.iop.org/0067-0049/197/1/8). The

    Astrophysical Journal Supplement Series197(1): 126. arXiv:1102.0543 (//arxiv.org/abs/1102.0543).

    Bibcode:2011ApJS..197....8L (http://adsabs.harvard.edu/abs/2011ApJS..197....8L). doi:10.1088/0067-0049/197/1/8

    (http://dx.doi.org/10.1088%2F0067-0049%2F197%2F1%2F8). Retrieved 2012-10-16.

    1. ^Extrasolar Planets Encyclopaedia, KOI-500 (http://exoplanet.eu/star.php?st=KOI-500)

    2. ^Choi, Charles Q. (2012-10-15). "Tiniest Alien Solar System Discovered: 5 Packed Planets"

    (http://www.space.com/18073-tiny-alien-solar-system-exoplanets.html). Space.Com web site(http://www.space.com). TechMediaNetwork.com. Retrieved 2012-10-16.

    3. ^Barclay, T.; Rowe, J. F.; Lissauer, J. J.; Huber, D.; Fressin, F.; Howell, S. B.; Bryson, S. T.; Chaplin, W. J.; Dsert,

    J.-M.; Lopez, E. D.; Marcy, G. W.; Mullally, F.; Ragozzine, D.; Torres, G.; Adams, E. R.; Agol, E.; Barrado, D.;

    Basu, S.; Bedding, T. R.; Buchhave, L. A.; Charbonneau, D.; Christiansen, J. L.; Christensen-Dalsgaard, J.; Ciardi,

    D.; Cochran, W. D.; Dupree, A. K.; Elsworth, Y.; Everett, M.; Fischer, D. A.; Ford, E. B.; Fortney, J. J.; Geary, J. C.;

    Haas, M. R.; Handberg, R.; Hekker, S.; Henze, C. E.; Horch, E.; Howard, A. W.; Hunter, R. C.; Isaacson, H.;

    Jenkins, J. M.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Klaus, T. C.; Latham, D. W.; Li, J.; Lillo-Box, J.; Lund, M.

    N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Morris, R. L.; Quintana, E. V.; Stello, D.; Smith, J. C.; Still, M.;

    Thompson, S. E. (2013-02-20). "A sub-Mercury-sized exoplanet"

    (http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11914.html).Nature. arXiv:1305.5587(//arxiv.org/abs/1305.5587). Bibcode:2013Natur.494..452B (http://adsabs.harvard.edu/abs/2013Natur.494..452B).

    doi:10.1038/nature11914 (http://dx.doi.org/10.1038%2Fnature11914). ISSN 0028-0836

    (//www.worldcat.org/issn/0028-0836). Retrieved 2013-02-21.

    4. ^ abWright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, J. A.; Howard, A. W.; Fischer, D. A.;

    Valenti, J. A.; Anderson, J.; Piskunov, N. (April 2011). "The Exoplanet Orbit Database"

    (http://www.jstor.org/stable/info/10.1086/659427). Publications of the Astronomical Society of the Pacific123(902):

    41242. arXiv:1012.5676 (//arxiv.org/abs/1012.5676). Bibcode:2011PASP..123..412W

    (http://adsabs.harvard.edu/abs/2011PASP..123..412W). doi:10.1086/659427 (http://dx.doi.org/10.1086%2F659427).

    Retrieved 2012-11-07.

    5. ^Terquem, C.; Papaloizou, J. C. B. (2007-01-10). "Migration and the Formation of Systems of Hot Super-Earths and

    Neptunes" (http://iopscience.iop.org/0004-637X/654/2/1110/). The Astrophysical Journal654(2): 11101120.

    arXiv:astro-ph/0609779 (//arxiv.org/abs/astro-ph/0609779). Bibcode:2007ApJ...654.1110T

    (http://adsabs.harvard.edu/abs/2007ApJ...654.1110T). doi:10.1086/509497 (http://dx.doi.org/10.1086%2F509497).

    Retrieved 2012-11-08.

    http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Langford_29-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Langford_29-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Langford_29-0http://dx.doi.org/10.1086%2F509497http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2007ApJ...654.1110Thttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/astro-ph/0609779http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/The_Astrophysical_Journalhttp://iopscience.iop.org/0004-637X/654/2/1110/http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Terquem_2007_25-0http://dx.doi.org/10.1086%2F659427http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2011PASP..123..412Whttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/1012.5676http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/Publications_of_the_Astronomical_Society_of_the_Pacifichttp://www.jstor.org/stable/info/10.1086/659427http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Wright_2011_24-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Wright_2011_24-0http://www.worldcat.org/issn/0028-0836http://en.wikipedia.org/wiki/International_Standard_Serial_Numberhttp://dx.doi.org/10.1038%2Fnature11914http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2013Natur.494..452Bhttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/1305.5587http://en.wikipedia.org/wiki/ArXivhttp://www.nature.com/nature/journal/vaop/ncurrent/full/nature11914.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-BarclayRowe2013_23-0http://www.space.com/http://www.space.com/18073-tiny-alien-solar-system-exoplanets.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Choi_2012_22-0http://exoplanet.eu/star.php?st=KOI-500http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-EPE-KOI500_21-0http://dx.doi.org/10.1088%2F0067-0049%2F197%2F1%2F8http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2011ApJS..197....8Lhttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/1102.0543http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/The_Astrophysical_Journal_Supplement_Serieshttp://iopscience.iop.org/0067-0049/197/1/8http://en.wikipedia.org/wiki/Jack_J._Lissauerhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-6http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-5http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-4http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-3http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Lissauer_2011_20-0http://en.wikipedia.org/wiki/Sky_and_Telescopehttp://www.skyandtelescope.com/news/117467488.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Beatty_19-0http://exoplanet.eu/star.php?st=KOI-730http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-EPE-KOI730_18-0http://dx.doi.org/10.1086%2F321552http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2001ApJ...556..296Mhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/The_Astrophysical_Journalhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Marcy_2001_17-0http://www.mikebrownsplanets.com/2009/03/s1-90482-2005-needs-your-help.htmlhttp://en.wikipedia.org/wiki/Michael_E._Brownhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-MBP_16-0http://www.nineplanets.org/plutodyn.htmlhttp://en.wikipedia.org/wiki/Renu_Malhotrahttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-15http://www.orbitsimulator.com/gravity/articles/what.htmlhttp://www.orbitsimulator.com/gravity/articles/newtno.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-10th_Planet_14-0http://dx.doi.org/10.1086%2F522334http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2007AJ....134.2160Rhttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/0709.0328http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/The_Astronomical_Journalhttp://iopscience.iop.org/1538-3881/134/6/2160http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine_13-0http://www.ncbi.nlm.nih.gov/pubmed/17361177http://en.wikipedia.org/wiki/PubMed_Identifierhttp://dx.doi.org/10.1038%2Fnature05619http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2007Natur.446..294Bhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Nature_(journal)http://www.nature.com/nature/journal/v446/n7133/abs/nature05619.htmlhttp://en.wikipedia.org/wiki/Michael_E._Brownhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Brown_2007_12-0
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    14/15

    6. ^ abcLangford, Peter M. (September 1998). "Transits of Venus" (http://www.astronomy.org.gg/venustransitsb.htm).

    La Socit Guernesiaise Astronomy Section web site (http://www.astronomy.org.gg/). Astronomical Society of the

    Channel Island of Guernsey. Retrieved 2012-03-01.

    7. ^Bazs, A.; Eybl, V.; Dvorak, R.; Pilat-Lohinger, E.; Lhotka, C. (2010-04-07). "A survey of near-mean-motion

    resonances between Venus and Earth" (http://www.springerlink.com/content/tp6n6652976308m8/). Celestial

    Mechanics and Dynamical Astronomy(Springer) 107(1): 6376. arXiv:0911.2357v1 (//arxiv.org/abs/0911.2357v1).

    Bibcode:2010CeMDA.107...63B (http://adsabs.harvard.edu/abs/2010CeMDA.107...63B). doi:10.1007/s10569-010-

    9266-6 (http://dx.doi.org/10.1007%2Fs10569-010-9266-6). Retrieved 2012-03-01.

    8. ^ abShortt, David (22 May 2012). "Some Details About Transits of Venus" (http://www.planetary.org/blogs/guest-

    blogs/Some-Details-About-Transits-of-Venus.html). Planetary Society web site. The Planetary Society. Retrieved 22

    May 2012.

    9. ^Goffin, E. (2001). "New determination of the mass of Pallas".Astronomy and Astrophysics365(3): 627630.

    Bibcode:2001A&A...365..627G (http://adsabs.harvard.edu/abs/2001A&A...365..627G). doi:10.1051/0004-

    6361:20000023 (http://dx.doi.org/10.1051%2F0004-6361%3A20000023).

    0. ^Kova#evi$, A. B. (2011-12-05). "Determination of the mass of Ceres based on the most gravitationally efficient

    close encounters".Monthly Notices of the Royal Astronomical Society419(3): 27252736. arXiv:1109.6455

    (//arxiv.org/abs/1109.6455). Bibcode:2012MNRAS.419.2725K

    (http://adsabs.harvard.edu/abs/2012MNRAS.419.2725K). doi:10.1111/j.1365-2966.2011.19919.x

    (http://dx.doi.org/10.1111%2Fj.1365-2966.2011.19919.x).

    1. ^Taylor, D. B. (1982). "The secular motion of Pallas".Royal Astronomical Society199: 255265.

    Bibcode:1982MNRAS.199..255T (http://adsabs.harvard.edu/abs/1982MNRAS.199..255T).2. ^Goldreich, P. (1965). "An explanation of the frequent occurrence of commensurable mean motions in the solar

    system" (http://adsabs.harvard.edu/abs/1965MNRAS.130..159G).Monthly Notices of the Royal Astronomical Society

    130(3): 159181. Bibcode:1965MNRAS.130..159G (http://adsabs.harvard.edu/abs/1965MNRAS.130..159G).

    Retrieved 2012-11-07.

    3. ^ abChen, E. M. A.; Nimmo, F. (March 2008). "Thermal and Orbital Evolution of Tethys as Constrained by Surface

    Observations" (http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1968.pdf) (PDF).Lunar and Planetary Science

    XXXIX (2008). Retrieved 2008-03-14.

    4. ^Murray, C. D.; Thompson, R. P. (1990-12-06). "Orbits of shepherd satellites deduced from the structure of the

    rings of Uranus" (http://www.nature.com/nature/journal/v348/n6301/abs/348499a0.html).Nature348(6301): 499

    502. Bibcode:1990Natur.348..499M (http://adsabs.harvard.edu/abs/1990Natur.348..499M). doi:10.1038/348499a0(http://dx.doi.org/10.1038%2F348499a0). Retrieved 2012-02-20.

    5. ^ abTittemore, William C.; Wisdom, Jack (June 1990). "Tidal evolution of the Uranian satellites: III. Evolution

    through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities".

    Icarus85(2): 394443. Bibcode:1990Icar...85..394T (http://adsabs.harvard.edu/abs/1990Icar...85..394T).

    doi:10.1016/0019-1035(90)90125-S (http://dx.doi.org/10.1016%2F0019-1035%2890%2990125-S).

    6. ^ abTittemore, W. C., Wisdom, J. (1988). "Tidal Evolution of the Uranian Satellites I. Passage of Ariel and Umbriel

    through the 5:3 Mean-Motion Commensurability".Icarus74(2): 172230. Bibcode:1988Icar...74..172T

    (http://adsabs.harvard.edu/abs/1988Icar...74..172T). doi:10.1016/0019-1035(88)90038-3

    (http://dx.doi.org/10.1016%2F0019-1035%2888%2990038-3).

    7. ^ abZhang, K.; Hamilton, D. P. (June 2007). "Orbital resonances in the inner neptunian system: I. The 2:1 ProteusLarissa mean-motion resonance".Icarus188(2): 386399. Bibcode:2007Icar..188..386Z

    (http://adsabs.harvard.edu/abs/2007Icar..188..386Z). doi:10.1016/j.icarus.2006.12.002

    (http://dx.doi.org/10.1016%2Fj.icarus.2006.12.002). ISSN 0019-1035 (//www.worldcat.org/issn/0019-1035).

    8. ^ abZhang, K.; Hamilton, D. P. (January 2008). "Orbital resonances in the inner neptunian system: II. Resonant

    history of Proteus, Larissa, Galatea, and Despina".Icarus193(1): 267282. Bibcode:2008Icar..193..267Z

    (http://adsabs.harvard.edu/abs/2008Icar..193..267Z). doi:10.1016/j.icarus.2007.08.024

    (http://dx.doi.org/10.1016%2Fj.icarus.2007.08.024). ISSN 0019-1035 (//www.worldcat.org/issn/0019-1035).

    9. ^ abcdMatson, J. (11 July 2012). "New Moon for Pluto: Hubble Telescope Spots a 5th Plutonian Satellite"

    (http://www.scientificamerican.com/article.cfm?id=pluto-moon-p5). Scientific American web site. Retrieved 12 July

    2012.

    0. ^ abWard, William R.; Canup, Robin M. (2006). "Forced Resonant Migration of Pluto's Outer Satellites by Charon".

    Science313(5790): 11071109. Bibcode:2006Sci...313.1107W

    (http://adsabs.harvard.edu/abs/2006Sci...313.1107W). doi:10.1126/science.1127293

    (http://dx.doi.org/10.1126%2Fscience.1127293). PMID 16825533 (//www.ncbi.nlm.nih.gov/pubmed/16825533).

    http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine.26Brown2009_52-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine.26Brown2009_52-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine.26Brown2009_52-0http://www.ncbi.nlm.nih.gov/pubmed/16825533http://en.wikipedia.org/wiki/PubMed_Identifierhttp://dx.doi.org/10.1126%2Fscience.1127293http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2006Sci...313.1107Whttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-WardCanup2006_51-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-WardCanup2006_51-0http://en.wikipedia.org/wiki/Scientific_Americanhttp://www.scientificamerican.com/article.cfm?id=pluto-moon-p5http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Matson_50-3http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Matson_50-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Matson_50-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Matson_50-0http://www.worldcat.org/issn/0019-1035http://en.wikipedia.org/wiki/International_Standard_Serial_Numberhttp://dx.doi.org/10.1016%2Fj.icarus.2007.08.024http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2008Icar..193..267Zhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-ZhangHamilton2008_49-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-ZhangHamilton2008_49-0http://www.worldcat.org/issn/0019-1035http://en.wikipedia.org/wiki/International_Standard_Serial_Numberhttp://dx.doi.org/10.1016%2Fj.icarus.2006.12.002http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2007Icar..188..386Zhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-ZhangHamilton2007_48-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-ZhangHamilton2007_48-0http://dx.doi.org/10.1016%2F0019-1035%2888%2990038-3http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1988Icar...74..172Thttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Icarus_(journal)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Tittemore1988_46-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Tittemore1988_46-0http://dx.doi.org/10.1016%2F0019-1035%2890%2990125-Shttp://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1990Icar...85..394Thttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Tittemore_Wisdom_1990_44-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Tittemore_Wisdom_1990_44-0http://dx.doi.org/10.1038%2F348499a0http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1990Natur.348..499Mhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Nature_(journal)http://www.nature.com/nature/journal/v348/n6301/abs/348499a0.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Murray_1990_43-0http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1968.pdfhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Chen2008_40-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Chen2008_40-0http://adsabs.harvard.edu/abs/1965MNRAS.130..159Ghttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Monthly_Notices_of_the_Royal_Astronomical_Societyhttp://adsabs.harvard.edu/abs/1965MNRAS.130..159Ghttp://en.wikipedia.org/wiki/Peter_Goldreichhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Goldreich_1965_39-0http://adsabs.harvard.edu/abs/1982MNRAS.199..255Thttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Taylor1982_37-0http://dx.doi.org/10.1111%2Fj.1365-2966.2011.19919.xhttp://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2012MNRAS.419.2725Khttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/1109.6455http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/Monthly_Notices_of_the_Royal_Astronomical_Societyhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Kova.C4.8Devi.C4.87_36-0http://dx.doi.org/10.1051%2F0004-6361%3A20000023http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2001A&A...365..627Ghttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Goffin2001_35-0http://en.wikipedia.org/wiki/The_Planetary_Societyhttp://www.planetary.org/blogs/guest-blogs/Some-Details-About-Transits-of-Venus.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Shortt_31-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Shortt_31-0http://dx.doi.org/10.1007%2Fs10569-010-9266-6http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2010CeMDA.107...63Bhttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/0911.2357v1http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Mediahttp://en.wikipedia.org/wiki/Celestial_Mechanics_and_Dynamical_Astronomyhttp://www.springerlink.com/content/tp6n6652976308m8/http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Bazs.C3.B3_30-0http://www.astronomy.org.gg/http://www.astronomy.org.gg/venustransitsb.htmhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Langford_29-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Langford_29-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Langford_29-0
  • 8/12/2019 Orbital Resonance - Wikipedia, The Free Encyclopedia

    15/15

    1. ^ abcRagozzine, D.; Brown, M.E. (2009). "Orbits and Masses of the Satellites of the Dwarf Planet Haumea = 2003

    EL61". The Astronomical Journal137(6): 47664776. arXiv:0903.4213 (//arxiv.org/abs/0903.4213).

    Bibcode:2009AJ....137.4766R (http://adsabs.harvard.edu/abs/2009AJ....137.4766R). doi:10.1088/0004-

    6256/137/6/4766 (http://dx.doi.org/10.1088%2F0004-6256%2F137%2F6%2F4766).

    2. ^Hansen, Kathryn (June 7, 2005). "Orbital shuffle for early solar system"

    (http://www.geotimes.org/june05/WebExtra060705.html). Geotimes. Retrieved 2007-08-26.

    3. ^Tittemore, W. C. (September 1990). "Tidal heating of Ariel".Icarus87(1): 110139. Bibcode:1990Icar...87..110T

    (http://adsabs.harvard.edu/abs/1990Icar...87..110T). doi:10.1016/0019-1035(90)90024-4

    (http://dx.doi.org/10.1016%2F0019-1035%2890%2990024-4).

    4. ^Tittemore, W. C., Wisdom, J. (1989). "Tidal Evolution of the Uranian Satellites II. An Explanation of the

    Anomalously High Orbital Inclination of Miranda".Icarus78(1): 6389. Bibcode:1989Icar...78...63T

    (http://adsabs.harvard.edu/abs/1989Icar...78...63T). doi:10.1016/0019-1035(89)90070-5

    (http://dx.doi.org/10.1016%2F0019-1035%2889%2990070-5).

    5. ^Malhotra, R., Dermott, S. F. (1990). "The Role of Secondary Resonances in the Orbital History of Miranda".

    Icarus85(2): 444480. Bibcode:1990Icar...85..444M (http://adsabs.harvard.edu/abs/1990Icar...85..444M).

    doi:10.1016/0019-1035(90)90126-T (http://dx.doi.org/10.1016%2F0019-1035%2890%2990126-T).

    6. ^Burns, J. A.; Simonelli, D. P.; Showalter, M. R.; Hamilton, D. P.; Porco, C. C.; Esposito, L. W.; Throop, H. (2004).

    "Jupiters Ring-Moon System" (http://www.astro.umd.edu/~hamilton/research/preprints/BurSimSho03.pdf). In

    Bagenal, F.; Dowling, T. E.; McKinnon, W. B.Jupiter: The Planet, Satellites and Magnetosphere

    (http://google.com/books?id=aMERHqj9ivcC&printsec=frontcover). Cambridge University Press.

    C. D. Murray, S. F. Dermott (1999). Solar System Dynamics, Cambridge University Press, ISBN 0-521-57597-4.Renu Malhotra Orbital Resonances and Chaos in the Solar System. In Solar System Formation and

    Evolution, ASP Conference Series, 149(1998) preprint(http://www.lpl.arizona.edu/people/faculty/malhotra_preprints/rio97.pdf).Renu Malhotra, The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune, TheAstronomical Journal, 110(1995), p. 420 Preprint (http://arxiv.org/abs/astro-ph/9504036).Lematre, A. (2010). "Resonances: Models and Captures". In Souchay, J.; Dvorak, R.Dynamics of

    Small Solar System Bodies and Exoplanets. Lecture Notes in Physics 790. Springer. pp. 162.doi:10.1007/978-3-642-04458-8 (http://dx.doi.org/10.1007%2F978-3-642-04458-8). ISBN 978-3-642-04457-1.

    xternal links

    Locations of Solar System Planetary Mean-Motion Resonances(http://www.alpheratz.net/murison/asteroids/resonances/). Web calculator that plots distributions of thesemimajor axes (or in one case the perihelion distances) of the minor planets in relation to mean-

    motion resonances of the planets (website maintained by M.A. Murison).

    rieved from "http://en.wikipedia.org/w/index.php?title=Orbital_resonance&oldid=594406400"

    egories: Orbits

    This page was last modified on 7 February 2014 at 19:08.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms mayapply. By using this site, you agree to the Terms of Use and Privacy Policy.Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

    http://www.wikimediafoundation.org/http://wikimediafoundation.org/wiki/Privacy_policyhttp://wikimediafoundation.org/wiki/Terms_of_Usehttp://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_Licensehttp://en.wikipedia.org/wiki/Help:Categoryhttp://en.wikipedia.org/w/index.php?title=Orbital_resonance&oldid=594406400http://www.alpheratz.net/murison/asteroids/resonances/http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-04457-1http://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://dx.doi.org/10.1007%2F978-3-642-04458-8http://en.wikipedia.org/wiki/Digital_object_identifierhttp://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Mediahttp://arxiv.org/abs/astro-ph/9504036http://www.lpl.arizona.edu/people/faculty/malhotra_preprints/rio97.pdfhttp://en.wikipedia.org/wiki/Special:BookSources/0521575974http://en.wikipedia.org/wiki/Cambridge_University_Presshttp://google.com/books?id=aMERHqj9ivcC&printsec=frontcoverhttp://www.astro.umd.edu/~hamilton/research/preprints/BurSimSho03.pdfhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Burns2004_58-0http://dx.doi.org/10.1016%2F0019-1035%2890%2990126-Thttp://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1990Icar...85..444Mhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Icarus_(journal)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-57http://dx.doi.org/10.1016%2F0019-1035%2889%2990070-5http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1989Icar...78...63Thttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Icarus_(journal)http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Tittemore1989_56-0http://dx.doi.org/10.1016%2F0019-1035%2890%2990024-4http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1990Icar...87..110Thttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Tittemore_1990_55-0http://www.geotimes.org/june05/WebExtra060705.htmlhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-54http://dx.doi.org/10.1088%2F0004-6256%2F137%2F6%2F4766http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2009AJ....137.4766Rhttp://en.wikipedia.org/wiki/Bibcodehttp://arxiv.org/abs/0903.4213http://en.wikipedia.org/wiki/ArXivhttp://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine.26Brown2009_52-2http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine.26Brown2009_52-1http://en.wikipedia.org/wiki/Orbital_resonance#cite_ref-Ragozzine.26Brown2009_52-0http://en.wikipedia.org/wiki/Category:Orbits