optimizing the data centre environment

23
Optimizing The Data Centre Environment Michalis Grigoratos Senior Consultant [email protected]

Upload: mixalisg

Post on 12-May-2015

1.024 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Optimizing The Data Centre Environment

Optimizing The Data Centre Environment

Michalis GrigoratosSenior Consultant

[email protected]

Page 2: Optimizing The Data Centre Environment

Michael is a Senior Consultant specialising in multi-disciplinary design of educational, Health, mixed use and commercial buildings. He has developed his experience working on a range of projects in UK, Middle East and Europe. Since graduating Michael has amassed a broad range of experience both as a technical advisor, project manager and as a professional engineering consultant.As an experienced mechanical engineer, he has led the design on a number of new as well as retrofit data centres in U.K.As a project manager, he has delivered multi-disciplinary as well as Data Centre projects which have enabled him to develop a broad understanding of building design issues.

He received a bachelor’s degree in Mechanical Engineering from Kingston University London and a master’s in Mechanical Engineering from Kingston University London.

Michael Grigoratos Senior Consultant, Halcrow Group Ltd

Page 3: Optimizing The Data Centre Environment

The Energy Problem

Fuels used to generate electricity

Source: Edison Electric Institute, September 2008

• Natural gas pricesincreased 300% since 1999

• Coal spot market prices increased 100% since 2003

• Oil prices for electric generators increased 50% from 2003 to 2005

• Nuclear uranium prices increased 40% since 2001

UK Gas and Electricity to increase up to 60% by 2016

Source: Ofcom report Oct 2009

Page 4: Optimizing The Data Centre Environment

Data Center Cooling and Power Conversion Performance

Typical Practice Best Practice

Server Load/ComputingOperations

Cooling & Power

Conversions Server Load/ComputingOperations

Cooling & Power

Conversions

Page 5: Optimizing The Data Centre Environment

Typical Energy Flow/Use

Server Load/ComputingOperations

Cooling Equipment

Power Conversion & Distribution

Fuel Burned at Power Plant

Delivered Power

ElectricityGeneration & Transmission

Losses

Page 6: Optimizing The Data Centre Environment

Will reduce cooling needs

Typical Energy Flow/Use

Server Load/ComputingOperations

Cooling Equipment

Power Conversion & Distribution

Fuel Burned at Power Plant

Reducing server power requirements

Lowering power conversion losses

Electricity Generation & Transmission

Losses

Delivered Electricity

…ultimately reducing fuel burned at the power plant

Reducing power demand and losses

Page 7: Optimizing The Data Centre Environment

Server Load/ComputingOperations

Cooling Equipment

Power Conversion & Distribution

AlternativePower

Generation

• High voltage distribution

• Use of DC power

• Highly efficient UPS systems

• Efficient redundancy strategies

• Load management

• Server innovation

Energy Efficiency Opportunities

• Better air management

• Cold Thermal Store

• Optimized chilled-water plants

• Use of free cooling

• On-site generation

• CHP applications

• Waste heat for cooling

• Use of renewable energy

• Fuel cells

Page 8: Optimizing The Data Centre Environment

Opportunity Potential

Comparison of Projected Electricity Use,All Scenarios, 2007 to 2011

An

nu

al E

ner

gy

Use

(B

illi

on

kW

h/y

ear)

2007 2008 2009 2010 2011

2008 Baseline58.7

0

140

120

100

80

60

40

20

Business as usualCurrent trends

Improved operational management

Best practice

State of the art

Page 9: Optimizing The Data Centre Environment

Steps Companies can take to Reduce Energy Consumption

•It is important for large companies to start addressing their power and cooling problems early to avoid significant data centre infrastructure and facility costs.

•There is no single solution to the energy problem; however, there are several steps that a company can take to lessen its usage and become more efficient.

Page 10: Optimizing The Data Centre Environment

The first step is to determine the current data centre energy baseline.

Once the energy baseline is established, it is then possible to measure the result of any improvements while gaining the ability to pinpoint existing problem areas quickly.

The Data Centre Manager will need to know the data centre’s building infrastructure and IT equipment power requirements (including forecasts) and actual energy usage that include average and peak loads.

1. Determine Energy Baseline

Page 11: Optimizing The Data Centre Environment

IT growth forecasts and aging data centre facilities may point towards data centre consolidations, outsourcing and or even a new data centre build.

The goal here is to avoid a surprise and negative impact to the corporation as a whole, with larger than expected increases to the IT Capital and Operations budget.

2. Forecast IT Growth

2003 2005 2007 2009 2011

The second step is to quickly determine forecasted IT equipment growth, new projects and any other significant changes that impact in data centre operations.

Clearly, good forecasts lead to better planning and more effective energy solutions.

Page 12: Optimizing The Data Centre Environment

Data centre best practices can significantly reduce energy consumption from 10-50%.

Data Analysis

After going through the first two steps, it is now possible to examine infrastructure adjustments as well as data centre best practices to maximize cooling and energy efficiency.

Page 13: Optimizing The Data Centre Environment

To accomplish the above, we need to determine energy usage at the utility meter coming into the data centre as well as usage at the IT equipment.

Next, we have to apply some metrics such as the Uptime Institute’s “Four Metrics to Define Data Centre Greenness”

The use of metrics, in turn, will provide opportunities to improve your data centre energy efficiency.

In addition, new IT equipment with enabled energy saving features should be part of your “refresh”, growth, or consolidation game plan to improve your data centre.

Energy Management

As stated before, benchmarks should be set for energy usage and costs with a flexible, modular plan developed for added data centre equipment growth.

Page 14: Optimizing The Data Centre Environment

According to the Green Grid, a non-profit trade organization of IT professionals, there are two related metrics that can improve the energy efficiency of existing data centres as well as determine the decision to build new data centres. Ideally, these metrics and processes will help determine if the existing data centre can be optimized before a new data centre is needed.

These new metrics are Power Usage Effectiveness (PUE) and Data Centre Efficiency (DCE).

Green Metrics

Total Facility Power is defined as the power measured at the utility meter, the power dedicated solely to the data centre, and IT Equipment Power is defined as the equipment that is used to manage, process, store, or route data within the data centre.

Implementing these metrics allows a firm to determine areas to improve operational efficiency, compare their data centre with other competitive data centres, ensure that the data centre operators are improving the designs and processes over time and discover opportunities to repurpose energy for additional IT equipment. While these metrics may be similar, they can be used to illustrate the energy allocation in the data centre differently

Page 15: Optimizing The Data Centre Environment

A good layout begins with the tried and true cold aisle/hot aisle cooling strategy within the data centre.

This begins with sealing any cable cut-outs to eliminate air bypass and making sure that equipment rows are perpendicular to cooling units. Then minimize hot air/cold air recirculation with unobstructed clearance from the top of the rack to the top of the return air path.

Rack Layout

Separate high-density racksWhen high-density racks are clustered together, most cooling systems become ineffective. Distributing these racks across the entire floor area alleviates this problem.

Finally, construct all cabinets and racks of uniform height to help limit aisle to aisle hot air/cold air recirculation which must be kept to a minimum at equipment air intake levels.

Page 16: Optimizing The Data Centre Environment

•Manage open rack space to ensure proper airflow in the equipment aisles

•Close any unused space in the racks with blank panels

•Missing blank panels allow hot air exiting the rack to mix with the cool air coming into the rack

•Thus raising the overall level of cooling required

Rack Management

Page 17: Optimizing The Data Centre Environment

Properly conditioned air intake methods with non restricted airflow can significantly improve airflow within a data centre.

Using blanking panels to limit hot air/cold air recirculation, having door ventilation on cabinets, unrestricted airflow in the back of the cabinets, and no shelves to block airflow are all best practices in airflow management.

Airflow assisting devices for direct cold air delivery, hot aisle containment systems, rack air containment systems and speciality hot exhaust air return ducts can be applied as alternative airflow solutions in support of high density enclosures and blade server farms in the data centre.

Airflow Management

Page 18: Optimizing The Data Centre Environment

The Cooling capacity of the data centre should match the IT equipment that’s located inside it with appropriate settings for CRAC unit temperatures and humidity.

Any hot spots should be eliminated, and proper air velocity provided, while ensuring that all air vents are properly located.

Cooling Management

Page 19: Optimizing The Data Centre Environment

Real Time Airflow and Temperature Control

•Real Time Cooling Control can represent a step change in the reliability, functionality, and energy efficiency of existing data centers.

•Available systems can provide real-time airflow and temperature control, active user interface, and 24/7 thermal monitoring and alarming, with automated adjustment of airflow based on supply and demand.

• In most cases this equates to the elimination of hot spots and typical reduction in the consumption of energy by 20% to 30%.

Page 20: Optimizing The Data Centre Environment

High Density Server Cooling

Front-to-back cooling principle used in most high density server designs. The Modular Cooling System (MDS) evenly distributes cold supply air at the front of the rack of equipment.Each server receives adequate supply air, regardless of its position within the rack or the density of the rack. The servers expel warm exhaust air out the rear of the rack.The fan modules re-direct the warm air from the rear of the rack into the heat exchanger modules. The air is re-cooled and then re-circulated to the front of the rack.Any condensation that forms is collected in each heat exchanger module and flows through a discharge tube to a condensation tray integrated in the base assembly.

Page 21: Optimizing The Data Centre Environment

CO2 RAC Blade server cooling

PerformanceCO2 is able to absorb over seven times more heat as it evaporates than an equivalent quantity of water. CO2 vaporises during the heat absorption in. In contrast with conventional cooling systems, CO2 cooling can save up to 30% energy.

CO2 CoolingCarbon dioxide (CO2) is an ideal refrigerant, particularly when considered against ecological and safety criteria. It is natural, non-flammable, oil-free, chemically inactive and has zero potential for ozone depletion. It is electrically benign and does not present a danger to PCs or power and data cabling. CO2 pipe diameters are much smaller than comparable chilled water pipes.

Page 22: Optimizing The Data Centre Environment

You need to consider:

•Increasing the utilization of existing and new IT resources,

•Containing and improving equipment power and cooling usage and requirements,

•Reducing the data centre's physical infrastructure footprint,

•Reducing IT administrative and maintenance costs,

•Optimizing staff productivity

The two drivers for efficient, green data centres are the:

1.Opportunity to realize significant, near and long-term financial benefits2.Ability to minimize the environmental impact of inefficient data centres

Building a green data centre?

Page 23: Optimizing The Data Centre Environment

The only way to drive out inefficiency is to understand the dynamics working against you!

•Then engineer solutions to overcome the undesirable phenomenon.

•It is possible to stumble upon a working solution, but the best method is to use tools that eliminate the guesswork and enable rapid analysis of scenarios.

•If done well, the rewards can be great

Driving out inefficiency