opportunities for new physics searches with exotic atoms ...€¦ · opportunities for new physics...

91
Opportunies for New Physics searches with exoc atoms and molecules Ronald Fernando Garcia Ruiz CERN/MIT New Physics on the Low-Energy Precision Froner CERN, Geneva 2020

Upload: others

Post on 07-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Opportunities for New Physics searches with exotic atoms and molecules

Ronald Fernando Garcia RuizCERN/MIT

New Physics on the Low-Energy Precision Frontier

CERN, Geneva 2020

10

th A

pri

l 2

01

3

2

HIA

S2

013

, A

ust

ralia

J. Billowes, C. Binnersley, A. Brinson, T.E. Cocolios, B. Cooper, K.T. Flanagan, S. Franchoo, V. Fedosseev, B.A. Marsh, M. Bissell, R.P. De Groote, R.F. Garcia Ruiz, A. Koszorus, G. Neyens, H. Perrett, F. Parnefjord Gustafsson, C. Ricketts, H.H. Stroke, S.M. Udrescu, A. Vernon, K. Wendt, S. Wilkins, X. Yang, …...

CRIS Collaboration

Thanks to...

ISOLTRAP (F. Wienholtz‎) , ) , RILIS (S. Wilkins, K. Chrysalidis)

Target group (S. Rothe), ISOLDE Technical group

Nuclear theory: W. Nazarewicz (FRIB/MSU), P.-G. Reinhard ( Erlangen-Nürnberg), G. Hagen (ORNL), J. Holt (TRIUMF), ...

Quantum chemistry: R. Berger (U. Marburg, Germany), T. Isaev (PNPI NRCKI, St. Petersburg)

COLLAPS Collaboration

Atoms μ <r r 2> I Qclusters

Neutron matter

single particle

Nuclear(Electromagnetic )

Exotic Atoms & Molecules

● Nuclear force → QCD● Emergence of nuclear phenomena● Understanding of nuclear matter

Atoms

Molecules

μ <r r 2> I Qclusters

Neutron matter

single particle

Nuclear(Electromagnetic ) ● Nuclear force → QCD

● Emergence of nuclear phenomena● Understanding of nuclear matter

● Violation of fundamental symmetries● BSM searches● Dark matter● Matter / Antimatter asymmetry

Exotic Atoms & Molecules

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

Opportunities for New Physics searches with exotic atoms and molecules

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

Opportunities for New Physics searches with exotic atoms and molecules

Why exotic atoms/molecules?

● Large Z, A● Nuclear spins● Isotopic chains ● Octupole deformation

Precision studies in atoms and molecules

e- e- Nuclear structure

μ <r r 2> I Q

Precision studies in atoms and molecules

e- e- e- e- e- e- e- e- e- e- Ae

VN

Ve

Ae

Ae

Ae

~ Z 2A2/3R(Z)x 105~ Z 3x 10N

P- violation

AtomsMolecules

Nuclear structure

μ <r r 2> I Q

[Safronova et al. Rev. Mod. Phys. 90, 025008 (2018)]

Precision studies in atoms and molecules

e- e- e- e- e- e- e- e- e- e- Ae

VN

Ve

Ae

Ae

Ae

~ Z 2A2/3R(Z)x 105~ Z 3x 10N

P- violation

AtomsMolecules

EDM Sschiff MQM

Nuclear structure

P,T- violation

~Z2 R(Z)

> 103 (> 105 Octupole )

AtomsS ~ Q2Q

3 Z A2/3 /(E

+ - E

-)

Molecules

μ <r r 2> I Q

Best of all worlds → Radioactive molecules containing heavy and octupole deformed nuclei

Precision studies in atoms and molecules

e- e- e- e- e- e- e- e- e- e- Ae

VN

Ve

Ae

Ae

Ae

~ Z 2A2/3R(Z)x 105~ Z 3x 10N

P- violation

AtomsMolecules

EDM Sschiff MQM

Nuclear structure

P,T- violation

~Z2 R(Z)

> 103 (> 105 Octupole )

AtomsS ~ Q2Q

3 Z A2/3 /(E

+ - E

-)

Molecules

μ <r r 2> I Qe- e-

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

How do we create and study exotic atoms/molecules?

Light nucleus

HeavyNuclei

+

Production

How do we create and study exotic atoms/molecules?

Light nucleus

HeavyNuclei

+

A

A+

Production

Selection

Lasers+

Electromagnetic fields

How do we create and study exotic atoms/molecules?

Light nucleus

HeavyNuclei

+

A

A+

Production

Selection

Study Lasers+

Electromagnetic fields

One atom at a time

How do we create and study exotic atoms/molecules?

Light nucleus

HeavyNuclei

+

A

A+

Production

Selection

Study Lasers+

Electromagnetic fields

TRIUMFFRIB

ANL

GANIL

GSICERN

RIKEN

JYK

One atom at a time

Experimental challenges:➢ High selectivity (>1/106) ➢ Short time scales (< 1 s)➢ High efficiency (<100 ions/s) ➢ High precision/resolution (~MHz)

~eV

J’

J

Isotope shift

{

I = 0

MHz < 10-8eV

Exotic atoms & Nuclear structure

~eV

J’

J

Isotope shift MHz < 10-8eV

{

NuclearAtomic

Electromagnetic structure ● Rms charge radii: <r r 2>

I = 0

Exotic atoms & Nuclear structure

~eV

J’

J

} < 10-6eV

F ‘=I+J ’

F=I+J

co

un

ts

Freq.

Isotope shift

{

{ ~MHz

Electromagnetic structure ● Rms charge radii: <r r 2>● Nuclear spin: I ● Electromagnetic moments: μ● Quadrupole moment : Q

I >0

Atomic hyperfine structure

NuclearAtomic

}

μ <r r 2> I QNuclear

(Electromagnetic )

MHz < 10-8eV

Exotic atoms & Nuclear structure

Ab-initio methodsQMC, GFMC, CC, IMSRG, GGF….

LQCD

Recent results from collinear laser spectroscopy at ISOLDE-CERN

Ab-initio methodsQMC, GFMC, CC, IMSRG, GGF….

PublishedUnpublished

[Phys Rev Lett 116, 182502 (2016)] [Phys Lett B 771, 385 (2017)][Phys Rev C 97 044324 (2018)]...

40-52Ca (Z=20)38-51K (Z=19)50-61Mn (Z=25)44-50Sc (Z=21)52,53K (Z=19)

[Nature Physics 12, 594 (2016)][Phys Rev Lett 113, 052502 (2014)][Phys Rev Lett 110, 172503 (2013)], ......

101-131In (Z=49)103-134Sn (Z=50)112-134Sb (Z=51)

[Phys Rev Lett 121, 102501 (2018)][Phys Rev Lett 116, 032501 (2016)] , ...

100-130Cd (Z=48)

[Phys Rev X 8, 041005 (2018)]

202-231 Fr(Z=87)222-233 Ra(Z=88)

65-80 Zn (Z=30)

56-68Ni (Z=28)68-74Ge (Z=32)

LQCD

[Phys. Rev. Lett 115, 132501 (2015)][Phys. Rev. X 4 (1), 011055 (2014)][Phys Rev. Lett. 111, 212502 (2013)]

Recent results from collinear laser spectroscopy at ISOLDE-CERN

58-78Cu (Z=29) [Accepted in Nature Phys. (2020]

[Phys. Rev. Lett. 122, 192502 (2019)]

40Ca 48Ca 52Ca

An example: exotic calcium isotopes

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

36Ca→<r2> @NSCL

[Miller et al. Nature Phy, 15, 432 (2019)]

52Ca→S2n

@CERN [Wienholtz‎) , et al. Nature 498, 346 (2013)]

54Ca→E(2+) @RIKEN [Steppenbeck et al. Nature 502, 207(2013)]

Atom Nucleus

40Ca 48Ca 52Ca

An example: exotic calcium isotopes

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

36Ca→<r2> @NSCL

[Miller et al. Nature Phy, 15, 432 (2019)]

52Ca→S2n

@CERN [Wienholtz‎) , et al. Nature 498, 346 (2013)]

54Ca→E(2+) @RIKEN [Steppenbeck et al. Nature 502, 207(2013)]

Nuclear theory / forces

Atom Nucleus

36Ca→<r2> @NSCL

[Miller et al. Nature Phy, 15, 432 (2019)]

52Ca→S2n

@CERN [Wienholtz‎) , et al. Nature 498, 346 (2013)]

54Ca→E(2+) @RIKEN [Steppenbeck et al. Nature 502, 207(2013)]

40Ca 48Ca 52Ca

Nuclear charge radii (48Ca): Constrain to properties of nuclear matter

Nuclear theory / forces

[Hagen et al., Nature Physics 12, 186 (2016)]

Atom Nucleus

Neutron-rich nuclei:“Quantum simulators” of neutron starts

An example: exotic calcium isotopes

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

Isotope shifts & “Skins”

“Mirror skin”

“Ne

utr

on

ski

n”

Z = 24, N = 28Z = 28, N = 24

[Brown. PRL 119, 122502 (2017)]

Isotope shifts & “Skins”

“Mirror skin”

“Ne

utr

on

ski

n”

Z = 24, N = 28Z = 28, N = 24

[Brown. PRL 119, 122502 (2017)]

Isotope shifts & “Skins”

“Mirror skin”

“Ne

utr

on

ski

n”

Z = 24, N = 28Z = 28, N = 24

[Brown. PRL 119, 122502 (2017)]

32Si (Z = 14, N = 18) & 32Ar (Z=18, N=14)[Garcia Ruiz, Minamisono et al. NSCL PAC 20002 (2020)]

40Ca 48Ca 52Ca

Atom Nucleus

Isotope shifts & New Physics

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

IS Precision: 150-560 kHz

Atom Nucleus

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

[Berengut et al. Phys Rev Lett 120, 091801 (2018)][Stadnik et al. Phys Rev Lett 120, 223202 (2018)][Flambaum et al. Phys Rev A 97, 032510 (2018)][Frugiuele et al. Phys Rev D 96, 015011 (2017)]

A new force between electrons and nucleons will cause a “King plot” non-linearity

Isotope shifts & New Physics

IS Precision: 150-560 kHz

Atom Nucleus

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

A new force between electrons and nucleons will cause a “King plot” non-linearity

Isotope shifts & New Physics

IS Precision: 150-560 kHz

Sr+ → mHz (Weizmann Institute) [Manovitz et al. Phys. Rev. Lett. 123, 203001 (2019)]Yb → < kHz (MIT, V. Vuletic group)

[Berengut et al. Phys Rev Lett 120, 091801 (2018)][Stadnik et al. Phys Rev Lett 120, 223202 (2018)][Flambaum et al. Phys Rev A 97, 032510 (2018)][Frugiuele et al. Phys Rev D 96, 015011 (2017)]

Atom Nucleus

[Ca: <r2>: Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

A new force between electrons and nucleons will cause a “King plot” non-linearity

Isotope shifts & New Physics

IS Precision: 150-560 kHz

Opportunities with exotic atoms (?):✔ Access to long isotopic chains ✔ Nuclear isomers (M’

A ~ M

A)

✔ Heavy nuclei

Sr+ → mHz (Weizmann Institute) [Manovitz et al. Phys. Rev. Lett. 123, 203001 (2019)]Yb → < kHz (MIT, V. Vuletic group)

[Berengut et al. Phys Rev Lett 120, 091801 (2018)][Stadnik et al. Phys Rev Lett 120, 223202 (2018)][Flambaum et al. Phys Rev A 97, 032510 (2018)][Frugiuele et al. Phys Rev D 96, 015011 (2017)]

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

[Rev. Mod. Phys. 90, 025008 (2018)]

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

[Rev. Mod. Phys. 90, 025008 (2018)]

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

[Rev. Mod. Phys. 90, 025008 (2018)]

Yb (Z=70) stable @ Mainz → Isotopic ratios [Nature Phys. 15, 120 (2019)]

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

[Rev. Mod. Phys. 90, 025008 (2018)]

Why exotic atoms?

Yb (Z=70) stable @ Mainz → Isotopic ratios [Nature Phys. 15, 120 (2019)]

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

Why exotic atoms?

Fr (Z=87) @ TRIUMF

[Zang et al. Phys. Rev. Lett. 115, 042501 (2015)][Kalita et al. Phys. Rev. A 97, 042507 (2018)]

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

Why exotic atoms?

Molecules Why (exotic) molecules?

PV → Mix states of different parity

133Cs (Z=55)

s (P-even )

p (P-odd )

Hw7S

1/2 E+

E-

Atoms

Parity violation

[ Wood et al. Science 275, 1759 (1997)][Porsev et al. PRL 102, 181601 (2009)]

QW = –N+(1–4 sin2θW)Z

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 3

Why exotic atoms?

Molecules Why (exotic) molecules?

✔ ( E+-E

- )~0 About 103 enhancement

✔ Nuclear-Spin-Dependent PV / Anapole moment (BaF)

[Dz‎) , uba et al. Phys. Rev. Lett. 119, 223201 (2017)]

[Altunas et al. Phys Rev Lett 120, 142501 (2018)]

Parity violation

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 5

Chiral molecules

[Berger & Stohner. WIREs Comput. Mol. Sci. e1396, 1 (2018)][Laerdahl et al. Phys. Rev. Lett. 84, 3811 (2000)]

Parity violation

e- e- Ae

VN

e- e-

~ Z 2A2/3R(Z)

~ Z 5

Chiral molecules

[Laerdahl et al. Phys. Rev. Lett. 84, 3811 (2000)]

(x 10-16)

[Berger et al. Mol. Phys. 105, 41 (2007)]

[Berger & Stohner. WIREs Comput. Mol. Sci. e1396, 1 (2018)]

211At (Z=85, T1/2

~7.2 h) → Freq. shift ~ 3-10 Hz

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

Atoms

Parity and Time-reversal Violation

} 2μB + eEDM

Eeff

Eeff

Atoms

✔ >103 enhancement of Eeff

for EDM measurements

Eext

~1 V/cmE

eff ~80 GV/cm

} 2μB + eEDM

Eeff

Eeff

[ACME, Nature 562, 355 (2018)][Baron et al. Science 343, 269 (2014)][Sandars Phys. Rev. Lett. 18, 1396 (1967)]

Eeff

Molecules

Parity and Time-reversal Violation

[Source: D. DeMille. Manipulating Quantum Systems: An Assessment of Atomic,Molecular, and Optical Physics in the United States (2019)]

Why radioactive nuclei?

✔ Large Z → Eef

(>>)✔ Deformed nuclei (>102)✔ Large enhancement of the MQM (>102)✔ Study of NSD interactions (I>0)

Atoms

} 2μB + eEDM

Eeff

Eeff

Ra @ Argonne

Phys. Rev. Lett. 114, 233002 (2015)

Why radioactive nuclei?

DE: Energy splitting of opposite parity states

`

Experiment

`

````````````````Nuclear structure

Schiff Moments

P,T-odd nucleon-nucleon interaction

Why radioactive nuclei?

DE: Energy splitting of opposite parity states

225RaDE = 55 keV

`

Experiment

`

````````````````Nuclear structure Theory + Experiment

Schiff Moments

P,T-odd nucleon-nucleon interaction

Slide from L. Gaffney

[Gaffney et al. Nature 497, 199 (2013)]

Why radioactive nuclei?

DE: Energy splitting of opposite parity states

225RaDE = 55 keV

`

Experiment

`

````````````````Nuclear structure Theory + Experiment

Dobaczewski et al. Phys. Rev. Lett. 121, 232501 (2018)Chupp et al. Rev. Mod. Phys. 91, 015001 (2019)

Schiff Moments

P,T-odd nucleon-nucleon interaction

Slide from L. Gaffney

[Gaffney et al. Nature 497, 199 (2013)]

Why radioactive nuclei?

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

P- and P,T- odd effects

RaF → Nuclear x Molecular Enhancement

Molecules: Electroweak structure● Anapole moment: AM ● Magnetic Quadrupole Moment: MQM● Schiff Moment: Sschiff ● eEDM, nEDM, ...

Enhanced sensitivity in radioactive molecules(composed of heavy and octupole deformed nuclei)

✔ Large Z → Eef

(>>)✔ Deformed nuclei (>102)✔ Large enhancement of the MQM (>102)✔ Study of NSD interactions (I>0)

● .● .● .● SrF → Nature Physics 13, 1173(2017)● YbF → Phys. Rev. Lett. 120, 123201 (2018)● CaF → Nature Physics 14, 890 (2018)

Phys. Rev. Lett. 120, 163201 (2018)● RaF → Radioactive

Coming soon …

Fluoride molecules● SrF → First evidence of laser cooling

[Nature 467, 820-823 (2010)]● YbF → Nature 473, 493 (2011)● .● .● .

Radioactive Molecules: Ra(Z=88)F Results

P-odd and P,T -odd effects

[Gaul & Berger J. Chem. Phys 147, 014109(2017)][Fleig. Phys. Rev. A 96, 040502 (2017)]

RaF

BaF

WsEeff

RaFYbFHfF+BaF

SrFCaF

RaF → Superior sensitivity for both P- and P,T- odd effects

… BUT all parameters experimentally unknown!

Results: Radium fluoride (RaF)Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

I. Low-lying structure? II. Feasibility of laser cooling?

1.Dominant f00

?

2.Short-lived excited state (T1/2

)?

3.Electronic states of lower energy (E)?

T1/2

?

E?

f00

?

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Ion trap

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Ion trap

NeutralizationCell

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Ion trap

NeutralizationCell

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Ion trap

NeutralizationCell

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Ion trap

NeutralizationCell

Detector

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Ion trap

NeutralizationCell

Neutral

Detector

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

cou

nts

Freq.

Ion trap

NeutralizationCell

Detector

Mass separator

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

cou

nts

Freq.

Neutral

Ion trap

NeutralizationCell

Detector

Mass separator ?

? ? ?

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Neutral

Molecules have complex structures→ More than 104 states can be populatedVibrational / rotational / hyperfineImpossible with a hot (> 300 K) molecule?

Ion trap

NeutralizationCell

Detector

Mass separator ?

? ? ?

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Neutral

Theory: Scanning 1000 cm-1 at 100 MHz/min (1 cm-1 = 30 GHz)

→ 208 days!!

Molecules have complex structures→ More than 104 states can be populatedVibrational / rotational / hyperfineImpossible with a hot (> 300 K) molecule?

Impossible with radioactive molecules (< 106 molecules/second)?

Ion trap

NeutralizationCell

Detector

Mass separator ?

? ? ?

Collinear resonance ionization spectroscopy of RaF molecules [Garcia Ruiz‎) , , Berger et al. CERN-INTC-2018-017 (2018)]

Results: Radium fluoride (RaF)

Neutral

Ion trap

NeutralizationCell

Detector

Mass separator ?

? ? ?

Results: Radium fluoride (RaF)

Neutral

Ion trap

NeutralizationCell

Detector

Mass separator ?

? ? ?

Results: Radium fluoride (RaF)

Neutral

355nm ionization

anti-collinear collinear

Results: Radium fluoride (RaF)

(simplified scheme)

About 20 laser systems

226RaF

~1000 cm-1 (30 THz) → only 4 hours!

~106 /s

Results: Radium fluoride (RaF)

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

226RaF

~1000 cm-1 (30 THz) → only 4 hours!

~106 /s

226RaF(T

1/2=1600 y)

Results: Radium fluoride (RaF)

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

226RaF

~1000 cm-1 (30 THz) → only 4 hours!

~106 /s

226RaF(T

1/2=1600 y)

223RaF(T

1/2~11 days)

228RaF(6 years)

224RaF(3 days)

225RaF(15 days)

226RaF(1600 y)

cou

nts

Freq

uency

Results: Radium fluoride (RaF)

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

I. Low-lying structure II. Feasibility of laser cooling?

1. Dominant f00

?

2. Short-lived excited state (T1/2

)?

3. Electronic states of lower energy (E)?

Results: Radium fluoride (RaF)

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

Results: Radium fluoride (RaF)I. Low-lying structure II. Feasibility of laser cooling?

1. Dominant f00

? → f00

/fij > 0.97

2. Short-lived excited state (T1/2

)?

3. Electronic states of lower energy (E)?

Results: Radium fluoride (RaF)

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

Results: Radium fluoride (RaF)I. Low-lying structure II. Feasibility of laser cooling?

1. Dominant f00

? → f00

/fij > 0.97

2. Short-lived excited state (T1/2

)?→T1/2

< 50 ns

3. Electronic states of lower energy (E)?

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

Results: Radium fluoride (RaF)I. Low-lying structure II. Feasibility of laser cooling?

1. Dominant f00

? → f00

/fij > 0.97

2. Short-lived excited state (T1/2

)?→T1/2

< 50 ns

3. Electronic states of lower energy (E)?→ 2000 cm-1 above

[Garcia Ruiz‎) , , Berger et al. Submitted (2019) (arXiv:1910.13416)]

300 K → 25 meV

> GHz

Room temperature

cou

nt s

Freq.

Precision Laser Spectroscopy

cou

nt s

Freq.{ ~MHz

300 K → 25 meV

> GHz

Room temperatureLaser cooling

T < μK

< MHz

High resolution (< MHz)➢ High efficiency (<100 ions/s) ?➢ High selectivity (>1/106) ?➢ Short time scales (< 1 s)?

Precision Laser Spectroscopy

300 K → 25 meV

> GHz T < μK

< MHz

v@ 40 keV

~ MHz

Room temperatureLaser cooling Fast beam

High resolution (~MHz) High efficiency (<100 ions/s) High selectivity (>1/106) Short time scales (< 1 s)

Energy spread

Ion beam energy

Precision Laser Spectroscopy

@40 keV

High resolution (< MHz)➢ High efficiency (<100 ions/s) ?➢ High selectivity (>1/106) ?➢ Short time scales (< 1 s)?

PRELIM

INARY

PRELIM

INARY

226Ra(I=0)F

RaF: Hyperfine Structure

PRELIM

INARY

PRELIM

INARY

~ 15 GHz

226Ra(I=0)F

226Ra(I=0)F

RaF: Hyperfine Structure

PRELIM

INARY

PRELIM

INARY

~ 15 GHz

226Ra(I=0)F

226Ra(I=0)F

223Ra(I=3/2)F

300 MHz

From THz to MHz

Molecular Hyperfine structure

RaF: Hyperfine Structure

● Axion dark matter produces oscillating Sschiff

, MQM

Amplified in molecules with respect to atoms:

→ AcF, RaO, PaN[Flambaum & Feldmeier . Phys. Rev. C 101, 015502 (2020)]

Opportunities with radioactive molecules

● Time reversal violating MQM→ 229ThO and 229ThF+ [Lackenby & Flambaum. Phys. Rev. D 98, 115019 (2018)]

[ Skripnikov, et al. Phys. Rev. Lett. 113, 263006 (2014)]

MQM

Sschiff

● Quantum chemistry, astrophysics, ….

Contents● Precision studies in atoms and molecules

● Nuclear structure / nuclear matter / new forces & particles

● Parity violation

● Parity and time-reversal violation

● First results: RaF

● Summary

e- e- Nuclear structure

μ <r r 2> I Q

Summary

● Nuclear structure● Nuclear matter● New particle/forces

e- e- e- e- e- e- e- e- e- e- Ae

VN

Ve

Ae

Ae

Ae

~ Z 2A2/3R(Z)x 105~ Z 3x 10N

P- violation

AtomsMolecules

Nuclear structure

μ <r r 2> I Q

Summary

● Nuclear structure● Nuclear matter● New particle/forces

e- e- e- e- e- e- e- e- e- e- Ae

VN

Ve

Ae

Ae

Ae

~ Z 2A2/3R(Z)x 105~ Z 3x 10N

P- violation

AtomsMolecules

EDM Sschiff MQM

Nuclear structure

P,T- violation

~Z2 R(Z)

> 103 (> 105 Octupole )

AtomsS ~ Q2Q

3 Z A2/3 /(E

+ - E

-)

Molecules

μ <r r 2> I Q

Summary

● Nuclear structure● Nuclear matter● New particle/forces

Summary

Molecules: Electroweak structure● Anapole moment: AM ● Magnetic Quadrupole Moment: MQM● Schiff Moment: Sschiff ● eEDM, nEDM, ...

● Radioactive molecules → New window to study the atomic nucleus

Summary

Molecules: Electroweak structure● Anapole moment: AM ● Magnetic Quadrupole Moment: MQM● Schiff Moment: Sschiff ● eEDM, nEDM, ...

● First ever laser spectroscopy of a short-lived radioactive molecule (RaF)!

● Radioactive molecules → New window to study the atomic nucleus

✔ RaF → eEDM, Schift moments, Anapole moments, MQM ✔ 223RaF, 224RaF, 225RaF, 226RaF, 228RaF✔ Strong experimental evidence for the laser cooling scheme✔ Precision spectroscopy 223Ra(I=3/2)F, lifetime, IP, ...

Summary

Molecules: Electroweak structure● Anapole moment: AM ● Magnetic Quadrupole Moment: MQM● Schiff Moment: Sschiff ● eEDM, nEDM, ...

● First ever laser spectroscopy of a short-lived radioactive molecule (RaF)!

● Radioactive molecules → New window to study the atomic nucleus

● “Hot” molecules can be super cool!

✔ RaF → eEDM, Schift moments, Anapole moments, MQM ✔ 223RaF, 224RaF, 225RaF, 226RaF, 228RaF✔ Strong experimental evidence for the laser cooling scheme✔ Precision spectroscopy 223Ra(I=3/2)F, lifetime, IP, ...

Summary

Molecules: Electroweak structure● Anapole moment: AM ● Magnetic Quadrupole Moment: MQM● Schiff Moment: Sschiff ● eEDM, nEDM, ...

● First ever laser spectroscopy of a short-lived radioactive molecule (RaF)!

● Radioactive molecules → New window to study the atomic nucleus

● “Hot” molecules can be super cool!

… this is just the beginning!

✔ RaF → eEDM, Schift moments, Anapole moments, MQM ✔ 223RaF, 224RaF, 225RaF, 226RaF, 228RaF✔ Strong experimental evidence for the laser cooling scheme✔ Precision spectroscopy 223Ra(I=3/2)F, lifetime, IP, ...