operational experience during coal combustion in a 50 kwth...

21
Politecnico Di Milano Milan, Italy 1st -2nd September 2015 Alberto Abad Raúl Pérez-Vega, Francisco GarcíaLabiano, Pilar Gayán, Luis F. de Diego, Juan Adánez Combustion & Gasification Group Instituto de Carboquímica (ICB-CSIC), Zaragoza, Spain [email protected] Operational experience during coal combustion in a 50 kW th Chemical Looping Combustion unit

Upload: others

Post on 18-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Politecnico Di Milano Milan, Italy

1st - 2nd September 2015

Alberto Abad

Raúl Pérez-Vega, Francisco García‐Labiano, Pilar Gayán, Luis F. de Diego, Juan Adánez

Combustion & Gasification Group

Instituto de Carboquímica (ICB-CSIC), Zaragoza, Spain

[email protected]

Operational experience during coal combustion in

a 50 kWth Chemical Looping Combustion unit

Page 2: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

A. iG-CLC: in-situ gasification of coal in the fuel reactor

B. CLOU: Chemical Looping with Oxygen Uncoupling

Coal

CO2 + H2ON2 (+O2)

MexOy

H2O(l)

CO2

Air

Reactor

Fuel

Reactor

MexOy-1

Condenser

Air

CLC: Direct coal feeding to the fuel reactor

H2O(v)

and/or

CO2

Ash

Two options

CO2

Introduction

Page 3: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

A. iG-CLC: Gasification of coal in the fuel reactor

Oxygen-Carrier

Coal

iG-CLC (solid fuel)

H2O and/or CO2

H2O

CO

H2

H2O

Char

Volatiles

Syngas-CLC (gas fuel)

Syngas

CO

H2

CO2

H2O

Coal

O2

CO2 H2O

Volatiles

CLOU (solid fuel)

CO2

CO2

Oxygen-Carrier

Char

CO2

H2O

CO2

H2O

Oxygen-Carrier

First, coal is dried and devolatized

Remaining solid char is gasified to give gaseous H2

and CO

Volatiles and Gasification Products react with oxygen-carrier as a gas-solid reaction

► Coal H2O + Volatile matter + Char

► Char + H2O H2 + CO

► Char + CO2 2 CO

► + n MexOy CO2 + H2O + n MexOy-1

Volatile matter

H2 + CO

H2O

CO2

Introduction

Page 4: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

B. CLOU: Chemical-Looping with Oxygen Uncoupling

Here, coal is also dried and devolatized

But the oxygen-carrier is able to release gaseous OXYGEN (O2)

Volatiles and Char react with OXYGEN (O2) as in common combustion with air

► Coal H2O + Volatile matter + Char

► + O2 CO2 + H2OVolatile matter

Char

Oxygen-Carrier

Coal

iG-CLC (solid fuel)

H2O and/or CO2

H2O

CO

H2

H2O

Char

Volatiles

Syngas-CLC (gas fuel)

Syngas

CO

H2

CO2

H2O

Coal

O2

CO2 H2O

Volatiles

CLOU (solid fuel)

CO2

CO2

Oxygen-Carrier

Char

CO2

H2O

CO2

H2O

Oxygen-Carrier

► 2 MexOy 2 MexOy-1 + O2

Introduction

Page 5: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Coal

CO2 + H2ON2 (+O2)

MexOy

H2O(l)

CO2

Air

Reactor

Fuel

Reactor

MexOy-1

Condenser

Air

H2O(v)

and/or

CO2

Ash

CO2

Which is desirable in CLC?

High CO2

capture

efficiency

High

combustion

efficiency

A Carbon

Stripper is

necessary

To minimize

the use of an

Oxygen

Polishing Unit

Carbon

Stripper

C

CO2

MexOy-1 + C

+ CO + H2 + CH4 CO2

Oxygen

Demand

Oxygen

polishing

O2

WT = O2 for unburnt gases

O2 for coal combustion

WT

Introduction

Page 6: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Coal reaction rate

CS efficiency

Coal

CO2 + H2ON2 (+O2)

MexOy

H2O(l)

CO2

MexOy-1

Condenser

Air

H2O(v)and/or

CO2Ash

CO2

Carbon

Stripper

C

CO2

+ CO + H2 + CH4 CO2Oxygen

polishing

O2

CO2 capture

efficiency

Oxygen

Demand

Availability of oxygen in FR

OC OC

coal coal

R m

m

W

Oxygen carrier reaction rate

OC to fuel ratio

Inventory of

solids in FR (kg/MW)

Residence time

of solids in FR

Solids circulation

Coal feeding rate

Amount of solids in FR

FR Temperature

Oxygen carrier

Type of coal

Gas velocity in CS

Introduction

Page 7: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Objective

To optimize the design and operation

of the CLC process of coal

• The effect of operating conditions, such as temperature, solids

circulation rate, solids inventory and carbon stripper

efficiency on the CO2 capture and the Oxygen demand were

analyzed in a 50 kWth CLC unit burning coal

• Operating conditions were linked to fluid dynamics of the fuel

reactor for desing purposes

Page 8: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

ICB-CSIC-s50 facility

N2 Air

Air

H2OH2O

Loop Seal(LS-CS)

Loop Seal(LS-AF)

Air Reactor (AR)

Air Reactor exhaust gases

(N2 + O2)

Fuel Reactor exhaust gases

(CO2 + H2O)

Fuel Reactor (FR)

CarbonStripper

(CS)

DoubleLoop Seal

(LS-D)

Coal

ScrewFeeders

Solidscirculation

measurementdevices

Solidsreservoir

N2 / CO2

Oxygen carrier (100-300 mm):

ILMENITE: Fe2TiO5 / FeTiO3

Coal (200-300 mm):

South African Bituminous coal

Moisture 3.5

Ash 15.7

Volatile matter 25.5

Fixed carbon 55.3

C 66.3

H 3.6

N 1.8

S 0.5

LHV (kJ/kg) 24930

Nominal thermal power:

• 20 kWth for CLC of coal

• 50 kWth for CLOU

Main dimensions of the ICB-CSIC.s50 facility

FR AR CS Height (m) 4.00 4.80 0.71 Diameter bottom (m) 0.10 0.30 0.15 Diameter up (m) 0.08 0.10 -

Experimental

Page 9: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Experimental

Experimental Series

I II III IV V

Operating condition unit 1 2 3 1 2 3 6 7 8 9 10

FR Temperature ºC 944 990 1006 964 982 990 905 963 970 991 962

Solids circulation rate kg/h 140 140 140 150 150 150 100 100 100 100 75

Thermal power kWth 17.5 17.5 17.5 13.5 13.5 13.5 12.5 12.5 12.5 12.5 6.9

Coal feeding rate kg/h 2.5 2.5 2.5 2.0 2.0 2.0 1.8 1.8 1.8 1.8 1.0

OC to fuel ratio () 1.1 1.1 1.1 1.5 1.5 1.5 1.1 1.1 1.1 1.1 1.5

FR solids inventory kg/MWth 253 306 443 522 525 481 680 535 506 466 722

CS gas velocity m/s 0.20 0.20 0.35 0.50 0.50 0.50 0.35 0.35 0.35 0.35 0.35

Page 10: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Gas c

on

cen

trati

on

(vo

l.%

, d

ry,

N2 f

ree)

0

20

40

60

80

100

Tem

pera

ture

(ºC

)

0

200

400

600

800

1000

Time (min)

0 100 200 300

0

5

10

15

20

25

0

200

400

600

800

FR

AR

CO2

CO

CH4

CO2

O2

Temperature

Temperature

Heating period Coal combustion

H2

Gas c

on

cen

trati

on

(vo

l.%

)

Startingconditions

Results

Steady state

CO2 capture

efficiency

Oxygen

Demand

Page 11: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

880 900 920 940 960 980 1000 1020

CO

2 c

ap

ture

eff

icie

nc

y (

%)

50

60

70

80

90

100

CO2 capture

efficiency

• CO2 capture increased with fuel reactor temperature because a higher char conversion was reached

Results

Effect of fuel reactor temperature

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Series III ( ): 13.5 kWth

Series IV ( ): 12.5 kWth

Page 12: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

880 900 920 940 960 980 1000 1020

CO

2 c

ap

ture

eff

icie

ncy (

%)

50

60

70

80

90

100

ugasCS = 0.2 m/s

+10 % in CO2 Capture

ugasCS = 0.35 m/s

CO2 capture

efficiency

Results

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Effect of gas velocity in CS

Page 13: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

880 900 920 940 960 980 1000 1020

CO

2 c

ap

ture

eff

icie

nc

y (

%)

50

60

70

80

90

100

ugasCS = 0.5 m/s

+6 % in CO2 Capture

ugasCS = 0.35 m/s

ugasCS = 0.2 m/s

CO2 capture

efficiency

Results

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Series III ( ): 13.5 kWth

Effect of gas velocity in CS

• The higher CS gas velocity led to the higher CO2 capture efficiency

Page 14: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

880 900 920 940 960 980 1000 1020

CO

2 c

ap

ture

eff

icie

nc

y (

%)

50

60

70

80

90

100

.mOC = 100 kg/h

mOC = 150 kg/h.

+7 % in CO2 Capture

CO2 capture

efficiency

Results

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Series III ( ): 13.5 kWth

Series IV ( ): 12.5 kWth

Effect of solids circulation rate

• The decrease of the solids circulation rate had a positive effect on the CO2 capture

Page 15: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

960 975 990 1005

CO

2 c

ap

ture

eff

icie

ncy (

%)

50

60

70

80

90

100 .mOC = 100 kg/h

ugasCS = 0.35 m/s

mOC = 150 kg/h

ugasCS = 0.5 m/s

.

mOC = 150 kg/h

ugasCS = 0.35 m/s

.

.mOC = 75 kg/h

ugasCS = 0.35 m/s

CO2 capture

efficiency

Results

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Series III ( ): 13.5 kWth

Series IV ( ): 12.5 kWth

Series V ( ): 6.9 kWth

Global evaluation

• Similar CO2 capture could be obtained varying the fuel reactor temperature, solids circulation rate and CS gas velocity

► Experiments selected

to evaluate

the oxygen demand

Page 16: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

880 900 920 940 960 980 1000 1020

Ox

yg

en

de

ma

nd

(%

)

0

2

4

6

8

10

12

14 = 1.1mOC = 450 kg/MW

= 1.1mOC = 470 kg/MW

= 1.5mOC = 480 kg/MW

- 2 % in Oxygen demand

Oxygen

Demand

Results

Effect of oxygen carrier to fuel ratio ()

• The oxygen carrier to fuel ratio has a relevant influence on the Oxygen Demand

Availability of oxygen in FR

OC OC

coal coal

R m

m

WOC to fuel ratio

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Series III ( ): 13.5 kWth

Series IV ( ): 12.5 kWth

Series V ( ): 6.9 kWth

Page 17: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

FR Temperature (ºC)

880 900 920 940 960 980 1000 1020

Oxyg

en

dem

an

d (

%)

0

2

4

6

8

10

12

14 = 1.1mOC = 450 kg/MW

= 1.1mOC = 470 kg/MW

= 1.5mOC = 480 kg/MW

= 1.5mOC = 720 kg/MW

- 1 % in Oxygen demand

Oxygen

Demand

Results

Series I ( ): 17.5 kWth

Series II ( ): 17.5 kWth

Series III ( ): 13.5 kWth

Series IV ( ): 12.5 kWth

Series V ( ): 6.9 kWth

Effect of the solids inventory in FR

• In addition, a higher solids inventory in the fuel reactor improved the combustion efficiency of the process

Page 18: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Operating variable

CO2 Capture Oxygen demandDesign

condition

FR temperature As high as possibleLow relevance in the interval 900-1000ºC

1000 ºC

Solids circulation rateAs low as possible

( > 1)As high as possible

= 1.5

Solids inventoryLow relevance in the

interval 300-700 kg/MWAs high as possible,

but conditioned by DP700 kg/MWth

Carbon stripper performance

Must be optimized Low relevance>98% separation

efficiency

Results

Selection of operating conditions

► Would it be possible to operate a

CFB with these requirements?

Page 19: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Pre

ssu

re d

rop

(kP

a)

1

10

100

ug r

iser

(m/s

)

0.1

1

10

Cross Sectional Area (m2/MW

th)

0.01 0.1 1

So

lid

s f

lux (

kg

m-2

s-1

)

1

10

100

H2O/C = 0.1 - 0.2 - 0.5 - 1.0 - 2.0 - 5.0

mOC = 100 kg/MW 200

500

1000

2000

5000

2

5

10

= 1

Particle diameter ( m)

100 1000 10000

Gas v

elo

cit

y (

m/s

)

0.01

0.1

1

10

100

umf

ut

Bubbling

Spouted

Turbulent

Pneumatictransport Fast

fluidization

Results

Fluid dynamics & Design parameters

Adapted for ilmenite particles from Kunii & LevenspielChem. Eng. Sci. 1997, 52, 2471-2482

ug = 4 m/s

H2O/C=1

0.2 m2/MWth

700 kg/MWth

30 kPa

= 1.5

15 kg m-2 s-1

Page 20: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Conclusions

• The effect of relevant operating conditions on the CO2 capture and

Oxygen demand of the iG-CLC process was determined in a CLC unit

• The value of several operating conditions for the design of a iG-CLC

unit was determined

• The operating conditions of the fuel reactor fit the fluid dynamics

requirements for CFB units

Page 21: Operational experience during coal combustion in a 50 kWth ...ieaghg.org/docs/General_Docs/6_Sol_Looping/2... · H 3.6 N 1.8 S 0.5 LHV (kJ/kg) 24930 Nominal thermal power: •20 kW

Politecnico Di Milano Milan, Italy

1st - 2nd September 2015

Alberto Abad

Raúl Pérez-Vega, Francisco García‐Labiano, Pilar Gayán, Luis F. de Diego, Juan Adánez

Combustion & Gasification Group

Instituto de Carboquímica (ICB-CSIC), Zaragoza, Spain

[email protected]

Thanks for your attention

Project: ENE 2013-45454-R- Reference: T06