on-chip scanning confocal microscope with 3d mems scanner and vcsel feedback detection

22
Date: 2007/11/21 1 Reported by: Institute : 奈奈奈 Name : 奈奈奈 Student ID : d9635804 EL (Vertical Cavity Surface Emitting Lasers)

Upload: sabin

Post on 14-Jan-2016

55 views

Category:

Documents


1 download

DESCRIPTION

ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D MEMS SCANNER AND VCSEL FEEDBACK DETECTION C. Gorecki , L. Nieradko et. al. Université de Franche-Comté, Besançon, FRANCE Wroclaw University of Technology, Wroclaw, Poland Transducers 07’ p 2561~2564. Reported by: Institute : 奈微所 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 1

Reported by:Institute : 奈微所Name : 楊志誠 Student ID : d9635804

VCSEL (Vertical Cavity Surface Emitting Lasers)

Page 2: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 2

Outline

Page 3: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 3

1665虎克發明光學顯微鏡

1886

蔡司改良鏡片技術光學顯微鏡從此

性能高強價格低廉

1981~1986賓尼等人發明 STM, AFM

2007

Now

MEMS

Microscope History

1950 年代 TEM SEM

1957 Marvin 發明 Confocal

TEM的電子束要能穿透切成薄片的標本,

通常用來研究細胞內部的超顯微結構

SEM 標本的表面先鍍上薄薄的一層黃金,

再用電子束掃瞄其表面,適合用來研究標本表面的微細結構

,通常可以拍攝同一細胞表面的 3D 立體結構

Page 4: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 4

Scanning Confocal Microscope

http://www.microscopyu.com

Widely used in biomedicine, living cell

Three-dimensional (3-D) image

Non-invasive imaging of transparent samples

1.Reject light from out-of-focus planes

2.Provide clear in-focus image of a thin

cross section

Page 5: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 5

Page 6: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 6

ARCHITECTURE OF CHIP-SCALE CONFOCAL MICROSCOPE

Laser microscope on-chip

silicon-based MEMS

Glass micro lenses

.

3 layers structure

Comb-drive actuators (Z and X-Y)

100 μm for Vertical motion (Z)

50 μm in both directions by

actuating of micro lens by x-y-axis

scanner

.VCSELs (Vertical Cavity Surface Emitting Lasers)

Page 7: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 7

Fabrication process of glass microlens. [ Method 1]

Isentropic Etching Glass reflow DRIE

Page 8: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 8Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si

Fabrication process of glass microlens [ Method 2]

single-mask process

KOH water solution<111> <100>

Page 9: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 9

Page 10: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 10

ANSYS Simulation

[ High Displacement & Lower voltage ][ High Displacement & Lower voltage ]

[Higher Rigidity & Higher voltage ] for lens D > 300 μm[Higher Rigidity & Higher voltage ] for lens D > 300 μm

Different shape design to investigate their performance

Frequency and vibration

Page 11: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 11

The silicon mould having depth from 46 μm to 90 μm

Etch depth is non-linear function of mask diameter

Etch rate 1.0-2.0 μm/min

The silicon mould having depth from 46 μm to 90 μm

Etch depth is non-linear function of mask diameter

Etch rate 1.0-2.0 μm/min

Mask Diameter & Mould Diameter are linear

larger Microlens focal length

Increased Etched time

Silicon Nitride thicker

Mask Diameter & Mould Diameter are linear

larger Microlens focal length

Increased Etched time

Silicon Nitride thicker

Glass microlens fabrication

Page 12: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 12

Page 13: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 13

Conclusion

Precise positioning and focal tuning of micro lens

— 2-3μm resolution

— penetration depth down to 30 μ m

Achieved high-resolution positioning control without need

for large numbers of electrodes

— 50 μm (X,Y)

— 100 μm (Z)

500 times smaller than anything in this class

Page 14: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 14

Discussion

Wavelength of light used is major factor in resolution

shorter wavelength greater resolution

Rayleigh criteria refractive wavelength shorter , the penetration depth will be shallow 。

Cell Damage : Cell damage and death for laser light

Bleach : Most specimen without fluorescent , so adding dyes are necessary 。

Laser light will bleach the dyes in the period of lighting 。

Page 15: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 15

Thank you for your attention!

Page 16: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 16

Reference[1] .Magnetically Actuated Scanning Microlens for NIR Raman Spectroscope , Chin-Pang-

Billy Siu et al, MEMS 2007, Kobe , Japan, pp 735-738[2]. S. Kwon and L.P. Lee, “Micromachined transmissive scanning confocal icroscope”,

Optics Lett, vol. 29, pp. 706-709, 2004.

[3] S Bargiel, L Nieradko, M Józwik, C Gorecki, J.A Dziuban, “New generation of fully

integrated optical microscopes on-chip: application to confocal microscope“, Proc.

SPIE, vol. 6186, 2006.

[4] D. Heinis, C. Gorecki, “Feedback-induced voltage change of Vertical Cavity Surface

Emitting Laser as an active detection system for miniature optical scanning probe

microscopes”, Optics Express, vol. 14, pp. 3396-3405, 2006.

[5] R. Carrasco, J.A. Dziuban, I. Moreno, C. Gorecki, R. Walczak, M. Kopytko, L. Nieradko,

M. Józwik, “Optical microlenses for MOEMS” Proc. SPIE, vol. 5836, pp. 657-666, 2005.

[6]. http://www.cyto.purdue.edu/flowcyt/educate/pptslide.htm

[7]. www.cs.uky.edu/~jzhang/CS689/chapter7.pdf

[8]. http://www.ntrc.itri.org.tw/dict/content.jsp

Page 17: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 17

Vertical cavity surface emitted laser

面射型雷射二極體為一新型發光元件,此元件與傳統雷射二極體基本的差別在於

共振腔 磊晶層相對位置之不同;傳統雷射二極體的共振腔與磊晶層平行,反射面

係利用晶體自然斷裂面形成而與磊晶層垂直,雷射光由側面發出,故又稱邊射型雷射

(Edge-emitting laser) ,而本元件的共振腔與磊晶層垂直,反射面係由磊晶層或表層

介電質薄膜組成,雷射光由正面發出,故稱為垂直共振腔面射型雷射。

邊射型雷射於晶片製程結束後須將晶片劈裂成晶條,並進行端面鍍膜,此製程複雜

耗時且為影響製程良率之關鍵。面射型雷射因非利用晶體自然斷裂面作為反射面,故

無須利用劈裂或進行端面鍍膜,可節省可觀之製程時間並避免因此而影響製程良率。

另於晶片製程結束後即可於晶片上直接進行元件量測 (on wafer testing) ,可節省量測

成本及時間。

預期面射型雷射可能之應用方向有下列各項:‧光數據鏈路傳輸 (Serial Optical Data Links) 目前已有 HP 、 Motorola 、 Honeywell 、

IBM 、 Vixel 等公司投入

‧雷射列印 (Laser Printing): 利用面射型雷射則可同時二維列印,加快列印時間,

目前 Xerox 已投入此方面研究。 [ 工 業技術研究院 奈米科技研發中心 ]

http://www.ntrc.itri.org.tw/dict/content.jsp

Page 18: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 18

Definitions

Acceptance angle θ Numerical Aperture

NA = n sinθ Rayleigh resolution criterion for

a circular aperture Δx = 0.61 λ/NA

Highest Typical Resolution

Optical Microscope ~200 nm

Electron Microscope ~0.1 nm

Rayleigh Criterion

Page 19: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 19

objAiry NAr 05.0

20

min )(

**2

objNAz

Confocal Characteristics

objAiry NAr 061.0

共焦掃描顯微鏡僅對在聚焦面上形成清晰的影像,若我們逐步移動聚焦面,則可取得觀測樣品其深淺有序的斷面,將這些斷面的影像經由電腦處理,即可重組出相對應的三度空間影像。

Page 20: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 20

Zeiss 510

Zeiss Confocal Microscope

Page 21: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 21

Numerical Aperture

Page 22: ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D  MEMS SCANNER AND VCSEL FEEDBACK DETECTION

Date: 2007/11/21 22

Monochromatic Aberrations– Spherical aberration

– Coma

– Astigmatism

– Flatness of field

– Distortion

Chromatic Aberrations– Longitudinal aberration

– Lateral aberration

Images reproduced from:

http://micro.magnet.fsu.edu/

Sources of Aberrations