oe4680 2015 - lecture 15 - discussion exercise & exam questions

Upload: andro-amellonado

Post on 06-Jan-2016

216 views

Category:

Documents


0 download

DESCRIPTION

exercise

TRANSCRIPT

  • MScOffshore&DredgingEngineeringFacultyCEG,DepartmentHydraulicEngineeringFaculty3mE,DepartmentMaritime&TransportTechnology

    116June,2015

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    BonusExerciseSummaryAim:

    Determinetheglobaliceloadsfor2differentsubstructuredesignsofaGBSintheKaraSea

    Stepstobetaken: Reviewoficeconditionsandproperties; Reviewoflimitingmechanisms; Crushingversusbending; Reviewofthestructuralconfiguration;Forthisexercise,youneed: Theexercisehandout; Thematerialgiventoyouduringthelectures; ExcerptfromISO19906(onBlackboard)

    16June,2015 2

    Figure1:Mapof1)Southwestand2)NortheastKaraSea

    Rusanovskoye

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    BonusExerciseSummaryNoteherethat: Rusanovskoye islocatedinBaidaratskaya Bay

    inthesouthwesternpartoftheKaraSea ThelocationoftheGBSisdefinitelyoffshore

    16June,2015 3

    Figure1:Mapof1)Southwestand2)NortheastKaraSea

    Rusanovskoye

    Parameter AverageAnnualValuesOccurrence,firstice October

    Occurrence,lastice July

    FYlevellandfastice,thickness 1,6m

    FYlevelicefloes,thickness 1,4 1,8m

    FYlevelicefloes,eq.diameter 4,5km

    MYlevelicefloes,thickness

    FYridges,keeldepth 6,5 7,5m

    MYridges,keeldepth

    Icemovement,nearshore 0,4m/s

    Icemovement,offshore 0,3m/s

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Structuralconfiguration

    16June,2015 4

    Figure2:SketchofPlatformDesignOptionsfortheKaraSeaGBS

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Givenparameters

    16June,2015 5

    Parameters Symbol Value UnitAirDensity(at19C) a 1,37 kg/m3

    Windvelocity Va 21 m/sDensityseawater w 1027 kg/m3

    Currentvelocity Vw 3,4 m/sSalinityseawater S 31 Densityseaice ice 910 kg/m3

    Youngsmodulusseaice E 5,0 GPaPoisson'sratio 0,3 Rubbleheight hr 5 mIcetoicefrictioncoefficient i 0,05 Porosityicerubble e 0,35 Rubbleangleofrepose A10 Cohesionoficerubble c 1,7 kPaInternalfrictionangleicerubble 40

    VariableParameters Symbol Unit Value Value ValueExtremeicefloethickness H m H1=1,6 H2=1,9 H3=2,2Icestructurefrictioncoefficient C C1=0,01 C2=0,02 C3=0,03

    A1=40 A4=49 A7=58Coneangle A A2=43 A5=52 A8=61

    A3=46 A6=55 A9=64

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    OverviewExerciseScoring Answeringallproblemscorrectly,yieldsa0,75 bonustoyourexamgrade. Thisbonusisvalidfor:

    TheexaminQ4,onWednesday24June2015,09:0012:00,and TheretakeinQ5,onThursday13August2015,09:0012:00. Ergo:doingtheexamnextyear,meansredoingthebonusassignment!

    Intotal,therewere32pointstobeearned,dividedamongthe4problemsas:1a. [2] 2a. [2] 3a. [1] 4a. [1]1b. [2] 2b. [2] 3b. [4] 4b. [8]

    2c. [3] 3c. [1] 4c. [3]2d. [1]

    1. [4] 2. [8] 3. [6] 4. [12]

    Thus,everysinglepointequalsa(0,75/30=)0,025bonustoyourexam.16June,2015 6

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    ProblemStatement1[4pts]Inthewinter20142015,themeandailyairtemperatureattheconsideredlocationintheKaraSeawasbelowtheseawaterfreezingpointfrom16September2014untilandincluding18April2015.Theaveragemeandailyairtemperatureduringthisperiodwas17,1C.

    Forthecalculationoficethickness,theKaraandChukchiSeashavethesamesitespecificconstants:intheChukchiSea4096freezingdegreedaysyieldanicethicknessof2,24m.

    1. Forthegivenweatherconditionsinthewinter20142015,a. Calculatethenumberofaccumulatedfreezingdegreedaysin

    theKaraSea.b. DeterminethemaximumundisturbedicethicknessintheKaraSea

    assuminglinearheatconduction.

    16June,2015 7

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem1aForthegivenconditionsinthewinter20142015:a. calculatethenumberofaccumulatedfreezingdegreedaysintheKaraSea.

    Thenumberofaccumulateddegreedaysisfoundas:

    meandailyairtemperatureattheconsideredlocationintheKaraSeawasbelowtheseawaterfreezingpointfrom16September2014untilandincluding18April2015.Theperiodfrom16September2014until18April2015yieldsatotalof:

    15+31+30+31+31+28+31+18=215days.

    Theaveragemeandailyairtemperatureduringthisperiodwas17,1C.Ta isgivenas17,1C.Theseawatersalinityis31,andthus(fromthelectureslideswefindthat)thefreezingpointoftheseawaterTbis1,705C.

    Andthus:

    16June,2015 8

    a b a bFDD daysC T T avg T T n

    17,1 1,705 215 3310FDDC

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem1bForthegivenweatherconditionsinthewinter20112012:b. DeterminethemaximumundisturbedicethicknessintheChukchiSea

    assuminglinearheatconduction.

    Themaximumundisturbedicethicknessisfoundas:

    Forthecalculationoficethickness,theKaraandChukchiSeashavethesamesitespecificconstants; intheChukchiSea4096freezingdegreedaysyieldanicethicknessof2,24m.Assuminglinearheatconductionitfollowsthatb=0,5,fromthedatafortheBeaufortSea,wethusfind:

    WepreviouslyfoundthatCFDD =3310,thuswefindtheicethicknessfortheChukchiSeaas:

    16June,2015 9

    bFDDh aC

    ;;

    2,240,035

    4096b Chukchi

    Chukchi FDD Chukchi bFDD Chukchi

    hh aC aC

    0,035 3310 2,014bFDDh aC m

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Insteadoftheundisturbedicethickness,extremeicefloethicknessesshouldbeusedforthedesignloads.Inotherwords,fromthispointonwardsusetheextremeicefloethicknessvaluespecificallygiventoyourgroup.

    AssumethatforextremeicefloethicknessesintheKaraSea,theicetemperatureatthefloesurfaceis19C.

    2. ForsubstructureA,thusforthesubstructurethatiscylindrical atthewaterline,a. Determinetheiceactionforanaveragesizedisolatedicefloeforlimitforce;b. CalculatethedesignactionforicecrushingfailureaccordingtoISO19906;

    ProblemStatement2[8pts]

    16June,2015 10

    SubstructureA

    50m24m

    18m

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    ForsubstructureA,thusforthesubstructurethatiscylindrical atthewaterline,a. Determinetheiceactionforanaveragesizedisolatedicefloeforlimitforce;Foranisolatedicefloe,wheretheicefloeisdescribedasanequivalentcircularfloewithadiameterDeq,wehavenoiceiceinteractionandthethermalexpansiondoesnotleadtoadditionalforces.Thus,thelimitforceactioncanbedescribedas:

    Fromthelectureonicemechanics,wefindthatCd,a =0,025andCd,w =0,002. Andfromtable1:a =1,37kg/m3,Va =21m/s,w =1027kg/m3,Vw =3,4m/s. Additionally,table1givesanaverageannualvalueforthediameterofaFYlevel

    icefloeasDeq =4,5km.

    Thus: 2 22 3 2 3, 8 8,

    0,025 1,37 21 4,5 10 0,002 1027 3,4 4,5 10

    120,11 188,82 308,9LF floe

    LF floe

    F

    F MN

    Problem2a

    16June,2015 11

    2 2 2 2 2, , ,4 8 8floe eq LF floe d a a a eq d w w w eqA D F C V D C V D

    Isthisconservativeornot?

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem2bb. CalculatethedesignactionforicecrushingfailureaccordingtoISO19906;

    AccordingtoISO19906,wefindtheicecrushingloadthroughtheglobalicepressureduetocrushing(eqs.A.820andA.821)as:

    TheicestrengthcoefficientforArcticareasisequalto:CR =2,8MPa. mandnareempiricalcoefficientsthatdependontheicethickness,butforthe

    possiblethicknessesarealwaysfoundas:m=0,16,n=0,3. Thewidthofthestructureis:w=24mandh1isaunitvariable:h1=1m.

    Withh=H2=1,9m,wefind:

    16June,2015 12

    1 1

    , n nm m

    G G G R G Rh w h wF p hw p C F C hwh h h h

    0,160,31,9 242,8 1,9 24 70,2 1,539

    1 1,9G GF MN p MPa

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Insteadoftheundisturbedicethickness,extremeicefloethicknessesshouldbeusedforthedesignloads.Inotherwords,fromthispointonwardsusetheextremeicefloethicknessvaluespecificallygiventoyourgroup.

    AssumethatforextremeicefloethicknessesintheKaraSea,theicetemperatureatthefloesurfaceis19C.

    2. ForsubstructureA,thusforthesubstructurethatiscylindrical atthewaterline,c. Determinethepenetrationofthestructureintoanaveragesizedisolatedicefloefor

    alimitenergyeventanddeterminethecorrespondinglimitenergyiceaction;d. Concludewhichlimitingmechanismgovernstheiceactionandexplainwhy.

    ProblemStatement2[8pts]

    16June,2015 13

    SubstructureA

    50m24m

    18m

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem2c(1)c. Determinethepenetrationofthestructureintoanaveragesizedisolatedice

    floeforalimitenergyeventanddeterminethecorrespondinglimitenergyiceaction;

    Theiceactionforlimitenergyisdeterminedfromtheworkenergyprincipal:

    Anaveragesizedicefloehasadiameterof4,5km.Thus,withice=910kg/m3 andh=H2=1,9m,themassoftheicefloebecomes:

    Thestructureisoffshore,sofromtable1:vbeg =0,3m/s.Obviously,vend =0m/s.

    16June,2015 14

    2 21 12 2beg endF x dx p x w x h x dx mv mv

    22 34 4910 4,5 10 1,9 27,5ice eqm D h Gkg Somehavechosenvbeg =0,4m/sandclaimedthistobeconservative.Isthiscorrect?

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    IceFloe

    Recap RoadmapforLimitEnergyIceAction

    Fromtheworkenergyprinciplewefound:

    Astheanalyticalintegrationoverxisnotalwayseasytoapply,theiceactionforlimitenergycanbeapproximatedusingthefollowingroadmap:1. Increasethepenetrationx usingsmallincrementsx,2. Ateachpenetrationxi determineicepressure,interactionwidthand

    icethickness,aswellasthecorrespondingiceaction.3. Perincrementassumethattheicepressure,interactionwidthandice

    thicknessareconstantsothatthevelocityattheendofeachincrementcanbedeterminedusing:.

    4. Repeatuntil,theiceactionforlimitenergyis:.16June,2015 15

    RigidStructure 2 21 12 2beg endF x dx p x w x h x dx mv mv

    2 21 1 12 2i i i i ipw h x mv mv 1 0iv ,maxLE iF F

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem2c(2)c. Determinethepenetrationofthestructureintoanaveragesizedisolatedice

    floeforalimitenergyeventanddeterminethecorrespondinglimitenergyiceaction;

    Theiceactionforlimitenergyisdeterminedfromtheworkenergyprincipal:

    Anaveragesizedicefloehasadiameterof4,5km.Thus,withice=910kg/m3 andh=H2=1,9m,themassoftheicefloebecomes:

    Thestructureisoffshore,sofromtable1:vbeg =0,3m/s.Obviously,vend =0m/s. Usingtheroadmap:

    Forh=H1=1,6m,wefindtheexactpenetrationas:19,48m.Forh=H2=1,9m,wefindtheexactpenetrationas:19,90m.Forh=H3=2,2m,wefindtheexactpenetrationas:20,27m.

    16June,2015 16

    2 21 12 2beg endF x dx p x w x h x dx mv mv

    22 34 4910 4,5 10 1,9 27,5ice eqm D h Gkg

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem2c(3) FastApproximationc. Determinethepenetrationofthestructureintoanaveragesizedisolatedice

    floeforalimitenergyeventanddeterminethecorrespondinglimitenergyiceaction;

    Theiceactionforlimitenergyisdeterminedfromtheworkenergyprincipal:

    Anaveragesizedicefloehasadiameterof4,5km.Thus,withice=910kg/m3andh=H2=1,9m,themassoftheicefloewasfoundas27,5Gkg.

    Againfromtable1wehave:vbeg =0,3m/s.Obviously,vend =0m/s. Now,asafirstestimateletusassumethatF(x)=FG isconstant.Thepenetrationmaythenbeapproximatedas:

    Solvingtheproblemusingtheroadmap,yieldedapenetrationof19,90m.

    16June,2015 17

    2 21 12 2beg endF x dx p x w x h x dx mv mv

    2 9 2212 627,5 10 0,3 17,632 2 70,2 10begG beg Gmv

    F x dx F x mv x mF

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problems2c(4)and2dc. Determinethepenetrationofthestructureintoanaveragesizedisolatedicefloe

    foralimitenergyeventanddeterminethecorresponding limitenergyiceaction; Usingtheroadmap,wefoundanexactpenetrationof19,90m,

    whileafastapproximationyieldedapenetrationof17,63m. Withadiameterof24m,thestructureisfullyenveloped atapenetrationof12m. Thelimitenergyiceactionisthusequaltothelimitstressload:

    d. Concludewhichlimitingmechanismgovernstheiceactionandexplainwhy. Fromquestionsa.andb.wefind:FLS

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    ProblemStatement33. UsingtheISO19906provisions:

    a. Calculatetheaverageicesalinityfordesignconditions;b. Calculatethecorrespondingbrinevolumeandtotalporosity;c. Determinetheflexuralstrengthoftheiceforpreliminarydesign.

    16June,2015 19

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem3aUsingtheISO19906provisions:a. Calculatetheapproximateicesalinityfordesignconditions;TheAVERAGEicesalinityofagrowingfirstyearlevelicesheetisfoundaccordingtotheISO19906provisionsbythefollowingequation:

    Clearlyallgivenextremeicethicknessesare>0,34mandthus,substitutingthepossiblevaluesgivesasalinity(inppt)as:

    16June,2015 20

    13,4 17,4 for 0,348,0 1,62 for 0,34

    h h mS

    h h m

    1 1,6: 5,4088,0 1,62 2 1,9: 4,922

    3 2,2: 4,436

    H SS h H S

    H S

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem3b(1)UsingtheISO19906provisions:b. Calculatethecorrespondingbrinevolumeandtotalporosity;

    ThecorrespondingbrinevolumefollowsfromISO19906as:

    Forthecalculationofthebrinevolumethatcorrespondstotheaverage salinitySoveranicesheet,wemustalsousetheaverage temperatureovertheicesheet.

    AssumethatforextremeicefloethicknessesintheKaraSea,theicetemperatureatthefloesurfaceis19C.Inthelectureonicemechanics,itwasexplainedthatthetemperatureinanicefloebyapproximationchangeslinearlyovertheheight: atthefloesurfacethetemperatureisgivenas19C. Lookingattheheatfluxthroughtheice,thetemperatureatthebottomofthe

    icesheetmustbeequaltothefreezingpoint,i.e.1,705C.

    Andthuswefindthat:

    16June,2015 21

    49,18 0,53brineV S T

    19 1,705 2 10,3525avgT T C

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem3b(2)UsingtheISO19906provisions:b. Calculatethecorrespondingbrinevolumeandtotalporosity;SubstitutingtheaveragesalinitySandtheaveragetemperatureTyields:

    Accordingtotheicemechanicslecture,theairvolume(inppt)maybeapproximated as:

    Andthustheporosityisfound(inppt)as:

    16June,2015 22

    1: 28,5649,18 0,53 5,28 2: 25,99

    10,35253: 23,42

    brine

    brine brine

    brine

    H VV S S H V

    H V

    9101 1 1 8,76

    918,05bulk sea ice

    airparticles pure ice i

    VT

    1: 28,56 8,76 37,322: 25,99 8,76 34,753: 23,42 8,76 32,18

    brine air

    HV V H

    H

    916,7 0,13pure ice i iT T

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem3cUsingtheISO19906provisions:c. Determinetheflexuralstrengthoftheiceforpreliminarydesign;

    TheflexuralstrengthoftheiceisdefinedinISO19906as:

    Here,thebrinevolumeshouldbesubstitutedasthebrinevolumefraction,thusabrinevolumeof34,75(inppt)correspondstoabrinevolumefraction0,03475.

    Thus,theflexuralstrengthscorrespondingtothedifferenticethicknessesare:

    NotethatthesevaluesarehigherthanwhatISO19906notesreasonable!

    16June,2015 23

    5,881,76 bVf MP ea

    5,88

    1: 0,6521,76 2: 0,682

    3: 0,716

    b

    fV

    f f

    f

    H MPae H MPa

    H MPa

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Withtheaimtoreducetheiceaction,thestructureisredesignedandequippedwithaconeatthewaterline.

    4. ForsubstructureB,thusforthesubstructurethatisconical atthewaterline,andforthespecificcombinationofparametersspecifiedforyourgroup,a. Determinethediameteroftheconeatthestillwaterlevel;b. Calculatethetotalhorizontal andverticaldesignloadforbendingfailure

    accordingtoISO19906(wehereactuallyassumethatthecodeprovisionsforslopedsurfacesalsoholdforconicalcollars);

    c. Determinethereductionofthetotalhorizontaldesignloadbyapplyingadownwardconewiththesamewaterlinediameterastheupwardcone.

    ProblemStatement4.[12pts.]

    16June,2015 24

    SubstructureB

    50m

    A

    18m6m24m

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4aForsubstructureB,thusforthesubstructurethatisconical atthewaterline,andforthespecificcombinationofparametersspecifiedforyourgroup,a. Determinethediameteroftheconeatthestillwaterlevel;Thetopoftheconeislocated6mabovethewaterline(MSL)asshowninFigure2,andthediameterofthetopoftheconeis24m.Thediameteroftheconeatthewaterlineisthusfoundas:

    Consequently,thediameteroftheconeatthestillwaterlevelisfoundas:

    16June,2015 25

    ,

    1: 7,15 4 : 5,22 7: 3,756

    2: 6,43 5: 4,69 8: 3,33tan tan

    3: 5,79 6: 4,20 9: 2,93

    add add addtop cone

    add add add add

    add add add

    A r A r A rh

    r A r A r A rA A

    A r A r A r

    bot,

    1: 38,30 4 : 34,43 7: 31,502 2: 36,87 5: 33,38 8: 30,65

    3: 35,59 6: 32,40 9: 29,85c c add

    A w A w A ww b r A w A w A w

    A w A w A w

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4b(1)b. Calculatethetotalhorizontal andverticaldesignloadforbendingfailure

    accordingtoISO19906;

    ThetotalhorizontaldesignloadforbendingfailureisfoundaccordingtoISO19906as:

    IngeneralthebreakingcomponentHB isthemaincomponent,whichisfoundas:

    Here,theflexuralstrengthf istheresultofquestion3c.16June,2015 26

    1

    B P R L TH

    B

    f c

    H H H H HF Hh

    : Loadrequiredtobreaktheiceblocksagainsttheslope: Loadrequiredtopushtheiceblocksuptheslope: Loadrequiredtoturntheiceblockatthetopoftheslope: Loadrequiredtopushthe

    B

    R

    T

    P

    HHHH sheeticethroughtherubble

    : LoadrequiredtolifttheicerubblewiththeunbrokenicefloeLH

    0,25

    2 3

    0,255 2with:

    4 12 10,68sin coscos sin

    C C Cw w

    B f C

    Ehw L Lgh g vHE

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4b(2)b. Calculatethetotalhorizontal andverticaldesignloadforbendingfailure

    accordingtoISO19906;

    Wefind:

    Where:

    Thisyields:

    16June,2015 27

    0,25

    2 3

    0,255 2with:

    4 12 10,68sin coscos sin

    C C Cw w

    B f C

    Ehw L Lgh g vHE

    sin cos sin 5 2cos 5: 1,334cos sin cos 5 2sin 5

    A C AA C A

    C2 = 0.02,A5 = 52

    0,25

    9 3

    2

    1: 20,77 89,555 10

    2: 23,63 91,6812 1027 9,81 1 0,3

    3: 26,38 94,93

    C C

    C C C

    C C

    H L m mHL H L m m

    H L m m

    0,2551, 1, 1: 2,30

    0,68 2, 2, 5: 4,773, 3, 9: 10,34

    Bw

    B f C B

    B

    H C A H MNghH H C A H MNE

    H C A H MN

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4b(3)b. Calculatethetotalhorizontal andverticaldesignloadforbendingfailure

    accordingtoISO19906;

    ThetotalhorizontaldesignloadforbendingfailureisfoundaccordingtoISO19906as:

    Theremainingloadcomponentscanbewrittenas:

    16June,2015 28

    1

    B P R L TH

    B

    f c

    H H H H HFH

    h

    : Loadrequiredtobreaktheiceblocksagainsttheslope: Loadrequiredtopushtheiceblocksuptheslope: Loadrequiredtoturntheiceblockatthetopoftheslope: Loadrequiredtopushthe

    B

    R

    T

    P

    HHHH sheeticethroughtherubble

    : LoadrequiredtolifttheicerubblewiththeunbrokenicefloeLH

    22 tan 11 1

    tan 2tan

    sin cos tan sin cos0,5 1 cos 1cos sin tan tan tan sin

    tan 1 1 tan1 0,5 1 tan 1tan tan tan t

    P r i i

    i rR i r i

    L r r i

    H wh g e

    w ghH e h h

    H wh h g e

    2

    ancos1,5 0

    sin cosT i

    c

    H wh g

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4b(4)b. Calculatethetotalhorizontal andverticaldesignloadforbendingfailure

    accordingtoISO19906;ThehorizontalbreakingloadHB ,aswellastheothercomponentsarenowfoundbysimplysubstitutingthecalculatedvaluesintotheISO19906equations.

    ForexampleusingH2,C2&A5,wefind:(i.e.h=1,9m; =0,02; =52)

    Andthetotalhorizontalandverticalforcesbecomes:

    16June,2015 29

    4,77 0,01 4,83 0,67 1,28 12,04 9,034,771 10,682 91,68 1,9

    B P R L T HH V

    B

    f c

    H H H H H FF MN F MNHh

    4,7711,84,830,671,28

    B

    P

    R

    L

    T

    H MNH kNH MNH MNH MN

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    UpwardBendingHorizontalActionFH(angle)

    16June,2015 30

    6,0

    10,0

    14,0

    18,0

    22,0

    20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

    H1.6C0.01H1.6C0.02H1.6C0.03H1.9C0.01H1.9C0.02H1.9C0.03H2.2C0.01H2.2C0.02H2.2C0.03

    angle

    MN

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4c(1)c. Determinethereductionofthetotalhorizontaldesignloadbyapplyinga

    downwardconewiththesamewaterlinediameterastheupwardcone.

    Upwardconespushtheiceup,whereasdownwardconespushtheicedown.

    Thus,onanupwardcone:1. Therewillberubblepileup,asaconsequence

    a. operationsarenegativelyinfluencedbyrubblegettingintheway,andb. iceactionsincreaseastheicerubbleblockstheslope.

    2. Lowericeactionsduetoalowerflexuralstrengthoftheice3. Highericeactionsaswehavetotakeintoaccounttheweightofice,

    insteadofitsbuoyancyonadownwardslope.4. Highericeactionsasthefrictioncoefficientishigheronanupwardslope;

    downwardslopesarelubricatedduetowaterinbetweentheslopeandtheice.

    16June,2015 31

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4c(2)Onanupwardcone:1. Therewillberubblepileup,asaconsequence

    a. operationsarenegativelyinfluencedbyrubblegettingintheway,andb. iceactionsincreaseastheicerubbleblockstheslope.

    2. Lowericeactionsduetoalowerflexuralstrengthoftheice3. Highericeactionsaswehavetotakeintoaccounttheweightofice,

    insteadofitsbuoyancyonadownwardslope.4. Highericeactionsasthefrictioncoefficientishigheronanupwardslope;

    downwardslopesarelubricatedduetowaterinbetweentheslopeandtheice.

    InISO19906,theflexuralstrengthiscalculatedasanaverageflexuralstrengthandthereforecannotdistinguishbetweenup/downwardbending!

    Furthermore,ISO19906considersonlyoneicestructurefrictioncoefficient,anddoesnotdistinguishbetweenfrictionaboveandunderwater!

    16June,2015 32

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4c(3)UpwardversusDownwardbending:

    Theremainingdifferencesbetweenupwardanddownwardbending: Theweightoftheiceonanupwardslopeshouldbereplacedbyitsbuoyancy

    foradownwardslope,i.e.theicedensityshouldbereplacedbythesubmergeddensity.(i wi ;alsoseethelecturesonIceActions)

    Differenceiceactionsduetodryandwetrubblepileup

    So: Forupwardanddownwardbendingthehorizontalbreakingload HB isthesame. Forupwardbending,wecalculateHP,HR,andHT withtheicedensityi. Fordownwardbending,HT =0,butallothercomponentsthatareafunctionof

    theicedensity,i.e.HP,HR,HLarecalculatedwiththesubmergeddensitywi.

    16June,2015 33

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4c(3)c. Determinethereductionofthetotalhorizontaldesignloadbyapplyinga

    downwardconewiththesamewaterlinediameterastheupwardcone.

    ThetotalhorizontaldesignloadforbendingfailureisfoundaccordingtoISO19906as:

    Theremainingloadcomponentscanbewrittenas:

    16June,2015 34

    1

    B P R L TH

    B

    f c

    H H H H HFH

    h

    : Loadrequiredtobreaktheiceblocksagainsttheslope: Loadrequiredtopushtheiceblocksuptheslope: Loadrequiredtoturntheiceblockatthetopoftheslope: Loadrequiredtopushthe

    B

    R

    T

    P

    HHHH sheeticethroughtherubble

    : LoadrequiredtolifttheicerubblewiththeunbrokenicefloeLH

    22 tan 11 1

    tan 2tan

    sin cos tan sin cos0,5 1 cos 1cos sin tan tan tan sin

    tan 1 1 tan1 0,5 1 tan 1tan tan tan t

    P r i i

    i rR i r i

    L r r i

    H wh g e

    w ghH e h h

    H wh h g e

    2

    ancos1,5 0

    sin cosT i

    c

    H wh g

    3with 117i w i kg m

    NotethatthecomponentHT maybeneglectedcompletely,asasubmergediceblockwillturnbeforetheendoftheslope.

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Problem4c(4)c. Determinethereductionofthetotalhorizontaldesignloadbyapplyinga

    downwardconewiththesamewaterlinediameterastheupwardcone.ThehorizontalbreakingloadHB remainsthesameandtheothercomponentsarefoundfromtheISO19906equations.

    ForexampleusingH2,C2&A5,wefind:(i.e.h=1,9m; =0,02; =52)

    Andthetotalhorizontalandverticalforcesbecomes:

    16June,2015 35

    ,4,77 0,00 0,62 0,18 1,28 5,81 6,244,771 1

    0,682 91,68 1,9

    B P R L TH H red

    B

    f c

    H H H H HF MN F MNHh

    4,771,520,620,180,00

    B

    P

    R

    L

    T

    H MNH kNH MNH MNH MN

    4,7711,84,830,671,28

    B

    P

    R

    L

    T

    H MNH kNH MNH MNH MN

    12,04HF MN

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    DownwardBendingHor.ActionFH(angle)

    16June,2015 36

    2,0

    3,0

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    10,0

    11,0

    12,0

    10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

    H1.6C0.01H1.6C0.02H1.6C0.03H1.9C0.01H1.9C0.02H1.9C0.03H2.2C0.01H2.2C0.02H2.2C0.03

    MN

    angle

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Commonerrors Insertingthewrongunitsintheequations,forexample:

    cohesionc=1,7kPa,sointheequations,thevalueofc=1700,not1,7.

    Forexample,inexcel,trigonometricfunctionsarecalculatedusinganglesinradians,notdegrees.

    Calculatetheaveragetemperatureas:

    Usetherightequation,usingtherightvaluesforallofthevariablesandthensomehowmessupthecalculationandendupwiththewronganswer.

    Usethenearshoreicevelocityof0,4m/s,insteadoftheoffshoreicefloevelocityof0,3m/sforastructurethatisapproximately200kmoffshore.

    Forgettingpartsofequations

    16June,2015 37

    21 1,595 9,72avg

    T C 21 1,595 11,3

    2avgT T C

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Generalremarks 1groupmanagedtogettheirgroupnumberwrong,andthereforeused

    differentparametersthangiven.

    2groupsmanagedtonotregisteratallandusedselfchosenparameters.(butdidnotdoatallbad!)

    Multiplegroupsforgottoincludeasinglepageoverviewoftheanswers Quiteafewmanagedtopresent,forexample,aresultingiceforceof

    22658254,86NPleasewritethisas:22,66MN(!)

    Pleaseproperlyincludethecorrectunits,sometimesIcantevendistinguishwhetherIamlookingatN,kN orMN!

    1groupmanagedtoproperlycopyallthecorrectequations,butwithoutgivingtheresultinganswers

    Noneedtorepresentthewholeexercise.Especially,ifyoudonotintendtogivepartialanswers

    16June,2015 38

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Overviewexerciseresults

    Therewere55groups,ofthese2groupsfailedtodelivertheiranswers Theaveragescoreofall106 participantswas 22,0 points;

    16June,2015 39

    0

    1

    2

    3

    4

    5

    6

    7

    8

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    BonusExerciseResults

    16June,2015 40

    Grp Score Bonus Grp Score Bonus Grp Score Bonus

    1 23 0,575 20 29 0,725 39 14 0,350

    2 25 0,625 21 30 0,750 40 13 0,325

    3 29 0,725 22 26 0,650 41 20 0,500

    4 25 0,625 23 42 22 0,550

    5 26 0,650 24 43 28 0,700

    6 29 0,725 25 10 0,250 44 21 0,525

    7 12 0,300 26 18 0,450 45 17 0,425

    8 26 0,650 27 27 0,675 46 17 0,425

    9 19 0,475 28 28 0,700 47 28 0,700

    10 24 0,600 29 30 0,750 48 14 0,350

    11 27 0,675 30 10 0,250 49 25 0,625

    12 18 0,450 31 9 0,225 50 13 0,325

    13 30 0,750 32 25 0,625 51 16 0,400

    14 26 0,650 33 28 0,700 52 14 0,350

    15 14 0,350 34 24 0,600 53 14 0,350

    16 21 0,525 35 28 0,700 54 18 0,450

    17 23 0,575 36 28 0,700 55 24 0,600

    18 29 0,725 37 27 0,675

    19 28 0,700 38 15 0,375

  • MScOffshore&DredgingEngineeringFacultyCEG,DepartmentHydraulicEngineeringFaculty3mE,DepartmentMaritime&TransportTechnology

    4116June,2015

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    16June,2015 42

    Examdates&ConfigurationoftopicsExamdates

    Exam: Wednesday24June, 09:00 12:00, 2Czaal2Reexam: Thursday13August, 09:00 12:00, t.b.a.

    Theexamroughlyfollowsthesetupofthecourseschedule:

    GeneralArcticEngineering: 7080% Arcticregions,Arcticstructuresandicefeatures; Icephysicsand/oricemechanics; Iceactionsandicestructureinteraction; Icemanagementand/orISO19906; ScalemodellingandArcticOceanography.

    Dynamicsoficestructureinteraction: 2030% Frequencylockinandiceinducedvibrations; Physicsbasedandnumericalmodelling; Industryexperience;

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    1

    2

    16June,2015 43

    Arcticregionsandicefeatures

    Q: Nametheseas/areasoftheselocationsanddescribetheicefeaturesthatyouexpecttoencounterhere.

    1. BaffinBay Firstyearlevelicefloes, Firstyeariceridges, Multiyearlevelice floes,and (Many)Icebergs.

    2. (Southwestern)KaraSea Firstyearlevelicefloes, Firstyeariceridges,and (Rarely)Multiyeariceridges.

    Atthelocationsgiveninthefigurebelow,offshorehydrocarbonfieldsarebeingdevelopedorwillbedevelopedinthenextfewyears.

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    16June,2015 44

    ArcticconceptsQ: Discusstheadvantages(pros)andlimitations(cons)ofthefollowing

    hydrocarbonproductionconceptsforuseintheArctic: GravityBasedStructure ShipshapedFloatingProduction,StorageandOffloadingunit(FPSO) ArcticTLP

    LetsdiscusstheShipshapedFPSOunit(pros &cons): FPSOscommonlyusedfordeeporverydeepwaters. Goodrubbleclearing Canbedisconnectedforpossiblecollisionswithseverefeaturessuchasicebergs. Canbereused. Largedeckspaceavailable. Requiresnooffshoretopsideinstallation. Reliesforabigpartonicevaning capability Canonlyresistfirstyearicefeaturesandoftenrequiresicemanagement. SmalloperationalweatherwindowcomparedtoaGBSoranArtificialisland. Relativelyexpensivetomake. Theriserandmooringsystemsmaybeexposedtobrokenice.

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    2

    16June,2015 45

    Arcticregions/conceptsandicefeaturesQ: Whichofthegivenconceptswouldyouchoose

    foreachlocationandexplainwhy.

    1. BaffinBay GBS:Toodeep(200300m) FPSO:Goodopenwaterbehaviourandassumingitsdisconnectablemakesthisaviableoption.

    ArcticTLP:perfectforopenwaterbehaviour,butitcannotbedisconnectedforicebergs.

    Bestoption:FPSO(disconnection,openwater)

    2. (Southwestern)KaraSea GBS:Viableoptionespeciallyintheshallowparts FPSO:Notaviableoptionastheoccurringiceloadsaretoohigh,evenwithicemanagement.

    ArcticTLP:Probablytooshallow.Bestoption:GBS(ifwaterdepthallows)

    GBS, Ship-shaped FPSO or Arctic TLP?

    1

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    16June,2015 46

    Arcticregions/structuresandicefeatures

    Q: Name2(3)areaswhereoffshoreplatformsmustbedesignedforbothiceandseismicloads?

    SeaofOkhotsk(Sakhalin), CookInlet(Alaska),or Bohai Bay(China)

    Notehere:theCaspianSeaisawronganswer: ThereareearthquakesinthesouthernpartoftheCaspianSea,but

    thereisnoseaicethere. InthenorthoftheCaspianSeathereisseaiceduringthewinters,

    buttherearenoearthquakes.

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    16June,2015 47

    IceactionsQ: Whatarethemechanismsthatlimittheiceloadonastructureduringice

    structureinteraction? LimitEnergy LimitStress LimitForce

    Q: Explainbrieflywhatismeantbyeachoftheselimitingmechanisms.

    LimitEnergy:Themechanismthatoccurswhentheactionislimitedbythe(relative)kineticenergyormomentumoftheicefeature.ThismechanismisalsoreferredtoasLimitMomentum.

    LimitStress:Themechanismthatoccurswhenthedrivingforcesworkingontheicefeaturearesufficientfortheicetofailasitinteractswiththestructure.

    LimitForce:Themechanismthatoccurswhenanicefeatureisdrivenagainstthestructureandthedrivingforcesareinsufficientfortheicetofailandenvelopthestructure.

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    16June,2015 48

    IceactionsQ: Theiceloadsexertedonaslopingstructurearedifferentfromtheiceloads

    exertedonaverticalstructure.Explainonwhichofthestructurestheicefloeexertsthelowestloads,explainwhy,andnamethecorrespondingfailuremodes.Againstslopingstructurestheicefailsthrough(ice) bending,whileonaverticalstructuretheicefailsthrough(ice) crushing.

    Theiceactionbybendingdependsmainlyontheflexuralstrengthofice,whilecrushingactionmainlydependsonthecompressivestrengthofice.Theflexuralstrengthoficeismuchlowerthenthecompressivestrengthoficeandthereforebendingexertslowerloadsonastructurethancrushing.

    Ergo,theloadswillbelowestonslopingstructures.Notehoweverthatrubblepilingupand/oradfreeze maydiminishtheadvantagesofslopingstructures

    Tocalculatestaticiceactions,weprincipallyapplytheISO19906,butwehaveextensivelydiscussedthisduringthefirstpartofthislecture.

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Adfreeze theformationoficebustles

    Tidescausewatervariationsandwhenthewaterlowers:thewaterfilmleftonthepilewillfreezeandaccumulate

    16June,2015 49

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    IceactionsQ: IntheArctic,offshorestructuresarevulnerabletomanydifferent

    environmentalloads.Someoftheseenvironmentalloadswilloccuratthesametime.Forthegivencombinationsofenvironmentalloadsexplainwhetherornotyouwouldchoosetoconsiderthemsimultaneouslyandexplainwhy:

    MaximumwaveandiceloadsWaveandIceloadswillnormallynotoccurtogether,sincewavesareattenuatedbythepresenceofseaice.Therefore,thecombinationofthesetwoloadsIsnotaviableloadcombination.

    MaximumwaveandmaximumwindloadsUsuallywavesareatitshighestwhenthewindloadsarehighest,thereforetheloadcombinationofmaxwaveandmaxwindisveryviable.

    LeveliceandicebergcollisionloadsLeveliceandicebergcollisionloadswillcausefailureagainstastructureusingacompletelydifferentlimitingmechanism.Leveliceisusuallylimitstress,whileicebergcollisionsarelimitenergy.Althoughtheoccurrenceofbothphenomenonatthesametimeispossible,designingforthecombinationofthetwotogetherisirrelevant,duetotheirdifferenceinloadingmechanism.

    16June,2015 50

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Crystallography:BernalFowler/icerulesQ: TheBernalFowlerrulesdescribethearrangementofwatermoleculesand

    hydrogenatomsintheidealcrystallinestructureofice.Givethe4BernalFowlerrules.

    1. Thewatermoleculeispreservedintheicelattice.Ergo,1Oatomwith2Hatoms.

    2. Eachwatermoleculeistetrahedrically bondedto4adjacentwatermolecules.

    3. Thereisonly1hydrogenatomperoxygenoxygenbond.4. Thehydrogenatomsaremobilesorules13maybesatisfiedinany

    configuration.

    16June,2015 51

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    IcegrowthQ: Whenseaiceformsandgrowsitobtainsdifferentformsandshapeswhile

    goingthroughthedifferentstagesofitslife.Withrespecttothis,explainthefollowingterms:

    FrazilIceFinespiculesorplatesofice,suspendedinwater.

    CongelationiceCongelationiceisalsoknownassecondaryiceandthisisthepartofanicelayerthatisgrowninadditiontotheprimaryice.Congelationiceconsistsofthetransitionzone,thecolumnarzoneandtheskeletonlayer.

    BrineBrineiswaterthatissupersaturatedwithsaltthatisenclosedinseaice;Assaltisexpelledfromthefirsticeplateletsthatform,thesalinityofthesurroundingwaterincreases.Duringgrowth,theiceplateletstakeinwaterfromthesurroundingseawater,increasingthesalinityofsurroundingwaterfurther.Duringfurthericegrowththehighsalinitywaterisincludedalongtheplateletboundariesintheformofliquidorsolidinclusions.Thenowisolatedbrineinclusionsarecalledbrinepockets.

    16June,2015 52

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    IceMechanicsQ: Whatarethe4physicalicepropertiesthatinfluencethestrengthofice? Temperature Porosity Salinity Crystallography

    Q: Howdoestherelativevelocitybetweenastructureandanicefloeinfluencetheloadsonthatoffshorestructureduringicestructureinteraction? Lowvelocity ductilefailure High(er)velocity brittlefailure

    16June,2015 53

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    DynamicsoficestructureinteractionQ: Whatarethe3maintypesofmodelsthatareavailabletomodeldynamic

    interactionbetweenseaiceandoffshorestructures?Giveashortexplanationofeachtypeofmodel. Physicsbased models

    Thistypeofmodelling triestoapproachrealityasmuchaspossiblebytakingintoaccountthefundamentalphysical(micro)propertiesofthephenomenontobemodelled.

    Empirical modelsModelsbasedondata.

    Phenomenological modelsModelsthattrytomimicthebehaviour ofacertainphenomenonratherthanlookingintothesourceofthisbehaviour.

    16June,2015 54

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    IcestructureinteractionQ: Theinteractionbetweenanicefloeandaslopingstructureisdescribedbya

    loadingcyclein2alternatingphases.Describethisloadingcycleandidentifyits2phases.

    1. Uponinitialcontactoftheicefloewiththehulloftheslopingstructure,thetipoftheicefloeispusheddownwardsandtheicefloestartsbendingdownwardsuptothepointwheretheicefloe,heremodelledasabeam,breaksinbendingatacertaindistancefromtheinteractionpointatthetipoftheicefloe.Thisisthefirstphasecommonlydescribedas:Bendinguptofailure.

    2. Onceapieceoftheicefloe(beam)breaksofffromtheicefloe,thispiece(orpiecesofrubble)ispusheddowntheslopebytheremainingicefloe,untilthetipoftheremainingicefloehitsthehulloftheslopingstructure.Thisisknownasthesecondphase.Oncethetipoftheremainingicefloehitsthestructuretheicefloeisonceagainapplyingadirectloadtothestructure,andwethuscommonlydescribethisphaseas:Pushingrubble(down)untilreloading.

    16June,2015 55

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    IcestructureinteractionQ: Whichbeamtheorywouldyouusetomodeltheinteractionbetweentheice

    andthedownwardslopingstructureand why? EulerBernoullibeamtheory,alsocommonlyknownastheclassicalbeam

    theory.

    Whenmodellingtheiceasabeam,thebeamrepresentingtheicecanalwaysbeconsideredtobelongorslender;Whenbeamsarelong/slender,sheardeformationsandrotationalinertiamaybedisregardedasisassumedfortheEulerBernoullibeamtheory.

    AdditionalNote: Whenconsideringshortbeams,sheardeformationsandrotationalinertia

    shouldbetakenintoaccountaccordingtoTimoshenkoRayleighbeamtheory.

    16June,2015 56

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    DynamicicestructureinteractionBecausetheicesheetismoving,thedisplacementoftheicesheetdoesnotonlydependontimebutalsodependsonitspositionintime.Themovingicefloe,modelledasabeamonanelasticfoundationisthereforeknownasaconvectivesystem.Consequently,itsverticalaccelerationisfoundasafunctionoficefloevelocityandaccelerationas:

    Q: Assumingthatthevelocityoftheicesheetisconstant,givetheequationofmotionforthebendingofamovingicesheetonanelasticfoundationusingEulerBernoullibeamtheory.Here,theaxialcompressionalongtheicesheetandthecorrespondingdampingmaybeneglected.

    Assumingthattheicefloevelocityisconstant,wecanwritetheverticalaccelerationoftheicesheetas:

    Consequently,wefindtheequationofmotionas:

    16June,2015 57

    2 2 2 222 2 22 z z z z zD u u u u uv t v t a tDt t x t x x

    2 2 22

    2 2

    2

    2 2

    z z z zu u u uv vt xD tt x

    D

    2 2 2 4

    22 2 42 0 z z z z

    zfoundation

    bendingconvective inertia

    u u u uA v v EI kut x t x x

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    Dynamicicestructureinteraction

    16June,2015 58

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    DynamicsoficestructureinteractionDuringastructuresfirstoperationsintheChukchiSea,theicefloevelocityintheChukchiSeavariesisobservedtobebetween0,04and0,08m/sandthebreakinglengthoftheicethatfailsagainstthestructureinbending rangesfrom10to14m.Thenaturalfrequencyofthestructureis0,195rad/s.Q: Determinethefrequencyrangeoficefailureagainsttheslopingstructureandexplain

    whetherfrequencylockinmayoccurwhileoperatingthisstructureintheChukchiSea.Thelowesticefailurefrequencyisfoundforacombinationofthebiggestbreakinglengthandthelowesticefloevelocity:

    Accordingly,thehighesticefailurefrequencyisfoundforacombinationofthesmallestbreakinglengthandthehighesticefloevelocity:

    Previously,wefoundanaturalfrequencyof0,195rad/s,whichis4timesbiggerthanthehighesticefailurefrequency.Duetothebigdifference,wemayexpectthattheicefailurefrequencyandthestructuresnaturalrollingfrequencywillnotsynchronize.Thus,wedonotexpectfrequencylockintooccurhere.16June,2015 59

    min

    max

    2 2 0,04 0,01814

    lowv rad s

    max

    min

    2 2 0,08 0,05010

    highv rad s

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    BeforeIgo

    Doyouhaveanyquestions?

    or

    Isanythingunclearthatyouwouldliketoseefurtherexplained?

    IfyouthinkofsomethinglatercometomyofficethisThursdayorthisFriday

    16June,2015 60

  • DiscussionExercise&ExamQuestionsOE4680ArcticEngineeringMScOffshore&DredgingEngineering

    16June,2015 61

    Good luck with the examon Wednesday 24 June,

    and enjoy the summer holiday!