oct 6.2015 revised clearwater farm review

44
Clearwater Farm, Georgina, Ontario A project of the Ontario Water Centre (OWC) An Agroecological Systems Design Review September 23, 2015 ________________________________________________________________________ Report by: Ryan Hayhurst, MEDes NEO, Regenerative Agroecological Systems Consulting

Upload: ryan-hayhurst

Post on 22-Jan-2018

482 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: OCT 6.2015 revised Clearwater Farm Review

                 

   

Clearwater  Farm,  Georgina,  Ontario  A  project  of  the  Ontario  Water  Centre  (OWC)  

 An  Agroecological  Systems  Design  Review  

September  23,  2015    ________________________________________________________________________      

Report  by:  Ryan  Hayhurst,  MEDes  NEO,  Regenerative  Agroecological  Systems  Consulting  

 

             

Page 2: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      2  

               About  the  Author    

     Ryan  has  over  ten  years  direct  experience  working  with  complex  agroecological  systems.    In  addition  to  his  academic  record  in  Environmental  Design,  sustainable  food  systems  planning,  project  management  and  evaluation,  his  hands-­‐in-­‐the-­‐dirt  experience  with  agroecology  included  5  years  owning/operating  an  organic  vegetable  farm  near  Collingwood,  Ontario,  a  2  acre  urban  market  garden  collaboration  and  dozens  of  other  design/implementation/evaluation  projects.    He  currently  lives  in  Guelph,  Ontario  amongst  a  productive  edible  forest  garden,  young  family,  good  friends  and  six  chickens.    Ryan  Hayhurst,  Principal  NEO,  Regenerative  Agro-­‐Ecological  Systems  Consulting,  Est.  2004    Twitter:  @NEOrganics  Skype:  @forest_farmer  Linkedin:  http://ca.linkedin.com/pub/ryan-­‐hayhurst/23/431/a2    'When  we  try  to  pick  out  anything  by  itself,  we  find  it  hitched  to  everything  else  in  the  Universe.'  (John  Muir,  1911)          

               

Page 3: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

3  

Executive  Summary    Clearwater  Farm  is  well  positioned  to  become  a  multi-­‐functional  agroecological  food  and  farming  hub  that  responds  immediately  and  sustainably  to  some  of  our  planet’s  most  complex  problems.    Using  a  regenerative  approach  to  farm  design,  and  laid  out  in  a  creative  and  accessible  manner,  the  Ontario  Water  Centre’s  proposal  for  Clearwater  Farm  connects  OWCs  years  of  water  advocacy  work  in  the  Lake  Simcoe  basin  with  the  potential  offered  by  a  unique  heritage  farm  property  at  a  prominent  lakeside  location  developed  using  leading  edge  agroecological  principles.    The  basis  of  Clearwater  Farm,  which  is  reflected  by  the  orientation  of  the  design  proposal,  is  very  suitably  water  and  this  project  represents  an  ideal  learning  laboratory  in  which  to  demonstrate  best  practices  in  design  and  management  of  water  within  a  working  farm  landscape.    Clearwater  Farm  is  the  type  of  project  born  both  out  of  hard  work  and  imagination,  but  also  out  of  necessity.    In  reviewing  the  socio-­‐ecological,  political  and  economic  context  of  our  time  in  relation  to  the  subject  of  food  systems,  this  report  begins  by  highlighting  research  that  has  helped  build  growing  popular  support  for  the  agroecological  movement.    These  various  high  levels  calls  for  the  advancement  of  agroecological  approaches,  combined  with  the  success  of  innovative  farmers  at  the  leading  edge  of  agroecological  design  and  local  community  food  systems,  aligns  Clearwater  Farm  with  a  very  progressive  community  of  practice  where  Clearwater  and  OWC’s  considerable  experience  will  no  doubt  be  welcome.        Beyond  the  ‘why’  of  agroecology,  this  report  reviews  the  ‘how’  and  lays  out  in  basic  terms  an  analysis  of  the  Clearwater  Farm  agroecological  plan,  which  responds  to  the  growing  global  call  for  the  advancement  of  agroecological  agriculture.    Backed  by  both  academic  science  and  farmer-­‐scholars,  the  foundation  of  this  plan  emphasises  a  keyline  landscape  architecture,  maximizing  soil  moisture  availability  and  nurturing  healthy  soil  biology.    The  design  elements  proposed  as  interconnected  components  of  the  whole  farm  system  include  earthworks,  perennial  polyculture  plantings  and  integrated  animal  husbandry.    Proposed  as  a  two  phase  implementation  beginning  with  8  acres  and  expanding  to  an  additional  22  acres  in  five  years,  this  working  farm  model  balances  the  need  for  productive  crop  yields  to  support  operational  costs  with  OWC’s  other  objectives  for  the  program,  including  education,  demonstration/KTT,  evaluation  and  replication.    Critical  components  of  the  program  that  weave  through  all  essential  features  of  the  overall  design  are  plans  for  education,  research  and  evaluation  programs.    Working  with  their  growing  in-­‐house  capacity  and  expanding  list  of  external  research  partners,  OWC’s  plan  for  a  living  laboratory  on  the  shores  of  Lake  Simcoe  bringing  together  wise-­‐water  ecological  design,  local  agro-­‐food  innovation  and  integrated  ecosystem  services  is  an  exciting  vision  that  will  yield  multiple  benefits  to  our  integral  ecology-­‐society.      

Page 4: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      4  

     Table  of  Contents    1.0 Introduction  

1.1  Structure  of  the  Report  

2.0  Clearwater  Farm:  Working  with  Soil  to  Save  Water  

3.0  Clearwater  Farm:  A  review  of  the  proposed  farm  design  &  production  systems  

3.1  Market  Gardens,  Mulch  &  Green  Manures  

3.2  Polyculture  Orchard  &  Edible  Forest  Garden  

3.3  Silvo-­‐pasture  Agroforestry,  Tall-­‐Grass  Grazing  &  Forested  Animal  Husbandry  

3.4  Keylines,  Ponds  &  Contour  Swales:  Water  on  the  Landscape  

3.5  Bioswales  &  Hugelkultur  

3.6  Post-­‐harvest  wash-­‐water,  Grey-­‐water  Re-­‐use  &  Aquaponics  

3.7  Rainwater  Harvest,  Storage  &  and  Use  in  Irrigation  

3.8  Season  Extension  Systems  

3.9  Compost,  Compost  Teas,  Vermi-­‐compost,  Biochar  &  Holistic  Preparations  

4.0  Education  &  Communication  Program  

5.0  Metrics  &  Evaluation  Program  

6.0  Conclusions  

7.0  Glossary  of  Terms  

 References                        

Page 5: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

5  

             

   A  typical  agroecological  farm  has  many  interconnected  parts  and  water  connects  them  all.    Driven  by  a  motivation  to  maximize  the  total  health  of  the  system  and  sustain  that  health  over  time,  the  natural  interactions  between  water,  soil,  air  and  biology  are  thus  carefully  nurtured  in  agroecological  systems.                                    

Page 6: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      6  

1.0    Introduction    The  OWC  Clearwater  Farm,  proposed  for  the  old  Reed  Farm  -­‐  a  heritage  property  uniquely  positioned  on  the  shores  of  Lake  Simcoe  -­‐  bridges  the  past  with  the  future  at  a  time  and  place  of  great  change.    Residing  on  the  edge  of  the  growing  and  dynamic  Township  of  Georgina,  like  many  communities  in  southern  Ontario,  this  region  is  a  landscape  in  transition  from  a  largely  rural  agricultural  and  recreational  economy,  to  one  with  more  intensification  and  development,  including  residential,  commercial,  agricultural  and  industrial  uses.    Easy  access  to  Hwy  404  makes  the  region  a  viable  bedroom  community  for  Toronto  and  as  such  pressure  on  the  regions  vital  agricultural  land-­‐base  is  only  going  to  increase.    The  stakes  are  therefore  high  for  ‘the  old  Reed  Farm’.    Fortunately  a  local  coalition  headed  by  the  Ontario  Water  Centre  has  brought  forward  a  vision  to  bring  the  properties’  agricultural  past  into  the  future  in  an  innovative  and  collaborative  way.    The  objective  of  this  report  is  to  contextualize  the  proposal  in  light  of  what  we  know  of  the  agro-­‐food  system  status  quo,  then  to  review  the  agroecological  design  in  light  of  progressive  best  practice  in  this  field.    Urbanization  and  globalization  have  impacts  both  on  landscape,  but  also  on  culture  and  economy.    As  local  economies  are  subjected  the  global  market  place,  production  of  local  foods  has  come  under  pressure  from  cheaper  imports  from  abroad,  forever  changing  the  nature  of  what  prior  to  industrialization  would  have  been  a  largely  regional  food  economy.    The  old  Reed  Farm  came  into  being  in  this  pre-­‐industrial  age  and  then  at  one  point  was  probably  deemed  to  be  ‘too  small’  to  be  ‘viable’  in  the  contemporary  agricultural  world  known  as  the  Green  Revolution.    But  rather  than  succumb  to  conventional  mixed  use  development,  or  face  ongoing  degradation  from  conventional  lease  hold  cash-­‐cropping,  the  new  stewards  of  this  land  have  recognized  an  emerging  opportunity  for  farm-­‐based  agro-­‐food  education,  celebration  and  research.    This  exciting  proposal  to  establish  a  working  farm  and  food  hub  based  on  regenerative  agro-­‐ecological  principles  is  thus  a  fitting  way  to  bring  full  circle  this  prominent  heritage  property.    The  vision  for  Clearwater  Farm  is  for  a  dynamic  and  diverse  facility  that  responds  to  the  challenge  of  growing  healthy  food  that  is  healthy  for  the  environment,  in  particular  soil  health  and  water  management.      Poised  to  establish  itself  as  a  leader  in  “future-­‐proofing”  (aka  adaptive  capacity),  a  review  of  which  will  be  the  main  focus  of  this  report,  Clearwater  Farm  is  being  designed  to  be  resilient  in  the  face  of  change,  creating  viable  sustainable  production  systems  now  that  will  only  get  stronger  and  more  vital  into  the  future.      Building  on  the  BMPs  inherent  in  LID  and  extending  those  principles  even  further  into  the  farmscape  using  regenerative  agro-­‐ecological  design  principles,  Clearwater  Farm  expects  to  become  a  regional  if  not  global  leader  in  regenerative  water-­‐wise  agriculture.    Furthermore,  as  a  “living  laboratory”,  farming  at  Clearwater  will  have  an  emphasis  on  learning,  demonstrating  and  testing  the  resiliency  of  its  component  systems  at  urban,  suburban  and  rural  production  scales,  suggesting  it  will  have  value  across  the  region,  among  both  urban  gardeners  and  rural  farmers  alike.  

Page 7: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

7  

 This  vision  is  spelled  out  in  the  Clearwater  Farm  Business  Plan  (2015)  and  subsequent  endeavours  that  build  on  the  existing  body  of  work  from  the  Ontario  Water  Centre  and  Lady’s  of  the  Lake.    This  vision  is  consistent  with  the  emerging  opportunities  in  the  fields  of  local  and  organic  agriculture,  agri-­‐tourism  and  culinary  tourism  as  society  continues  to  evolve  and  embrace  more  healthful  lifestyles,  nutritious  diets  and  holistic  land  management  approaches.    In  fact  the  growing  body  of  literature  suggest  that  not  only  can  community  food  hubs  such  as  this  play  an  integral  role  in  economic  development  and  agricultural  productivity,  but  also  community  health  and  well-­‐being.    As  a  facility  Clearwater  Farm  is  poised  to  become  an  invaluable  piece  of  infrastructure  for  the  region  that  responds  to  both  emerging  opportunities  in  agro-­‐food,  but  also  to  issues  of  water  quality  and  quantity  within  the  watershed  as  laid  out  in  the  Lake  Simcoe  Protection  Act  (2008)  and  the  Lake  Simcoe  Protection  Plan  (2009).      1.1  Structure  of  the  Report    This  report  aims  to  broaden  and  deepen  the  connections  between  the  OWC  Clearwater  Farm  Business  Plan  (April  2015)  and  the  agro-­‐ecological  program  under  development  for  the  future  of  the  Reed  Farm  property  in  Georgina,  Ontario.    Specifically  this  report  aims  to  first  establish  an  impetus  for  the  project  and  in  particular  the  agroecological  systems  proposed  for  the  site,  by  drawing  on  the  work  of  researchers  locally  and  internationally  that  point  to  the  need  for  a  shift  in  the  predominant  agricultural  paradigm,  a  paradigm  which  is  not  adequately  addressing  some  of  the  pre-­‐eminent  ecological  challenges  of  our  time,  in  particular  soil  loss  and  water  pollution  resulting  from  conventional  agricultural  practice.    (Note:  the  social  and  economic,  cum  political  and  cultural,  problems  such  as  food  security,  food  sovereignty,  cultural  consciousness  and  the  like  are  not  the  focus  of  this  report,  but  remain  intertwined  with  both  the  problems  and  solutions  herein.)  Secondly,  this  report  will  explain  in  greater  detail  some  of  the  features  and  systems  included  in  the  agro-­‐ecological  program  proposed  for  the  site  and  discuss  how  they  address  the  negative  externalities  associated  with  conventional  practices.      Linking  these  design  solutions  is  a  proposal  for  an  education,  communication  and  demonstration  program  that  will  assist  in  driving  the  social  change  required  to  spread  agroecological  innovation  further  afield.    Finally,  this  report  will  discuss  some  of  the  evaluation  metrics  and  techniques  that  Clearwater  Farm  hopes  to  explore  and  develop  to  track  progress  in  this  multifaceted  facility.    OWC  and  the  Clearwater  Farm  Board  have  taken  a  very  holistic  approach  in  their  research,  design  and  development  of  the  Clearwater  Farm  proposal  and  this  report  will  build  on  this  vision  of  community  building  and  economic  development  within  the  context  of  demonstrating,  educating  and  innovating  in  the  realm  of  sustainable  agriculture  and  wise  water  use.    Herein  this  report  specifically  aims  to  address  and  explain  some  of  the  more  technical  components  of  the  proposed  agro-­‐ecological  

Page 8: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      8  

system,  how  they  work  on  this  specific  site  and  why  they  are  relevant  within  the  context  of  the  OWC’s  mission.    This  report  does  not  include  a  complete  baseline  ecological  study,  nor  would  it  have  been  possible  within  the  scope  of  this  report  to  conduct  such  studies.      To  fully  inform  the  detailed  site  planning  and  preparation,  such  studies  will  be  required  as  this  project  moves  into  full  implementation  on  the  ground.    Such  studies  (including  a  full  hydrological  study,  topographical  mapping,  flora,  fauna  and  soil  food  web  inventories,  etc.)  will  play  a  critical  role  not  only  in  informing  the  detailed  site  planning,  but  also  in  providing  baselines  that  can  be  used  for  evaluation  purposes  over  time.    Indeed  one  of  the  critical  roles  of  the  OWC’s  Clearwater  Farm  will  be  looking  at  innovative  ways  to  track  and  measure  the  agro-­‐ecological  performance  of  our  farm  systems  building  on  and  expanding  the  BMPs  as  laid  out  in  rural  planning  literature,  including  Ontario’s  Environmental  Farm  Plan  (EFP),  the  Rural  Landowners  Stewardship  Guide  for  the  Ontario  Landscape  (2007)  and  Rural  Planning  and  Development  in  Canada  (2010).    Because  of  the  near-­‐urban  nature  of  our  site  and  the  Clearwater  Boards  goal  of  impacting  both  rural  and  urban  stakeholders,  we  also  consider  the  emerging  literatures  on  food  systems  and  urban  agriculture,  including  the  seminal  Canadian  publications  Agricultural  Urbanism  (2010)  and  OPPI  Planning  for  Food  Systems  in  Ontario:  A  Call  to  Action  (2011).                                                  

Page 9: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

9  

2.0  Clearwater  Farm:  Working  with  Soil  to  Save  our  Water    Specifically,  the  Clearwater  Farm  responds  to  a  number  of  specific  recommendations  laid  out  by  the  Ontario  Centre  for  Climate  Impacts  and  Adaptation  (2011),  which  lays  out  a  detailed  call  to  action  to  increase  the  adaptive  capacity  (aka  resiliency)  within  the  watershed,  including:    

• Using  remote  sensing  and  other  innovative  new  tools  to  map  changes  in  land  use,  soil  health  and  vegetative  cover  

• Fostering  green  infrastructure  that  offer  education  and  demonstration  opportunities  to  engage  community  on  these  issues  

• Developing  conservation  strategies  to  reduce  water  demand  and  increase  rainwater  harvesting,  while  simultaneously  reimagining  and  redeveloping  the  agricultural  landscape  as  place  which  integrates  increased  tree  cover,  improved  year  round  soil  cover  and  dramatically  improved  soil  health  and  water  retention.  

 Not  surprisingly  these  recommendations  reinforce  the  findings  of  the  Environmental  Commissioner  of  Ontario  (ECO)  and  the  responsibility  of  Government  as  outlined  in  Ontario’s  Environmental  Bill  of  Rights  (1993)  and  subsequent  acts  of  Parliament.      ECO  specifically  recommends,  in  “Biodiversity:  A  Nation’s  Commitment,  An  Obligation  for  Ontario”  and  “Investing  in  Soils  for  a  Sustainable  Future”  (2013)  that  we  have  not  only  moral  but  legal  obligations  to  ensure  that  ecosystems  that  provide  essential  ecological  services,  including  terrestrial  and  aquatic  ecosystems,  be  restored  and  protected.    This  research  spells  out  some  key  recommendations  that  Clearwater  farm  will  be  well  positioned  to  act  on,  including:    

• Better  metrics  around  everything  soil  related,  including  soil  organic  matter  and  soil  erosion,  using  advanced  remote  sensing  technologies  where  applicable,  but  with  the  intention  of  also  providing  improved  real  time  data  for  farmers  and  other  land  managers.  

• Restoration  of  ecosystems  that  provide  essential  services,  including  services  related  to  water,  and  curbing  pollution  of  those  ecosystems  from  nutrient  loading.  

• The  reports  call  for  expanded  research  into  the  area  of  soil  ecology  and  its  application  in  sustainable  agriculture,  which  is  exactly  where  Clearwater  Farm  is  positioned.  

 On  a  national  basis,  Environment  Canada’s  “Environmental  Sustainability  of  Canadian  Agriculture:  Agri-­‐Environmental  Indicator  Report  Series  -­‐  Report  No.  3”  suggests  that  “Overall…producers  are  responding  to  environmental  concerns  and  some  progress  has  been  made  towards  environmental  sustainability”.    With  regards  to  soil  in  particular,  this  report  suggests  that  “Improvements  in  land  management  practices,  such  as  increased  adoption  of  conservation  and  no-­‐till  practices,  reduced  use  of  summer  fallow,  

Page 10: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      10  

particularly  tillage  summer  fallow  and  increased  forage  and  permanent  cover  crops  were  primarily  responsible  for  the  improved  agri-­‐environmental  performance  for  soil  quality”.    This  is  all  good  news  and  clearly  an  improvement  on  earlier  baselines.    However,  these  indices  do  not  tell  the  full  story,  as  the  same  report’s  Water  Quality  Agri-­‐Environmental  Performance  Index  is  in  decline  with  the  “increased  application  of  nutrients  (Nitrogen  (N)  and  Phosphorus  (P))  as  fertilizer  and  manure  was  the  main  driver  for  the  declining  trend  in  the  performance  index  for  water  quality  throughout  Canada”.    The  report  suggests  that  while  the  diversity  of  cropping  systems  and  heavy  rainfalls  in  Eastern  Canada  make  there  risks  here  somewhat  higher,  an  overall  trend  of  moving  livestock  operations  from  Eastern  to  Western  Canada  adds  the  decline  in  Western  Canadian  water  quality.    Based  on  these  findings,  EC  is  recommending  the  following:    

• Adoption  of  nutrient  management  practices  such  as  soil  nutrient  testing,  optimizing  the  timing,  application  and  incorporation  of  solid  and  liquid  manure  and  fertilizer,  and  increased  manure  storage  capacity.    

• Improvements  could  be  made  in  other  areas  such  as  solid  and  liquid  manure  storage  practices,  livestock  access  to  surface  water  and  pesticide  application.  Soil  conservation  tillage  and  no-­‐till  practices  generally  increased  across  Canada,  together  affecting  72%  of  cropland  in  2006,  contributing  to  the  overall  improvement  in  soil  health  across  Canada.  

• Beneficial  management  practices  such  as  conserving  riparian  areas,  adopting  conservation  tillage,  managing  woodlands  and  implementing  rotational  grazing  should  be  encouraged,  particularly  in  agricultural  regions  that  have  limited  wildlife  habitat  capacity  and  in  areas  where  there  has  been  a  significant  decline  in  habitat  capacity.  

 Once  again,  the  Clearwater  Farm  program  directly  responds  to  these  urgent  recommendations  with  a  number  of  innovative  design  and  management  solutions.    Furthermore,  while  these  EC  indices  are  useful,  they  do  not  address  or  include  such  critical  aspects  as  soil  biology,  energy  return  on  energy  investment  (EROEI),  animal  health  and  welfare,  or  the  cumulative  impacts  of  agricultural  pollutants  on  the  health  of  people  or  the  environment.        Many  of  these  recommendations  from  local  and  provincial  experts  are  echoing  what  international  experts  have  been  saying  for  some  time,  including  two  high  profile  UN  bodies:  the  UN  Special  Rapporteur  on  the  Right  to  Food  and  the  Food  and  Agriculture  Organization.    In  2012  the  UN  Special  Rapporteur  visited  Canada  and  reported  the  following  in  his  end  of  mission  statement:  “A  thriving  small-­‐scale  farming  sector  is  essential  to  local  food  systems,  and  it  is  indeed  these  local  food  systems  that  food  policy  councils  and  localities  throughout  Canada  now  seek  to  strengthen.  These  systems  can  deliver  considerable  ecological  and  health  benefits  by  increasing  access  to  fresh  and  nutritious  foods  to  children  in  schools,  underserved  urban  and  Northern  remote  communities  as  well  as  

Page 11: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

11  

residents  living  in  long-­‐term  care  homes.”    While  the  primary  focus  of  the  Rapporteurs  visit  was  in  assessing  food  access  rather  than  methods  of  food  production,  his  comments  clearly  demonstrate  the  link  between  healthy  outcomes  for  people  and  healthy  outcomes  for  the  land.    The  more  startling  findings  from  the  Rapporteurs  findings  related  to  the  state  of  food  insecurity  in  this  country,  in  particular  among  low-­‐income  and  aboriginal  peoples:    

• Approximately  1.92  million  people  in  Canada,  aged  12  or  older,  lived  in  food  insecure  households  in  2007/2008  and  a  staggering  1  in  10  families,  10.8  per  cent,  with  at  least  one  child  under  the  age  of  six  were  food  insecure  during  the  same  period.  

• In  2011,  Food  Banks  Canada  calculated  that  close  to  900,000  Canadians  were  accessing  food  banks  for  assistance  each  month,  slightly  over  half  of  whom  were  receiving  social  assistance.    

• The  Special  Rapporteur  was  disconcerted  by  the  deep  and  severe  food  insecurity  faced  by  aboriginal  peoples  across  Canada  living  both  on-­‐  and  off-­‐reserve  in  remote  and  urban  areas.  Statistics  on  First  Nations  specific  food  insecurity  are  few,  however  the  First  Nations  Regional  Longitudinal  Health  Survey  (RHS  2008/10)  indicates  that  17.8  per  cent  of  First  Nations  adults  (age  25–39)  and  16.1  per  cent  of  First  Nations  adults  (age  40–54)  reported  being  hungry  but  did  not  eat  due  to  lack  of  money  for  food  in  2007/2008.  

 These  numbers  are  truly  staggering  and  as  such  any  community  food  and  farming  initiate  would  be  remiss  if  these  realities  were  not  accounted  for  and  addressed  as  part  of  a  broader  operational  plan.    Clearwater  Farm  intends  to  develop  some  very  clear  objectives  in  this  regard  and  will  be  working  closely  with  the  local  Georgina  Island  First  Nation  and  all  of  our  partners  to  ensure  that  concerns  over  food  security,  food  sovereignty  and  the  right  to  clean  water  for  all  are  part  of  this  collaboration.    2015  is  the  International  Year  of  Soils  and  FAO  is  championing  the  cause.    Their  report  released  earlier  this  year  states  very  clearly  that  unless  we  place  a  renewed  emphasis  on  soil  health,  not  only  will  food  quality  and  quantity  suffer  in  the  long  term,  but  the  ecosystems  that  support  agriculture  and  indeed  all  life  will  continue  to  be  degraded.    In  this  report,  entitled  “Agroecology  to  Reverse  Soil  Degradation  and  Achieve  Food  Security”  the  FAO  lays  out  a  number  of  recommendations  for  the  future  of  food  and  farming  consistent  with  agroecological  methods:    

• Increasing  and  monitoring  soil  organic  matter  • Facilitating  and  monitoring  of  soil  biodiversity  • Use  of  polycultures  and  agroforestry  systems  • Use  of  cover  crops  • Crop-­‐livestock  Integration  

 

Page 12: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      12  

Much  of  this  research  runs  counter  to  a  competing  narrative  in  the  agriculture  literature  which  suggests  that  biotechnology  and  genetic  engineering,  combined  with  further  mechanization  and  industrialization  of  agriculture,  are  the  answer  to  the  “global  food  crisis”.    Not  surprisingly  this  narrative  is  the  one  championed  largely  by  the  corporations  that  control  the  industrial  agriculture  complex.    While  the  notion  of  simply  producing  more  food  for  a  growing  global  population  is  a  compelling  notion,  researchers  have  shown  that  in  fact  globally  we  already  grow  more  than  enough  food  to  feed  ourselves  and  food  insecurity  is  a  result  rather  of  low  incomes,  land  access  and/or  distribution  challenges.    For  this  reason,  Clearwater  Farm  and  the  OWC  have  adopted  a  position  that  building  local  capacity  and  focussing  on  growing  healthy  soil  and  a  resilient  landscape  using  agroecological  methods  best  fits  with  the  needs  of  the  community  and  the  guiding  principles  of  the  organization,  in  particular  with  regards  to  water.    And  OWC/Clearwater  Farm  is  not  alone.    Here  is  a  partial  list  of  other  local  organizations  that  have  adopted  this  position  and  are  moving  forward  in  support  of  local  and  regionally  focused  agroecological  farming:    

• In  Every  Community  a  Place  for  Food:  The  Role  of  the  Community  Food  Centre  in  Building  a  Local,  Sustainable  and  Just  Food  System.  Metcalf  Foundation,  June  2010.  

• Models  and  Best  Practices  for  Building  Effective  Local  Food  Systems  in  Ontario.  K.  Landman  et  al.,  (OMAFRA/UofG),  December  2010.  

• Local  Food  Initiatives  in  Canada  –  An  Overview  and  Policy  Recommendations.  Canadian  Co-­‐operative  Association,  June  2008.  

• Cultivating  Food  Connections:  Towards  a  Healthy  and  Sustainable  Food  System  for  Toronto.  Toronto  Public  Health,  May  2010.  

• Seeding  the  City:  Land  Use  Policies  to  Promote  Urban  Agriculture.  Public  Health  Law  and  Policy,  October  2011.  

• Community  Food  Security.  Position  of  Dieticians  of  Canada,  2007.  • A  Call  to  Action  on  Food  Security:  Key  Messages  and  Backgrounder.  Ontario  

Society  of  Nutrition  Professionals  in  Public  Health,  June  2011.  • Menu  2020:  Ten  Good  Food  Ideas  for  Ontario.  Metcalf  Foundation,  June  2010.  • Healthy  Communities  and  Planning  for  Food:  Planning  for  Food  Systems  in  

Ontario,  A  Call  to  Action.  Ontario  Professional  Planners  Institute,  June  2011.  • Local  Food  Systems  and  Public  Policy:  A  review  of  the  Literature.  Equiterre  &  

The  Centre  for  Trade  Policy  and  Law,  Carleton  University,  September  2009.  • Building  Communities  with  Farms:  Insights  from  developers,  architects  and  

farmers  on  integrating  agriculture  and  development.  The  Liberty  Prairie  Foundation.  

 The  collective  call  to  action  is  growing  louder  by  the  day.    This  very  partial  list  does  not  even  scratch  the  surface  of  the  academic  or  popular  literature  on  the  subject  of  local  food  or  sustainable  agriculture.    It  does  offer  a  sense  of  the  rising  tide  of  both  public  interest  and  professional  attention  being  focused  at  the  intersection  of  food,  agriculture  

Page 13: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

13  

and  society.      It  certainly  offers  ample  affirmation  that  the  goals  and  objectives  of  Clearwater  Farm  are  consistent  with  what  experts  in  their  interdisciplinary  field  of  study  are  saying  and  a  huge  counter  weight  to  the  rich  and  powerful  corporate  interests  whom  would  rather  see  the  future  of  food  and  farming  go  in  a  different  direction.    However,  for  farmers,  tried  and  tested  that  get  results  are  what  really  matter,  not  a  whole  bunch  of  studies.    In  this  regard  farmers  of  all  stripes  are  working  very  hard  to  adopt  some  new  BMPs  to  incrementally  improve  their  farms  performance;  no  doubt  these  measures  are  what  is  needed  for  now  even  if  they  are  only  partial  solutions.    But  for  the  future,  these  incremental  changes  may  not  be  enough  and  as  a  demonstration,  innovation  and  education  farm  Clearwater  is  in  a  position  to  explore  new  horizons  in  sustainable  agriculture  and  experiment  with  radically  different  farm  systems  which  can  be  built  in  from  the  beginning.    In  the  next  section  we  will  discuss  some  of  these  innovative  ideas  being  brought  forward.                                                                

Page 14: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      14  

3.0  Clearwater  Farm:  A  review  of  the  proposed  farm  design  and  production  systems    The  proposed  program  for  Clearwater  Farm  draws  on  a  number  of  agricultural  traditions  that  are  difficult  to  sum  up  in  one  word  alone;  the  complexity  and  detail  of  this  plan  suggests  that  Clearwater  is  not  just  another  organic  agriculture  project  with  a  food  hub  tacked  on  the  side.    However,  in  the  minds  of  the  public,  ‘organic’  is  the  term  most  often  associated  with  the  progression  beyond  the  chemical  input-­‐oriented  conventional  agriculture,  and  for  good  reason.    Studies  have  shown  that  organic  agriculture  results  in  less  nutrient  leaching,  improved  soil  structure,  higher  carbon  storage  and  increased  floral  and  faunal  diversity  (Bengtsson  et  al.,  2005;  Oehl  et  al.,  2001).    Furthermore,  while  the  benefits  of  organic  farming  to  the  environment  vary  by  agricultural  sector,  scale  and  location,  a  2010  study  by  Lynch,  MacRae  and  Martin  concluded  that  the  most  benefits  are  accrued  where  organic  farm  systems  are  embedded  in  community  at  the  local  and  regional  levels  “where  organic,  local  and  whole  foods  intersect”.    Again,  this  is  precisely  the  sweet  spot  in  which  Clearwater  Farm  will  be  culturally  positioned.    As  a  hub  for  demonstration,  education,  research  and  of  course  food  production,  Clearwater  Farm  aims  to  become  a  living  ecological  laboratory.    However,  because  of  its  unique  site  characteristics  and  the  creativity  being  brought  to  bare  in  this,  the  design  phase  of  the  project,  the  farm  will  have  the  capability  of  showcasing  farm  systems  at  different  scales  of  production  suitable  across  a  range  of  landscapes,  from  urban  to  suburban  to  rural.    Furthermore,  the  benefits  of  the  farm  will  be  more  than  the  sum  of  the  parts,  by  showcasing  how  the  integration  of  these  systems  into  the  whole  can  result  in  closing  the  loop  of  nutrient  and  water  cycles,  resulting  in  a  lower  overall  net-­‐impact  than  any  one  part  on  its  own.    On  top  of  this,  the  opportunity  to  track  and  report  on  metrics  from  Clearwater  Farms’  initial  8  acres,  compared  with  those  from  the  neighbouring  22  that  comprise  the  remainder  of  the  original  Reed  Farmstead  (which  for  the  first  five  years  will  remain  under  conventional  cash-­‐cropping),  provides  an  ideal  control  site  for  purposes  of  comparison.    The  proposed  evaluation  program  will  be  explored  in  the  next  section,  but  now  we  turn  to  the  systems  themselves,  which  can  be  laid  out  as  follows:    

3.1  Market  Gardens,  Mulch  &  Green  Manures  3.2  Polyculture  Orchard  &  Edible  Forest  Garden  3.3  Silvo-­‐pasture  Agroforestry,  Tall-­‐Grass  Grazing  &  Forested  Animal  Husbandry  3.4  Keylines,  Ponds  &  Contour  Swales:  Water  on  the  Landscape  3.5  Bioswales  &  Hugelkultur  3.6  Post-­‐harvest  wash-­‐water,  Grey-­‐water  Re-­‐use  &  Aquaponics  3.9  Compost,  Compost  Teas,  Vermi-­‐compost,  Biochar  &  Holistic  Preparations  3.7  Rainwater  Harvest,  Storage  &  and  Use  in  Irrigation  3.8  Season  Extension  Systems  3.9  Compost,  Compost  Teas,  Vermi-­‐compost,  Biochar  &  Holistic  Preparations    

 

Page 15: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

15  

All  of  these  features  of  the  proposed  farm  plan  are  built  on  the  following  ontological  perspective,  backed  by  the  writings,  teachings  and  applied  projects  of  leading  researcher/farmers  such  as  Elaine  Ingham,  Steven  Gleissman,  Joel  Salatin,  Darren  Doughtery,  Michael  Phillips,  Abe  Collins,  David  Jacke,  Eric  Toensmeier,  Ben  Faulk  and  Mark  Sheppard,  among  many  others:    

• A  healthy  economy  and  stable  society  in  the  future  will  be  dependent  on  our  adaptive  capacity  in  the  face  of  climate  change,  in  particular  the  resiliency  of  ecosystems  to  continue  to  provide  essential  services  that  support  all  life.    This  will  require  not  only  ‘sustaining  farming’  but  also  adopting  regenerative  farm  systems,  as  most  of  our  agricultural  land  base  is  degraded  and  deficient  of  adequate  soil  biology  and  nutrients.    While  topsoil  is  renewable  to  some  extent,  topsoil  loss  due  to  erosion  caused  by  out-­‐dated  approaches  needs  to  be  stopped  and  indeed  reversed.    

• Along  with  regenerating  the  quality  and  quantity  of  our  agricultural  soils,  we  need  to  grow  the  capacity  of  these  agro-­‐ecosystems  to  increase  yields  without  expanding  the  agriculture  footprint.    Indeed,  in-­‐tact  natural  systems,  forests,  prairies,  wetlands  and  the  like  should  be  preserved  in  perpetuity  as  the  biological  diversity  that  they  harbour  and  ecosystem  services  that  they  provide  are  invaluable.      

• Our  primary  approach  to  meet  the  growing  food  needs  of  humanity  should  be  through  better  design  and  management  of  agro-­‐ecological  systems  and  less  wasteful,  more  equitable  distribution  of  the  harvest.    This  essentially  requires  both  sustainable  production  of  healthy  food  and  equitable  access  to  nutritionally  adequate  diets.  

• The  key  to  producing  healthy  food  is  soil  health,  defined  as  having  a  robust  soil  food  web,  high  levels  of  organic  matter,  good  structure  and  moisture  retention  capacity.    

•  The  ecosystem  services  provided  by  plant-­‐soil  communities,  in  particular  cleaning  and  holding  of  water,  are  dependent  of  the  biodiversity  in  the  soil,  in  particular  mycorrhizal  fungi.  

• Water  and  oxygen  content  in  the  soil,  and  cycling  of  nutrients,  is  also  directly  related  to  the  health  of  the  soil  food  web  and  the  structure  of  soil  that  healthy  food  webs  create.  

• Building  up  organic  matter  in  the  soil  supports  the  development  of  healthy,  diverse  soil  food  webs  

• Annual  tillage,  the  application  of  pesticides  and  chemical  fertilizers  is  absolutely  destructive  to  soil  food  webs,  in  particular  the  mycorrhizal  and  other  fungi  that  are  essential  to  creating  resilient  agro-­‐ecosystems  that  don’t  require  ongoing  amendment  from  energy  intensive  external  inputs  

• While  a  reliance  on  inorganic  external  inputs  such  as  chemical  fertilizers  and  herbicides  can  still  produce  plant  yields,  the  energy  return  on  energy  invested  pales  in  comparison  to  systems  that  are  not  reliant  on  such  inputs.  

Page 16: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      16  

• Agroecological  methods  have  few  if  any  of  the  negative  externalities  associated  with  conventional  cropping  regimes  (nutrient  leaching,  soil  erosion,  chemical  drift,  etc.)  while  offering  a  multitude  of  ecosystem  services  and  human  health  benefits  not  found  in  conventional  systems  

• Agroecological  systems  with  a  focus  on  healthy  soil  will  be  more  resilient  over  time  and  less  susceptible  to  the  impacts  of  climate  change  

• Systems  integration,  including  integration  of  animal-­‐plant-­‐agroforestry  systems,  nutrient  recovery  systems  and  heat  recovery  systems,  not  only  saves  energy  and  water,  but  in  the  case  of  animal-­‐plant  systems  integration,  can  significantly  contribute  to  fostering  improved  soil  health.  

 Having  addressed  the  ontology  and  epistemology  inherent  in  this  work,  the  focus  now  shifts  to  assessing  the  agro-­‐ecological  designs,  methodologies  and  regenerative  system  components  that  will  be  employed  at  Clearwater  Farm.      3.1  Market  Gardens    A  key  element  in  the  Clearwater  Farm  agroecological  systems  plan  is  the  market  garden.    Market  gardening  is  a  classic  component  of  many  mixed  farms,  with  high-­‐yielding  annual  vegetable  bed  systems  gardened  intensively  from  early  spring  until  late  fall  aided  by  season  extension.    Such  systems  can  create  good  returns  for  a  farm  and  links  up  nicely  with  a  number  of  other  systems,  nutrient  and  water  flows.    Some  of  the  classic  practitioner  literature  in  this  field  includes  the  likes  of  Elliot  Coleman’s  The  New  Organic  Grower  and  John  Jeavons  How  to  Grow  More  Vegetables.    In  addition,  Britain’s  Soil  Association,  Canadian  Organic  Growers  (COG),  Rodale  Institute  in  Pennsylvania  and  the  Ecological  Farming  Association  of  Ontario  (EFAO)  are  huge  repositories  of  data  and  knowledge  on  the  subject  of  organic  gardening,  vegetable  production  and  field  cropping.        Some  techniques  specific  to  the  market  garden  include  the  use  of  organic  mulch  such  as  straw  (preferably  generated  on  farm  on  from  organic  farms  as  locally  as  possible),  which  performs  multiple  functions,  including  surpassing  weeds,  retaining  moisture  by  slowing  evaporation  and  building  up  of  organic  matter  as  the  material  decays.    Similarly,  any  bare  soil  within  the  market  garden  or  across  the  entire  farmscape  is  to  be  seeded  down  (or  under-­‐sewn  where  an  existing  crop  already  stands)  with  annual  green  manure  cover  crops  in  cases  where  perennial  polycultures  are  not  under  establishment.    Inter-­‐cropping  and  companion  planting  techniques  can  further  extend  resiliency  and  synergies  in  the  system  by  taking  advantage  of  known  symbiosis.    Using  biological  controls  such  as  ladybugs,  nematodes,  ducks  or  the  like  can  also  play  a  role  in  both  the  garden  and  greenhouse  to  help  manage  systems  when  certain  crops  or  yields  are  under-­‐pressure.    However,  the  goal  here  will  always  be  to  bring  biological  balance  and  robustness  to  the  system,  which  in  turn  should  bring  soil  chemistry,  nutrient  and  water  availability  into  balance.  

Page 17: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

17  

 Irrigation  is  always  an  important  consideration  in  the  market  garden  as  annual  vegetables  typically  require  considerable  irrigation.    To  the  extent  that  innovative  keyline  earthworks  can  restore  some  of  the  soil’s  indigenous  moisture  retention  capacity,  additional  pressurized  irrigation  may  be  avoided.    However,  where  irrigation  is  to  be  used,  gravity  fed  systems  running  off  roof-­‐fed  rainwater  collection  systems  are  Clearwater’s  preference  because  of  their  low  net  impact.    Where  gravity  fed  systems  are  not  an  option,  pressurized  drip-­‐tape  systems  will  be  deployed.    Drip  systems  are  more  efficient  in  water  delivery,  though  in  practice  they  have  some  functional  downside  to  overhead  sprinklers  and  as  such  most  market  gardeners  and  vegetable  growers  will  have  a  hybrid  irrigation  system.    Where  rainwater  capture  and  cistern  storage  does  not  meet  the  full  needs  of  the  market  garden,  surface  water  storage  in  on-­‐site  ponds  provide  a  back-­‐up  option.    Pumped  and  pressurized  groundwater  from  on  site  wells  would  also  meet  the  needs  of  the  garden,  though  at  a  higher  environmental  cost.    Similarly,  centrally  treated  City  water  is  available  to  this  site  at  the  road  and  would  be  the  last  resort  for  watering  the  garden.    Grey  water  re-­‐use  and  nutrient  recovery  is  another  key  element  of  the  proposed  research  and  demonstration  on  the  site.    Here  Clearwater  plans  to  work  with  architects  and  site  engineers  to  ensure  that  all  systems  are  built  to  the  required  specifications  and  link  efficiently  with  agricultural  operations.      3.2  Polyculture  Orchards  &  Edible  Forest  Garden    Many  of  the  pre-­‐eminent  works  in  this  field  stem  from  the  early  works  of  such  luminaries  as  J.  Russel  Smith  (Tree  Crops:  A  permanent  Agriculture,  1950),  Masanobu  Fukuoka  (Natural  Farming,  1960’s),  Bill  Mollison  &  David  Holmgren  (Permaculture,  1970’s)  and  Robert  Hart  (Forest  Gardening,  1980’s).    More  recent  works  from  Toby  Hemenway  (Gaia’s  Garden,  2009),  Martin  Crawford  (Creating  a  Forest  Garden,  2010)  and  the  seminal  work  from  David  Jacke  and  Eric  Toensmeier  (Edible  Forest  Gardening,  2005)  comprising  two  volumes  and  over  1000  pages  in  total  have  built  out  the  theory  and  practice  of  forest  gardening  in  astounding  detail.    This  list  would  not  be  complete  without  Michael  Phillips  Holistic  Orchard  (2012),  perhaps  the  pre-­‐eminent  authority  on  holistic  approaches  to  organic  orcharding.    The  theory  and  practice  of  forest  gardens  is  clearly  an  area  of  great  depth  and  offers  a  huge  opportunity  to  blend  sustainable,  diverse  agricultural  production  with  habitat  creation,  soil  building  and  water  management.    The  manner  in  which  guilds  of  synergistic  plants  are  complied,  installed  and  managed  over  time  would  clearly  take  many  hundreds  of  pages  to  describe  and  the  number  of  possibilities  is  almost  infinite  making  this  an  area  ripe  for  experimentation  and  farmer-­‐led  research.    Aside  from  the  many  nuances  of  these  systems,  the  basic  principle  is  one  of  functional  interconnection.    Jacke  and  Toensmeier  state,  “The  purpose  of  functional  and  self-­‐regulating  design  is  to  place  elements  or  components  in  such  a  way  that  each  serves  the  needs,  and  accepts  the  products,  of  other  elements.”    As  many  of  the  seasoned  practitioners  in  this  field  

Page 18: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      18  

would  say,  forest  garden  builds  on  nature’s  own  design  and  is  in  a  sense  a  for  of  bio-­‐mimicry.    In  designing  our  agricultural  landscape  in  a  way  that  mimics  what  nature  already  wants  to,  and  does  well,  we  get  multiple  benefits  from  and  almost  totally  self-­‐regulating  system,  without  the  expensive  cost  and  labour  burden  of  regular  inputs  and  laborious  interventions.        Forest  garden  systems,  as  with  many  of  the  features  in  the  Clearwater  Farm  Plan,  blend  harmoniously  with  other  design  layers,  including  the  bioswale  and  hugelkultur  berms,  silo-­‐pasture,  forested  animal  husbandry  and  keyline  landscape  design.    In  fact  they  could  even  be  thought  of  as  all  part  of  the  same  system  rather  than  separate  component  parts.    However,  research  has  shown  that  the  highest  net  primary  productivity  in  these  systems  occurs  not  once  the  perennial  forest  cover  reaches  its  maximum  canopy,  whereby  much  of  the  landscape  is  in  shade  (though  in  some  cases  this  is  the  desired  condition  such  as  for  shitake  mushroom  cultivation),  but  rather  a  so-­‐called  mid-­‐succession  environment  dominated  by  sun-­‐loving  pioneer  trees  and  woody  crops  such  as  tree  fruit,  nuts  and  berries.    Fukuoka  even  wild-­‐crafted  annual  vegetables  within  his  citrus  dominated  forest  garden  in  south  Japan;  medicinal  herbs  and  tea  plants  are  another  high-­‐value  crop  well  suited  to  fill  in  the  understories  in  these  mid-­‐succession  environments.      3.3  Silvo-­‐pasture  Agroforestry,  Tall-­‐Grass  Grazing  &  Forested  Animal  Husbandry    The  concept  of  silvo-­‐pasture  agroforestry  again  builds  on  the  concept  of  integrated  farm  systems,  herby  integrating  tree-­‐cropping  and  pastured  livestock.    These  systems  have  been  around  for  centuries  if  not  millennia  and  are  used  all  around  the  world.    What  defines  them  is  really  the  notion  that  trees  are  an  integral  component  of  an  ecologically  resilient  landscape  and  can  be  incorporated  into  a  pasturing  system  because  they  offer  not  only  shade,  hydrology,  erosion  control  and  soil  food  web  benefits,  but  depending  on  the  species  type  can  offer  their  own  yields  or  yield  improvements  through  fruits  and  nuts  dropped  to  grazing  animals  below.    The  first  phase  of  the  Clearwater  Farm  Plan  demonstrates  elements  of  these  systems,  though  the  objective  is  clearly  to  apply  the  designs  to  larger  farmscapes  where  even  greater  benefits  can  be  accrued.    Larger  spaces  allow  for  larger  livestock  and  more  layers  to  be  applied  to  the  system,  thus  bringing  in  a  more  robust  cycling  of  nutrients,  faster  growth  in  soil  food  webs  and  more  biological  diversity.    According  to  research  by  researcher/practioners  Abe  Collins,  Christine  Jones,  Ben  Faulk  and  respected  Midwestern  farm  research  Institutes  Rodale  and  Savanah,  multi-­‐species  cover  crops  and  a  diversity  of  above  ground  vegetative  architecture  contributes  to  diversity  below  ground.    Living  soils  then  have  the  inherent  capacity  to  create  a  healthy  soil  structure  (‘clumpy  aggregates’)  that  can  hold  moisture  and  better  cycle  nutrients  without  them  leaching  away.    

Page 19: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

19  

In  such  integrated  permaculture  systems  as  silvo-­‐pasture  agroforestry,  the  intent  is  to  create  both  yields  for  nature  and  yields  for  humans.    In  this  case  nature’s  yields  will  include  increases  in  biological  diversity,  both  in  the  soil  and  the  above  ground  architecture  of  flora  and  fauna.    I  should  also  result  in  improvements  to  soil  structure,  soil  depth  and  soil  organic  matter  as  the  biological  diversity  stimulates  natural  processes  in  the  soil,  using  the  sun’s  energy  to  drive  the  biology  which  drive  the  nutrient  cycling  and  soil  formation  processes.    But  it  is  not  just  plants  that  can  help  build  soil;  animals  can  too.    Of  course,  poor  grazing  practices  can  have  the  opposite  effect  on  nature,  resulting  in  erosion,  topsoil  loss  and  in  extreme  cases  desertification.        Typical  grazing  practices  involving  low-­‐labour  inputs  and  a  sparse  population  of  animals  occupying  the  same  paddock  for  a  long  period  of  time,  though  seemingly  idyllic  in  appearance  do  little  good  for  the  soil  or  long  term  pasture  health.      Conversely,  innovative  graziers  have  recently  begun  realizing  that  mob  or  stock  grazing,  high-­‐density  herds  grazing  tall  grass  on  very  short  rotations  has  much  greater  benefits  to  land  and  yields.      Ben  Faulk  describes  the  following  as  among  the  many  benefits  of  this  innovative  new  approach,  crediting  the  likes  of  Abe  Collins  and  Joel  Salatin  for  popularizing  the  innovation:    

• Grazing  taller  pasture  drives  more  carbon/organic  matter  deeper  into  the  soil  as  these  more  deeply  rooted  plants  are  grazed  and  shed  corresponding  higher  quantity  and  deeper  quality  of  root  mass  without  sacrificing  the  plants  ability  to  recover  quickly.  

• The  rapid  movement  of  more  densely  packed  animals  through  the  landscape  tends  to  result  in  more  effective  delivery  of  nutrient-­‐rich  excrements  into  the  soil,  stimulating  soil  biology  and  plant  growth.  

• Larger  stock  can  often  be  followed  in  the  grazing  patter  with  smaller  stock  (chickens  and  turkeys  following  cows  for  example)  as  an  added  bonus;  these  relationships  are  a  functional  fit  and  offer  a  number  of  beneficial  regenerative  synergies.    

 Such  grazing  systems  are  more  labour  intensive  than  traditional  paddocking,  which  is  less  dynamic,  but  given  the  stated-­‐goal  of  regenerating  soil  so  that  it  can  provide  maximum  ecosystem  services,  including  filtering  and  water  and  retaining  moisture,  the  additional  labour  is  a  small  price  to  pay.    Added  benefits  of  job  creation,  yield  improvement  and  skill  development  for  new  farmers  are  icing  on  the  cake.    Silvo-­‐pastures  are  not  the  only  environment  in  which  Clearwater  Farm  proposes  to  employ  livestock.    A  portion  of  the  property  is  currently  over-­‐grown  forest,  providing  another  perfect  opportunity  to  demonstrate  regenerative  agriculture.    Forested  animal  husbandry  allows  us  to  use  animal  skill,  instinct  and  energy  to  get  work  done  in  the  forest  and  produce  a  nice  yield  at  the  same  time.    Depending  on  where  a  forest  is  at  in  its  evolution,  different  animals  or  different  species  may  be  deployed  to  get  a  job  done.    Goats  are  great  browsers  for  example  and  good  for  thinning,  while  pigs  are  good  at  

Page 20: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      20  

rooting  and  great  at  finding  food  in  the  forest.    Some  brush  will  of  course  have  to  moved  by  human  hands  and  really  thick  stands  will  need  to  be  thinned  with  saws…which  can  of  course  become  lumber  for  building  fences,  shelters  and  other  outbuildings.    Such  activity  can  actually  stimulate  greater  net  primary  productivity  in  an  overgrown  forest,  resulting  in  healthier  stands  with  greater  biodiversity.      3.4  Keylines,  Ponds  &  Contour  Swales:  Water  on  the  Landscape    Storing  water  in  the  soil  is  the  cheapest  and  most  effective  approach  and  the  healthier  soil  is  the  more  water  it  will  store.    While  storing  water  in  tanks,  barrels  and  cisterns,  especially  that  which  is  caught  from  roofs,  makes  perfect  sense  as  well  and  is  often  necessary  to  avoid  tapping  into  municipal  water  systems  for  irrigation  needs,  storing  water  in  the  landscape  remains  one  of  the  primary  goals  of  the  Clearwater  Farm  plan.        In  Gaia’s  Garden,  Hemenway  offers  five  complementary  techniques  to  support  the  goal  of  maximizing  water  storage:    

1. Building  organically  rich  soil  2. Contouring  the  landscape  to  catch  water  and  direct  it  to  where  it  is  needed  3. Including  drought-­‐tolerant  plants  when  possible  4. Planting  densely  to  shade  the  soil  5. Mulching  deeply  

 This  is  a  fair  list  and  would  be  entirely  appropriate  for  the  urban  or  small-­‐holder  scale  property.    However,  contour  swales  on  a  broad  scale  may  not  be  the  most  cost-­‐effective  or  even  the  most  intelligent  way  to  manage  water  on  the  landscape,  because  if  they  are  indeed  on  contour  they  may  not  effectively  be  able  to  move  water  across  a  landscape  to  areas  that  are  perennially  dry,  such  as  ridges.    Furthermore,  on  larger  scales,  directing  swale  overflow  to  retention  ponds  may  offer  an  opportunity  for  much  greater  water  storage  and  offer  the  additional  benefit  of  making  water  accessible  for  surface  irrigation.    The  Clearwater  Farm  design  proposal  highlights  how  such  a  scheme  can  be  integrated  into  a  mixed  farm  landscape.    At  broader  landscape  scales,  such  as  that  proposed  for  the  adjacent  22  acre  parcel  at  Clearwater  Farm  to  become  available  in  5  years  time,  the  proposal  calls  for  a  keyline  system  to  form  the  basis  of  the  landscape  architecture.    According  to  permaculture  pioneer  Bill  Mollison,  P.A.  Yeomans’  Water  for  Every  Farm:  The  Keyline  Plan  (1954)  “is  without  doubt  the  pioneering  modern  text  on  landscape  design  for  water  conservation  and  gravity-­‐fed  flow  irrigation.    As  it  also  involves  patterning,  tree  planting,  soil  treatment,  and  fencing  alignment,  it  is  the  first  book  on  functional  landscape  design  in  modern  times.”    Keyline  is,  however,  an  almost  non-­‐existent  pattern  in  North  American  agricultural  operations,  in  part  because  the  concept  originated  in  Australia  where  they  often  suffer  severe  water  shortages,  but  also  because,  like  permaculture,  it  is  an  

Page 21: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

21  

integrated  system  of  permanent  agriculture  ill-­‐suited  to  the  agro-­‐industrial  complex  that  dominates  the  vast  agrarian  territories.    North  American  agriculture  could  be  described  a  persistently  dis-­‐integrated  and  commodity  driven,  with  annual  grains,  corn  and  legumes  grown  in  highly  mechanized  systems  on  tile  drained  fields,  reliant  on  energy-­‐intensive  external  chemical  inputs  and  produced  to  support  confined,  intensive  livestock  operations.    While  waste  products  from  the  livestock  operations  often  do  end  up  back  on  farmers’  fields,  it  is  usually  in  very  unstable  forms  resulting  in  excess  nutrients  leaching  into  groundwater  and  causing  persistent  pollution.    Annual  tillage  and  tile  draining  adds  insult  to  injury  here  as  topsoil  volume,  soil  biology  and  organic  matter  are  rapidly  drawn  down.    Keyline  systems  begin  with  the  premise  of  holding  water  up  in  the  landscape  and  favour  retention  and  dispersion  of  soil  moisture,  quite  the  antithesis  in  comparison  to  tile  draining.    The  benefit  of  tile  draining,  which  is  very  limited  with  the  sole  purpose  of  drying  out  the  fields  quicker  so  cropping  with  large  equipment  can  begin  earlier  in  the  season,  also  come  with  a  huge  cost,  burying  huge  volumes  of  petroleum-­‐based  plastics  in  the  soil.    Keyline,  on  the  other  hand,  uses  earthworks  such  as  swales,  berms  and  ponds,  as  well  as  the  innovative  Yeoman’s  plough  to  move  water  from  persistently  wet  areas  (valleys)  to  persistently  dry  areas  (ridges),  resulting  in  opportunities  for  gravity-­‐fed  irrigation  and  maximizing  the  volume  of  water-­‐retention  in  the  soil.    When  combined  with  agro-­‐forestry  style  permanent  agricultures  and  an  emphasis  on  supporting  the  soil  food  web  through  innovative  grazing  practices,  use  of  perennial  polycultures  and  application  of  beneficial  biology  laden  compost  (and  compost  teas),  diverse  high-­‐yielding  sustainable  production  coupled  with  a  multitude  of  positive  externalities  for  society  and  the  environment  is  the  ultimate  outcome.    At  Clearwater  Farm,  the  opportunity  to  showcase  and  measure  these  innovative  agro-­‐ecological  design  practices  in  juxtaposition  with  conventional  cropping  on  the  neighbouring  fields  and  surrounding  area  presents  a  tremendous  opportunity  to  move  towards  a  more  resilient,  adaptive  agriculture.      3.5  Bioswales  &  Hugelkultur    These  features,  like  many  in  our  proposal,  perform  multiple  functions  in  the  agro-­‐ecosystem.    Though  their  historical  origins  may  be  open  to  debate,  Hugelkultur  baring  historical  connection  to  Germany  and  Eastern  Europe,  they  are  essentially  the  same  ‘technology’  in  a  slightly  different  form.    Bioswales  are  essentially  swales  or  trenches  that  are  then  backfilled  with  woody  debris  an/or  other  organic  matter,  while  Hugelkultur  are  berms  built  over  heaps  constructed  of  similar  woody  debris,  garden  clippings,  rotting  down  logs  and  the  like.    Rotting  logs,  it  so  happens,  are  broken  down  mainly  by  fungi  and  as  has  been  previously  discussed  we  welcome  the  presence  of  more  fungal  systems  into  the  garden  because  of  the  synergies  that  they  create  with  the  plants  and  soil  biology,  both  in  making  nutrients  bioavailable,  distributing  water  and  soaking  up  of  pollutants  and  excess  nutrients.    Indeed,  bioswales  can  be  customized  using  

Page 22: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      22  

different  organic  inputs  with  properties  that  attract  different  spectrums  of  biology,  so  depending  on  the  location,  types  of  material  available  and  desired  application,  different  organic  media  can  be  applied  within  the  berm/swales  designs  resulting  not  only  in  low-­‐cost  but  highly  effective  multifunctional  features.        The  positioning  of  berms  and  swales  on  the  landscape  is  necessarily  tied  into  the  keyline  and  pond  infrastructure  to  ensure  that  water  is  spread  out  and  held  up  in  the  landscape  as  much  as  possible.    Once  constructed  these  features  are  then  planted  down  with  perennial  polycultures,  agro-­‐forestry  guilds  and  self-­‐seeding  annuals  as  rarely  to  almost  never  would  one  want  to  till  this  to  bare  soil  for  seed  bed  preparation.      They  also  function  well  as  part  of  the  broader  silvopasture  scheme  in  which  animals  can  move  along  side  and  through  these  features  offering  them  a  rich  and  varied  diet.    Clearly  there  are  a  number  of  variables  at  play  in  this  ecological  design  equation,  and  when  applied  in  different  climates  and  different  seasons  results  would  vary.    This  presents  an  exciting  opportunity  for  research  and  development  of  appropriate  accessible  technologies  and  Clearwater  Farm  has  proposed  working  with  their  institutional,  academic  and  other  partners  on  this  research  and  integrating  it  into  the  broader  demonstration,  education  and  innovation  agenda  for  the  farm.      3.6  Post-­‐harvest  wash-­‐water,  Grey-­‐water  re-­‐use  &  Aquaponics    A  logical  extension  in  the  use  of  bio-­‐swales  is  the  filtering  of  grey-­‐water  and  wash  water  from  the  facilities  at  Clearwater  Farm.    There  are  in  fact  a  myriad  of  possible  filtration  combinations,  depending  on  what  “waste  water”  streams  are  intended  to  flow  through  the  system.    At  present,  Clearwater  Farm’s  physical  plant  and  built  infrastructure  is  still  in  the  design  phase  and  thus  a  firm  proposal  is  unavailable.    However,  it  is  exciting  to  consider  the  possibilities,  both  from  the  perspective  of  the  potential  reductions  in  fresh  water  demand  from  the  application  of  bio-­‐filtration,  but  also  in  the  synergies  created  from  the  nutrient  recovery.    Many  such  systems  are  currently  being  designed  and  experimented  with  in  our  region  and  this  project  presents  another  tremendous  opportunity  to  experiment.    In  Mollison’s  seminal  work,  Permaculture:  A  Designers  Manual,  a  number  of  such  multi-­‐phase  systems  are  discussed  in  detail.    Most  involve  a  sand  and  gravel  stage,  at  least  one  aquatic  polyculture  plant  phase,  some  sort  of  suspended  solids  settlement  tank  and  anaerobic  digester,  perhaps  an  aeration  flow  form,  though  not  necessarily  in  this  order.    The  exact  specs  on  any  system  would  of  course  have  to  be  scoped  to  the  specific  site  and  grey  water  flow  requirements,  factoring  in  climate  and  vegetation  variances,  re-­‐use  requirements  and  the  like.    Permaculturalists  strive  to  close  the  loop  of  nutrient  cycles  by  creating  permanent  interconnected,  deeply  rooted  systems  that  are  largely  self-­‐fertile.    Among  the  original  

Page 23: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

23  

agro-­‐ecological  manuscripts  would  have  to  be  F.H.  King’s  seminal  book  from  1911,  Farmers  of  Forty  Centuries:  Permanent  Agriculture  of  China,  Korea  and  Japan.    King,  an  American  agriculturist  and  academic,  took  in  the  systems  of  ‘The  Far  East’  during  a  tour  that  would  change  the  course  of  his  thinking  about  nutrient  recovery  and  in  particular  systems  that  linked  fish  production  on  land  with  nutrient  recovery  from  grey  and  even  black  water  systems.    North  American  sensibilities  have  obviously  never  truly  warmed  to  this  notion  and  fears  over  transmission  of  pathogens  and  harmful  bacteria  continue  to  hold  back  innovation  in  this  field.    Aquaponics  is,  however,  becoming  more  mainstream  and  as  wild  fish  stocks  in  our  oceans  continue  their  tragic  declines  and  suspicion  about  the  negative  externalities  associated  with  ocean-­‐based  aquaculture  persist,  growing  fish  on  land  in  tanks  or  ponds  linked  with  plant  systems  designed  to  remove  or  recirculate  nutrients  and  ultimately  reduce  the  loss  of  excess  nutrients  to  natural  systems,  becomes  an  attractive  alternative.    Literature  in  this  field,  both  from  academics  and  practitioners  is  growing  and  more  entrepreneurs  are  taking  up  the  challenge  of  bridging  theory  and  practice.    Sylvia  Bernstein’s  Aquaponic  Gardening  is  one  such  ‘how  to’  guide,  which  claims  that  “Aquaponic  systems  are  much  more  productive  and  use  90%  less  water  than  conventional  gardens.    Other  advantages  include  no  weeds,  fewer  pests  and  no  watering,  fertilizing,  bending  digging  or  heavy  lifting.”    By  all  accounts  Clearwater’s  proposal  to  include  aquaponics  in  the  design  of  their  winter  greenhouse  fits  perfectly  within  their  goal  of  innovation  and  demonstration  of  water-­‐wise  agriculture.      3.7  Rainwater  Harvest,  Storage  &  and  Use  in  Irrigation    How  water  is  harvested,  stored  and  distributed  at  Cleawater  Farm  will  very  much  depend  on  the  Zone.    In  permaculture  design  terms,  zones  radiated  more  or  less  out  from  the  centre,  which  on  your  typical  homestead  would  be  where  your  primary  dwelling  and  most  often  used  spaces  would  be  located,  such  as  tool  sheds,  cold  storage,  livestock  barn,  granary  or  kitchen  garden.    Moving  out  from  the  centre,  zones  would  feature  less  often-­‐used  infrastructure,  pastures,  woodlots  or  what  not.    Water  storage  is  one  feature,  along  with  circulation,  that  needs  to  be  considered  across  all  zones  because  depending  on  the  climate  and  moisture  holding  capacity  of  the  soil  additional  irrigation  or  watering  of  livestock  could  be  required.    Water  storage,  be  it  in  a  pond  or  cistern,  also  has  multiple  functions,  acting  at  times  as  heat  sink,  erosion  control,  an  aesthetic  feature,  biodiversity  attractor  and  habitat  provider.    Irrespective  of  the  stated  goal  to  store  as  much  moisture  as  possible  in  the  soil  where  the  farm  can  get  the  maximum  benefit  from  the  water  at  the  least  amount  of  cost,  the  Clearwater  Farm  plan  lays  out  additional  measures  for  best-­‐practice  rainwater  harvest,  storage  and  reuse  for  irrigation.    The  existing  plan  also  calls  for  some  surface  water  storage  in  the  form  of  interconnected  keyline  swale-­‐fed  ponds,  from  which  water  could  be  drawn  for  irrigation,  but  for  year  round  use  and  as  a  hedge  against  severe  drought  conditions,  the  installation  of  cistern  tanks  is  proposed.    Currently  the  team  is  speaking  with  suppliers  and  evaluating  a  range  of  materials,  price  points  and  locations  for  

Page 24: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      24  

cisterns,  as  there  is  not  necessarily  a  clear-­‐cut  best  practice  in  this  regard  and  is  context  dependent.    Harvesting  surfaces  meanwhile  will  include  the  existing  barn  and  farmhouse,  as  well  as  most  of  the  additional  buildings  included  in  the  development  plan.    Field  irrigation  will  be  almost  entirely  high-­‐quality  long-­‐life  span  drip  irrigation  technology.    Drip  irrigation  offers  many  benefits  over  over-­‐head  sprinklers,  which  can  lead  to  up  to  80%  loss  to  evaporation.    Drip  irrigation  on  the  other  hand  delivers  water  right  to  the  root  systems  and  minimizes  water  loss  to  evaporation.    Furthermore,  many  plants  (such  as  heat-­‐loving  tomatoes)  prefer  not  to  have  their  aerial  parts  watered,  as  this  can  lead  to  unnecessary  propagation  of  moulds  and  viruses.          3.8  Season  Extension  Systems    The  Clearwater  Farm  plan  includes  a  number  of  innovation  season  extension  components,  which  when  properly  designed  and  managed  can  result  in  increasing  yields  over  longer  periods  of  time  at  a  fraction  of  the  water  and  energy  costs  compared  to  the  imported  food  alternatives.    A  2005  study  from  Region  of  Waterloo  Public  Health  Planner  Marc  Xuereb  look  at  precisely  this  question,  the  environmental  implications  of  food  imports.    He  concluded,  based  on  58  foods  commonly  grown  and  eaten  in  the  region,  if  all  unnecessary  imports  were  substituted  with  locally  grown  alternatives,  the  result  would  be  “an  annual  reduction  in  GHG  emissions  of  49,485  tonnes,  the  equivalent  of  taking  16,  191  cars  of  the  roads”.      While  this  report  can  only  be  used  as  a  general  conclusion  due  the  number  of  variables  within  these  systems,  it  does  suggest  that  our  local  year-­‐round  production  systems  should  be  supported  to  provide  both  food  security  and  a  lower  ecological  footprint  to  the  system  overall.    Greenhouses  have  been  around  since  at  least  Victorian  times,  if  not  longer,  and  some  of  these  elegant  old-­‐style  structures  remain  dotted  across  the  estates  of  Europe.    Problem  with  the  traditional  design  is  the  amount  of  heat  they  lose  at  night  and  as  such  are  not  a  great  option  for  the  cold  winter  climate  in  Canada.    The  next  generation  of  passive  solar  design  is  already  coming  into  practice  in  Canada.    One  key  feature  is  the  southerly  orientation  combined  with  the  replace  of  a  north  facing  glass  wall  with  something  very  well  insulated  that  can  also  act  as  a  heat  sink.    Flexible  dual-­‐ply  transparent  polymers  are  replacing  glass,  thus  reducing  cost  and  increasing  flexibility.    Of  course,  greenhouses  have  to  be  neither  opulent  nor  made  of  expensive  new  materials  to  be  horticulturally  functional.    Elliot  Coleman’s  Four  Season  Harvest  certainly  attests  to  the  inventiveness  of  season  extension  designs,  ranging  from  greenhouses  and  high  tunnels  to  low  tunnels  and  cold  frames  made  from  recycled  materials.    One  of  Coleman’s  big  innovations  was  the  notion  of  the  moving  greenhouse,  not  something  the  Victorians  though  of  as  far  as  I  know.    However,  Coleman  showed  that  by  mounting  the  greenhouse  on  rails  and  making  it  light  enough  but  ridging  enough  to  be  pulled  along  the  ground,  a  farmer  could  essentially  get  two  birds  with  one  stone,  growing  a  heat-­‐

Page 25: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

25  

loving  crop  under  plastic  beside  a  cool  crop,  moving  the  structure  over  the  cool  crop  as  winter  set  in  and  the  heat  loving  crops  were  finished.    This  meant  a  prolonged  season  on  the  cool  crop  that  could  extend  right  through  the  winter  with  little  added  heat.    By  bringing  additional  heat  sinks  into  the  greenhouses  and  hi-­‐tunnel,  in  the  form  of  water  barrels  or  anything  that  could  hold  thermal  mass,  additional  ‘free  heat’  collected  from  the  sun  during  the  day  could  be  released  to  cold  spaces  over  the  course  of  the  night.    The  ongoing  pursuit  of  this  ‘passive  solar’  construction  continues  to  run  its  course  not  only  in  farming  but  also  in  green  building  and  construction  in  general.    The  concept  is  basically  the  same:  create  a  high-­‐performance  building  envelope  that  eliminates  drafts  and  thermal  conduction;  make  it  well  insulated  and  highly  effective  in  collecting  and  storing  solar  radiation.    Leading  edge  greenhouse  design  now  includes  multi-­‐ply  high-­‐tunnels  with  air  or  bubble  barriers  to  reduce  heat  loss  and  heat  recovery  systems,  which  redistribute  air  from  hot  spots  (heat  rises  remember)  back  down  into  the  soil  through  a  series  of  perforated  lines.    Depending  on  the  budget,  geothermal  systems  can  be  installed  for  additional  water  or  ground  source  heat  and  integrated  grey  water  systems  are  also  being  built  into  greenhouse  designs,  offering  heat  and  nutrient  recovery.        Inside  any  greenhouse,  plants  can  benefit  from  a  symbiosis  with  animals  through  the  cold  months.    Chicken  keepers  know  that  greenhouses  are  ideal  environments  in  which  to  overwinter  laying  flocks  and  other  small  livestock  as  well.    Vermi-­‐composts  are  an  excellent  idea  for  the  winter  greenhouse,  offering  multiple  functions  including  decomposition  services  for  organic  wastes,  heat  and  fertility  by-­‐products.    Clearwater  Farm,  in  true  Victorian  fashion,  will  experiment  with  these  designs  and  move  towards  that  which  work  best  under  the  site  conditions.    Linking  the  four  season  greenhouse  with  rain  or  grey  water  systems  offers  the  benefit  of  heat  sink  potential,  and  also  the  possibility  of  linking  into  a  year-­‐round  aquaponics  system,  where  the  production  of  plants  and  fish  could  benefit  from  residual  nutrients.      3.9  Compost,  Compost  Teas,  Vermi-­‐compost,  Biochar  &  Holistic  Preparations    Literature  on  composting  is  quite  extensive  and  as  such  an  extensive  discussion  of  its  beauty  and  merit  in  conjunction  with  other  soil  amendments  will  not  take  place  here.    However,  what  is  critical  in  terms  of  planning  is  to  design  and  operate  compost  systems  that  produce  stable,  balanced  compost,  as  not  all  compost  is  created  equal.    Proper  compost  must  be  prepared  aerobically  (anaerobic  conditions  invite  too  many  detrimental  bacteria),  heaps  must  be  inoculated  with  appropriate  biological  life,  they  must  contain  appropriate  carbon  to  nitrogen  ratios  and  be  managed  in  such  a  way  as  to  achieve  temperature  levels  that  can  kill  off  pathogens,  weed  seeds,  etc.    Ultimately  a  good  metric  of  good  compost  is  the  bacteria-­‐fungi  ratio  and  bio-­‐diversity  of  the  soil  food  web  achieved  in  a  finished  heap.    Finished  compost  should  always  smell  good,  be  comprised  of  healthy  crumbly,  stable  humus  and  not  result  in  nutrient  leaching  when  produced  or  applied.    While  there  are  some  general  guidelines  in  this  regard,  many  of  

Page 26: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      26  

which  can  be  found  in  the  Ontario  Environmental  Farm  Plan  Handbook,  Clearwater  Farm  aims  to  go  beyond  the  basic  guidelines  and  experiment  with  a  range  of  amendments  and  procedures.    Michael  Phillips,  the  highly  acclaimed  orchardist  from  the  U.S.  Northeast  and  author  of  Holistic  Orcharding,  has  built  on  the  concept  of  the  soil  food  web  and  extended  it  up  into  the  architecture  of  the  orchard.    Far  beyond  Integrated  Pest  Management  (IPM),  Phillips  uses  a  range  of  practices  and  orchard  design  strategies  that  drive  up  biodiversity  and  boost  the  natural  immunities  of  plants.    This  comprehensive  approach  to  orchard  health  benefits  from  the  application  of  good  compost,  compost  teas  and  holistic  sprays  (applied  as  foliar  sprays  to  both  aerial  parts  and  soil)  made  from  compost  and  natural  plant  derivatives  like  kelp  meal,  neem  oil,  horsetail  and  nettle.    He  also  uses  plenty  of  mulch  of  various  descriptions,  in  particular  ramial  wood  chips,  which  drive  the  development  of  beneficial  mycorrhizal  fungi.    Vermi-­‐compost  is  another  excellent  way  to  take  waste  biomass  and  convert  it  to  stable  nutrient  rich  humus  at  next  to  no  cost.    The  red  wiggler  is  often  the  worm  of  choice  and  the  beauty  of  such  systems  is  that  they  can  be  scaled  up  or  down  to  meet  the  needs  of  any  operation.    Chickens  are  also  great  for  working  compost  piles  and  like  worms  their  excrement,  though  not  as  stable  as  worm  castings,  do  help  add  good  biology  to  heaps,  while  the  chickens  also  do  a  nice  job  of  physically  breaking  up  matters…while  providing  you  with  eggs!    Biochar,  an  ancient  technology  of  what  is  essentially  charcoal  produced  at  a  high  temperature  in  the  absence  of  oxygen,  is  another  organic  soil  conditioner  that  can  have  multiple  benefits  for  the  soil,  including  helping  to  meet  Clearwater  Farms  primary  agro-­‐ecological  objectives  of  improving  soil  health  through  regenerating  the  soil  food  web  and  creating  soil  structure  that  reduces  nutrient  leaching  and  improves  moisture  holding  capacity.                                    

Page 27: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

27  

 4.0  Education  Programing    Hands-­‐on  education  opportunities  and  innovative  demonstration  and  interpretive  displays  are  built  into  every  aspect  of  the  Clearwater  Farm  program.    As  a  farm,  regional  food-­‐hub  and  educational  centre,  Clearwater  presents  a  unique  opportunity  for  the  public  to  experience  a  ‘living  agroecological  laboratory’,  which  not  only  showcases  best  practices  in  agroecology  and  low-­‐impact  development,  but  allows  visitors  to  actually  get  their  hands  dirty  in  the  process.    Within  the  context  of  agroecology,  a  complex  transdisciplinary  approach  to  sustainable  agriculture,  this  phenomenological  aspect  of  learning  is  critical  as  it  prepares  learners  for  their  involvement  in  a  complex  and  dynamic  future.    In  fact,  the  literature  suggests  that  phenomenon-­‐based  experiential  education  translates  into  deeper  learning  for  both  students  and  teachers  and  creates  the  kinds  of  transformative  cultural  shifts  that  will  be  imperative  for  creating  a  resilient  future.        Seminal  works  in  this  regard  coming  from  the  academic  literature  include  the  following:    

• Francis,  C.  et  al.  (2011).  Innovative  Education  in  Agroecology:  Experiential  Learning  for  a  Sustainable  Agriculture.  

• Ostergaard,  E.  et  al.  (2010).  Students  Learning  Agroecology:  Phenonmenon-­‐Based  Education  for  Responsible  Action.  

• Moncure,  S.  &  C.  Francis  (2011).  Foundations  of  Experiential  Education  as  Applied  to  Agroecology.  

• Lauzon,  A.  (2013).  From  Agricultural  Extension  to  capacity  development:  exploring  the  foundations  of  an  emergent  form  of  practice.  

• Sumner,  J.  (2003).  Protecting  and  promoting  indigenous  knowledge:  environmental  adult  education  and  organic  agriculture.  

 Beyond  the  academy,  this  ethic  of  applied  education  in  taking  root  in  community  colleges,  working  farms  and  environmental  education  centres  around  the  world.    Closer  to  home,  programs  such  as  the  CRAFT,  Collaborative  Regional  Alliance  for  Farmer  Training,  Everdale’s  Future  Farmers  Curriculum,  The  Living  Centre’s  Permaculture  Design  Certificate,  EFAO’s  farmer-­‐led  Research,  Mentorship  and  Advisory  Network  and  the  many  programs  offered  by  the  FarmOn  Alliance  all  highlight  both  the  growth  in  the  field  of  experiential  agroecological  learning  and  the  shift  towards  on-­‐farm  action  research.    Clearwater  is  building  relationships  with  these  regional  partners,  and  developing  its  own  site  specific  education  programing  with  an  emphasis  on  water.    In  addition  to  the  agroecological  focus,  the  Clearwater  site  offers  visitors  a  number  of  other  opportunities  to  experience  and  appreciate  the  relationships  between  food,  land,  water  and  society.    For  example,  the  entire  local  food  value  chain  will  be  flowing  through  the  facility,  from  the  production  and  handling  aspects  of  food  safety,  to  value-­‐added  processing,  branding,  marketing,  sales  and  distribution.    Along  this  line  are  huge  opportunities  for  innovation  and  execution  of  best  practices  in  water  management,  

Page 28: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      28  

nutrient  recovery,  energy  conservation,  nutrition,  health  and  spiritual  wellness.    Through  partnerships  with  local  academic  researchers,  OMAFRA,  OSCIA  and  other  institutional  and  private  partners,  many  of  the  leading  technologies  and  design  elements  will  be  brought  to  bear  at  the  Reed  Farm  site.    Furthermore,  Clearwater’s  partnership  with  the  Georgina  Island  First  Nation  in  particular  provides  a  unique  intersection  of  different  cultural  histories  and  perspectives  on  food,  land,  water  and  society,  which  can  be  culturally  transformative  and  hopefully  regenerative  and  reconciliatory.                                                                          

Page 29: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

29  

 5.0  Evaluation  Program    Disentangling  the  complex  impacts,  outputs  and  outcomes  from  a  multifaceted  project  like  a  community  farm  and  regional  food  hub  takes  serious  brains.    It  also  takes  a  systems  approach  to  ‘see’  the  entire  system  and  build  reliable  methods  to  capture  all  that  is  going  on.    Food  systems  scholars  have  cultivated  many  such  ‘holistic  approaches’  to  evaluation,  among  them  being  Meter’s  Evaluating  Farms  and  Food  Systems  (2006)  and  Miewald’s  Community  Food  System  Assessment  (2009).    A  recent  piece  of  work  from  the  University  of  Guelph,  Evaluating  Community  Food  Hubs:  A  Practical  Guide  (2015),  also  offers  a  very  uncomplicated  perspective  on  this  evaluation  work  as  a  whole.    Many  of  these  guides  do  an  excellent  job  of  accounting  for  the  multiple  perspectives  and  outcomes  from  community  food  hubs,  but  many  are  arguably  weak  in  the  ecological  metrics  that  relate  to  soil  and  water.    Clearwater  Farm’s  evaluation  program,  together  with  its  network  of  partners,  appears  to  be  capable  of  plugging  these  holes.    Setting  aside  for  now  the  importance  of  process  evaluation  in  addressing  how  well  an  organization/operation  is  being  run  and  managed,  and  irrespective  of  the  important  question  how  will  evaluation  be  utilized  and  integrated  into  an  operation,  this  section  addresses  the  proposed  evaluation  structure  for  Clearwater  Farm’s  agroecological  elements.    In  doing  so,  an  attempt  is  made  to  disentangle  some  of  the  socio-­‐economic,  spiritual  and  cultural  goals-­‐objectives-­‐outputs-­‐outcomes  to  focus  more  on  the  agroecological  side.    Borrowing  from  the  aforementioned  Practical  Guide,  we  can  extrapolate  some  of  the  following  low-­‐hanging  fruit  from  the  evaluation  status  quo  as  worthy  considerations  for  inclusion  in  Clearwater  Farm’s  Evaluation  Plan:    Increased  biodiversity  

• Number  of  crops  (and  varieties)  grown  on  site  • Number  of  plant  and  animal  species  identified  on  site  • Number  of  new  species  (plant  and  animal)  identified  on  site    • Number  of  tree  species  planted  (and  number  of  trees)  

 Increasing  use  of  cover  crops  

• Amount  of  land  dedicated  to  cover  crops  (tracking  changes  over  time)  • Knowledge  regarding  effective  cover  crop  use  

 Improved  soil  quality  

• soil  pH  • percentage  of  organic  matter  • micronutrient  presence  • etc!?!  

Page 30: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      30  

 This  set  of  metrics  would  be  a  bare  minimum  because  they  offer  few  advanced  ecological  metrics.    Most  of  the  above  could  be  counted  on  site,  with  some  laboratory  work  required  for  the  soil  nutrient  measures.    The  Clearwater  Farm  evaluation  plan  does  call  for  the  establishment  of  thorough  ecological  baselines,  which  is  an  important  starting  point  for  any  evaluation  project,  including  biological  and  soil  health  inventories.    Notably  absent  from  the  Practical  Guide  are  mention  of  two  critical  pieces  to  the  Clearwater  plan,  namely  microscopic  analysis  of  soil  biology  (aka  soil  food  web)  and  any  measures,  either  remote  imaging  or  localized  soil  probes,  to  relate  ground  water  or  soil  moisture  levels.    It  is  here  that  the  Clearwater  Team  will  be  looking  to  build  out  on  the  status  quo  and  drive  innovation  in  evaluation.    As  the  foundation  of  this  proposal  is  soil,  and  indeed  so  is  the  foundation  of  life,  Clearwater  looks  to  develop  a  robust  evaluation  program  that  address  all  flora  and  fauna  in  the  soil  food  web.    New  research  into  microbial  interactions  in  the  rhyzosphere  from  Elaine  Ingham  at  the  Rodale  Institute  has  really  accelerated  the  advancement  of  and  application  of  knowledge  on  soils.  The  tried  and  tested  Soil  Food  Web  analysis  measures  how  soil-­‐plant  interactions  happen  and  why  soil  life,  from  the  tiniest  bacteria  to  the  most  expansive  fungi,  are  essential  for  all  things  that  grow:    

There  are  many  ways  that  the  soil  food  web  is  an  integral  part  of  landscape  processes.  Soil  organisms  decompose  organic  compounds,  including  manure,  plant  residue,  and  pesticides,  preventing  them  from  entering  water  and  becoming  pollutants.  They  sequester  nitrogen  and  other  nutrients  that  might  otherwise  enter  groundwater,  and  they  fix  nitrogen  from  the  atmosphere,  making  it  available  to  plants.  Many  organisms  enhance  soil  aggregation  and  porosity,  thus  increasing  infiltration  and  reducing  runoff.  Soil  organisms  prey  on  crop  pests  and  are  food  for  aboveground  animals.  (Ingham,  Soil  Food  Web.  USDA/NRCS)  

 We  now  know  beyond  a  doubt,  that  if  land  stewardship  and  agricultural  practice  does  not  attempt  to  encourage  and  foster  this  web,  no  claim  can  be  made  of  ‘best  practice’.  However,  in  this,  the  FAO  International  Year  of  Soil,  the  Clearwater  Farm  proposal  builds  on  the  ideal  of  rich  soil  biodiversity,  flora,  fauna  and  all,  and  suggests  that  sustainable,  productive  agriculture  can  both  be  driven  by  improved  soil  biology  and  measured  as  such  as  well.    To  this  end,  in  addition  to  establishing  a  strong  set  of  traditional  baseline  soil  health  indicators,  Clearwater  proposes  adopting  a  strong  emphasis  on  monitoring  and  measures  the  soil  food  web,  which  we  know  can  now  be  done  with  the  help  of  microscopic  soil  analysis  by  a  trained  operator  measured  against  established  bench  marks  for  any  given  climate,  season,  cropping  systems  and  soil  type.    The  second  area  that  Clearwater  Farm  and  their  partners  are  looking  to  build  out  from  the  status  quo  of  agro-­‐ecological  evaluation  and  practice  relates  to  the  emerging  use  of  drone  technology  to  consistently  and  accurately  measure  aspects  of  plant  health  and  in  

Page 31: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

31  

particular  soil  moisture.    Clearwater  Farm  is  building  a  number  of  partnerships  with  leading  researchers  in  this  field  in  the  hopes  of  creating  a  broad  and  deep  capacity  to  use  drone  mounted  camera  technology.    The  objective  will  be  to  collect  remote  data  and  combine  it  with  ground  source  data  and  ultimately  build  real  time  monitoring  capability,  which  can  be  adapted  to  different  needs  and  scales  of  analysis.      In  the  context  of  the  Clearwater  Farm  site,  which  will  serve  as  a  keystone  in  the  metrics  and  evaluation  research  consortium,  there  exists  a  unique  opportunity  for  comparative  evaluation.    The  idea  is  to  use  this  technology  to  measure  outcomes  from  the  initial  8  acres  site  on  which  regenerative  agro-­‐ecological  systems  will  be  put  in  place  and  to  contrast  that  with  the  adjacent  22  acres  that  will  be  maintained  using  conventional  cash-­‐cropping  techniques  for  the  initial  5  year  period.    It  is  hypothesised  that  the  pictures  that  will  emerge  from  this  comparative  research  will  present  a  stark  contrast  in  the  ability  of  the  two  parcels  respective  abilities  to  hold  water.    Based  on  the  improvements  forecasted  on  the  8-­‐acre  site  in  terms  of  soil  organic  matter,  soil  biology,  topsoil  depth  and  net  primary  productivity.      Use  of  satellite  imagery  and  aerial  photos,  soil  probes,  bore  hole  monitoring  and  CEC  calculations  may  supplement  the  data  derived  from  the  remote  drone-­‐mounted  camera  work  and  subsequent  visualizations,  but  the  theory  is  that  the  drone  technology  will  present  a  much  more  accurate,  reliable  and  economic  means  of  data  collection.    Should  this  evaluation  innovation  prove  successful,  the  ability  to  expand  this  type  of  monitoring  and  evaluation  system,  both  to  additional  properties  and  landowners,  but  also  to  the  regional  and  watershed  scale,  presents  an  exciting  range  of  possibilities.                                            

Page 32: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      32  

 6.0  Conclusions    Clearwater  Farm  is  an  idea  steeped  in  water,  a  primal  element  that  runs  through  all  ecological  systems  that  support  life  on  earth.      Like  the  mycorrhizal  that  will  one  day  run  extensively  through  the  soil,  connecting  living  plants  with  the  nutrient  parent  materials  in  the  rhizosphere,  Clearwater  Farm  has  the  potential  to  be  connecting  tissue  in  the  local  community.    But  from  an  agroecological  standpoint,  the  farm  plan  is  designed  from  the  soil  out,  using  an  innovative  suite  of  inter-­‐connected  design  elements  to  create  a  highly  functional  whole  that  nurtures  soil,  filters  clean  water  and  retains  nutrients  in  a  manner  that  conventional  systems  can  not  match.    Furthermore,  by  removing  many  of  the  negative  externalities  associated  with  high  input  conventional  systems,  those  that  make  extensive  use  of  petro-­‐chemical  fertilizers,  chemical  herbicides  and  mechanical  cultivation  and  result  in  phosphate  run-­‐off,  soil  erosion  and  global  warming  gases,  regenerative  farm  systems  like  the  design  for  Clearwater  present  an  ideal  and  attainable  alternative  future.        However,  challenges  in  regenerative  farming  are  also  a  practical  reality.    Up  front  costs  for  design  and  installation  of  perennial  polyculture  systems  would  typically  be  more  time  and  money  than  an  annual  grain  field  crop  rotation.    However,  because  regenerative  systems  are  designed  for  the  long  term,  such  permanent-­‐agriculture  systems  require  commitment  from  landowners  and/or  community-­‐based  organizations  like  OWC/Clearwater,  to  support,  manage  and  maintain  them  over  time.    Short-­‐term  leasehold  arrangements,  a  common  reality  for  many  conventional  farmers,  make  such  commitments  more  difficult  to  manage  and  therefore  high  land  prices  remain  a  fundamental  stumbling  block  for  many  committed  agroecologists.    Clearwater  Farm  is  again  proposing  to  help  fill  this  gap  by  offering  participatory  learning  opportunities  all  over  the  farm  to  help  beginner  farmers  begin  their  journey  in  regenerative  farming.    The  knowledge  base  required  to  work  with  a  great  diversity  of  plants,  animals  and  other  interconnected  elements  in  a  polyculture  is  likewise  significantly  greater  than  with  a  monoculture.    Because  regenerative  farming  is  based  also  based  on  organic  principals,  working  within  the  ebbs  and  flows  of  natural  systems  takes  on  a  whole  new  meaning  compared  to  conventional  systems  that  try  and  reduce  nature’s  influence  and  control  or  eliminate  system  variables.  Crop  losses  can  happen,  but  in  diverse  systems  they  are  often  less  widespread  and  the  system  as  a  whole  more  resilient  than  conventional  monocultures.    Energy  return  on  energy  invested  may  in  the  short-­‐term  favour  simple  monocultures,  but  in  the  long  run  a  diverse  multifunctional  regenerative  farm  design  will  create  increasing  return  on  investment,  better  energy  return  on  investment  and  stable  long  term  yields.    Clearwater  Farm  has  a  very  progressive,  but  also  very  realistic  agroecological  system  plan.    It  contains  an  overall  emphasis  on  retaining,  filtering  and  monitoring  water  on  the  landscape  by  building  soil  and  other  features  that  will  assist  in  replenishing  nutrients,  

Page 33: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

33  

organic  matter,  flora  and  fauna.    From  this  resilient  agroecological  base  farm  yields  will  flow  sustainably  over  time  while  the  site  simultaneously  acts  amongst  a  network  of  farm  education,  demonstration,  evaluation  and  research  programs.    The  local  community  will  see  immediate  gains  from  the  cultural,  economic  and  environmental  outputs  of  the  property.    Landowners,  large  and  small,  urban  and  rural,  will  have  visited  the  site  and  adopted  new  ideas  in  ecological  agriculture,  low  impact  development  and  water-­‐wise  landscape  design.    Clearwater  Farm  will  become  a  hub  for  a  critical  cultural  transition  and  a  place  to  appreciate  the  multiple  roles  that  water  plays  in  our  lives.                                                                          

Page 34: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      34  

 7.0  Glossary  of  Key  Terms    Agroecology  –  Nomenclature  for  an  approach  to  farming  that  began  with  an  emphasis  on  soil  health,  and  remains  that  to  this  day.    Overtime  the  terminology  has  begun  to  be  inclusive  of  a  wider  range  of  ecosystem  functions,  going  beyond  the  soil  to  include  field  level  interactions  amongst  elements  of  a  polyculture,  farmscape  design  decisions  affecting  water,  agroforestry-­‐animal  husbandry  system  integration,  recycling  of  nutrients  flows  and  attention  to  society  scale  system  outcomes  and  minimization  of  externalities.        Conventional  Farming  –  Farming  systems  are  rarely  if  ever  black  and  while  and  as  such  these  days  there  really  is  no  such  thing  as  a  conventional  farm.    What  there  is  are  a  whole  swath  of  farms  in  the  middle,  whom  are  trying  to  incorporate  best  practices,  but  are  limited  in  their  abilities  to  integrate  agroecological  approaches  due  to  lack  of  time,  money,  energy  or  other  practical  matters.    Keyline  –  System  of  landscape  design  intended  to  maximize  water  storage,  moisture  retention  and  soil  health.    Through  a  series  of  design  features,  beginning  with  a  topographical  survey  to  determine  contours  and  keypoints  a  series  of  deep  narrow  trenches  are  plowed  into  the  landscape  intended  to  move  water  from  wet  valleys  towards  dry  ridges.    This  simple  gravity  fed  water  management  design  can  also  link  a  series  of  overflow  ponds  to  the  keyline  plowed  landscape,  evenly  distributiong  water  to  maximize  primary  productivity  on  the  landscape.    Counter-­‐intuitive  to  the  tile  drained  landscape,  keyline  is  optimized  under  conditons  that  also  emphasize  robust  soil  food  webs  and  deep-­‐rooted  perennial  polycultures  that  more  capably  take  up  excess  water  during  wet  seasons  and  stress-­‐less  during  dry  seasons.        Permaculture  –  Nomenclature  developed  by  Australians  Mollison  and  Holmgren  to  describe  an  agricultural  system  of  permanent  abundance,  hi-­‐interconnectivity  and  multi-­‐functionality.    Often  mimicking  natural  systems,  and  thoughtfully  laid  out  to  maximize  on-­‐farm  efficiency,  sustainability  and  self-­‐renewing  fertility,  such  systems  are  as  varied  as  the  imaginations  of  their  creators  but  should  demonstrate  practical  value  and  realizable  yields  for  both  humans  and  ecosystems.    Regenerative  Farming  –  Discussed  in  theory  by  scholars  for  many  decades,  including  the  works  of  Dahlberg  and  others,  regenerative  farming  is  enjoying  a  bump  in  popularity  among  alternative  agriculture  circles  thanks  to  the  work  of  Wisconsin-­‐based  farmer-­‐educator  Mark  Sheppard.    Based  on  keyline,  permaculture  and  agroforestry  and  other  traditions,  the  basis  is  again  building  soil  health  through  maximizing  water  moisture  and  nutrient  cycling  within  the  landscape  by  integrating  perennial  polycultures,  pastured  livestock  and  annuals  in  appropriate  contexts.    The  means  being  open  to  creativity  while  the  ends  being  determined  successful  if,  across  a  range  of  measures,  previously  degraded  landscapes  can  be  transformed  back  to  healthful,  sustainable  productivity.  

Page 35: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

35  

   Natural  Farming  –  A  collection  of  methodologies,  cum  overarching  philosophy  developed  by  Masanobu  Fukuoka  of  Japan.    A  combination  of  water-­‐rise  inter-­‐sew  annual  grain  production  combined  with  wildly  diverse  mixed  orchards  and  edible  forest  gardens,  Fukuoka’s  wildcrafting  methods  were  also  based  on  some  degree  of  bio  mimicry  as  well  as  more  scientific  approaches  in  agroecology.    Holistic  Orcharding  –  A  consistent  biological  approach  to  organic  orcharding  developed  by  American  Michael  Phillips.    Rather  than  chemical  sprays  and  reactionary  treatments,  an  organic  foliar  spray  program  is  designed  to  build  adaptive  capacity  in  the  orchard  ecosystem  combined  with  permaculture  style  polyculture  guilds  of  symbiotic  plants,  including  prolific  bio-­‐accumulators.    Agroforestry  –  almost  any  attempt  to  bring  woody  plants  back  into  the  agricultural  landscape  could  be  considered  agroforestry.    Variants  would  include  silo-­‐pasture,  alley  cropping,  edible  forest  gardens,  forested  animal  husbandry,  coppice  agroforestry,  wild  crafting  and  other  permaculture  designs.        Multifunctionality  –  Design  outcome  from  agroecological  farm  systems  that  see  multiple  potentials  from  each  design  element  or  decision.    Multifunctional  landscapes  have  total  net  yields  from  all  cumulative  functions  much  higher  than  total  yields  from  monoculture  systems.    Social,  ecological,  economic,  cultural,  recreational,  caloric/nutritional  and  spiritual  planes  are  among  the  critical  dimensions  of  perspective  in  the  design,  implementation  and  evaluation  of  such  systems.    Soil  Food  Web  –  The  basis  of  healthy  soil,  healthy  crops  and  healthy  humans.    Soil  food  web  extends  from  microscopic  bacteria,  expansive  fungi,  and  predator  –prey  relationships  extending  right  up  out  of  the  soil.    The  soil  food  webs  main  role  in  the  soil  is  to  participate  in  symbiotic  relationship  with  the  plants  to  ensure  maximum  efficiency  in  pumping  nutrients  from  parent  material  to  plants  while  building  soil  structure  and  organic  matter  that  help  to  hold  water  and  oxygen  in  the  soil.                

Page 36: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      36  

   

Integrating  multiple  perspectives  on  ecology  and  society  allows  an  agroecologist  to  honour  and  include  soil  science,  field  ecology,  landscape  ecology  and  global  ecologies  

into  a  system  designed  to  maximize  soil  and  water  health  across  the  spectrum.                    

Page 37: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

37  

References    Altieri,  M.,  F.R.  Funes-­‐Monzote  &  P.  Peterson  (2012).  Agroecologically  efficient  agricultural  systems  for  smallholder  farmers:  contributions  to  food  sovereignty.  Agronomy  for  Sustainable  Development,  32(1):  1-­‐13    Altieri,  M.  (2002).  Agroecology:  The  Science  of  natural  resource  management  for  poor  farmers  in  marginal  environments.  Agriculture,  Ecosystems  and  Environment,  v.  93,  p.  1-­‐24.    Anaya,  J.  (2013)  United  Nations  Special  Rapporteur  on  the  rights  of  indigenous  peoples:  Statement  upon  conclusion  of  the  visit  to  Canada.  October  15,  2013.  (Accessed  at  http://unsr.jamesanaya.org/)      Arbritton,  R.  (2012).  Two  Great  Food  Revolutions:  The  Domestication  of  Nature  and  the  Transgression  of  Nature’s  Limits.  In  Koc,  M.,  J.  Sumner  &  A.  Winson,  Critical  Perspectives  in  Food  Studies  (pp.89-­‐103).  Toronto,  Oxford.    Bacon,  C.,  C.  Getz,  S.  Kraus,  M.  Montenegro  &  K.  Holland  (2012).  The  Social  Dimensons  of  Sustainability  and  Change  in  Diversified  Farming  Systems.  Ecology  &  Society  17(4):  41  http://www.ecologyandsociety.org/vol17/iss4/art41/        Barbieri,  C.  &  C.  Valdivia  (2010).  Recreation  and  Agroforestry:  Examining  new  dimensions  of  multifunctionality  in  family  farms.  Journal  of  Rural  Studies,  XXX  1-­‐9.    Barham,  J.  (2011).  Regional  Food  Hubs:  Understanding  the  scope  and  scale  of  food  hub  operations:  Preliminary  findings  from  a  national  survey  of  regional  food  hubs.  USDA.    Barlow,  M  &  T.  Clarke.  (2002).  Blue  Gold:  The  Battle  Against  Corporate  Theft  of  the  World’s  Water.  Toronto:  Stoddart.      Beilin,  R.  &  A.  Hunter  (2011).  Co-­‐constructing  the  Sustainable  City:  How  indicators  help  us  “grow”  more  than  just  food  in  community  gardens.  Local  Environment,  16(6):  523-­‐538.    Bellows,  A.  &  M.  Hamm  (2001).  Local  autonomy  and  sustainable  development:  Testing  import  substitution  in  localizing  food  systems.  Agriculture  and  Human  Values,  18:  271-­‐284.    Berstein,  S.  (2011).  Aquaponic  Gardening:  A  Step-­‐by-­‐Step  Guide  to  Raising  Vegetables  and  Fish  Together.  Gabriola  Island:  New  Society  Publishers.    Bland,  W.  and  M.  Bell  (2007).  A  holon  approach  to  agro-­‐ecology.  International  Journal  of  Agricultural  Sustainability,  v.  5(4),  p.  280-­‐294.    Blay-­‐Palmer,  A.,  K.  Landman,  I.  Knezevic  &  R.  Hayhurst  (2013).  Constructing  resilient,  transformative  communities  through  sustainable  “food  hubs”.  Local  Environment,  v.  18(5).    Blay-­‐Palmer,  A.,  J.  Turner  &  S.  Kornelsen  (2012).  Quantifying  Food  Systems:  Assessing  Sustainability  in  the  Canadian  Context.  In  Koc,  M.,  J.  Sumner  &  A.  Winson,  Critical  Perspectives  in  Food  Studies  (pp.  337-­‐358).  Toronto,  Oxford.    Blay-­‐Palmer,  A.  &  M.  Koҫ  (2010).  Imagining  Sustainable  Food  Systems:  The  Path  to  Regenerative  Food  Systems.  In  Blay-­‐Palmer,  A.  (Ed.).  Imagining  Sustainable  Food  Systems:  Theory  and  Practice  (pp.  224-­‐246).  Burlington,  Ashgate.    

Page 38: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      38  

Blay-­‐Palmer,  A.  (2010).  Imagining  Sustainable  Food  Systems.  In  Blay-­‐Palmer,  A.  (Ed.).  Imagining  Sustainable  Food  Systems:  Theory  and  Practice  (pp.  3-­‐15).  Burlington,  Ashgate.    Blay-­‐Palmer,  A.  (2008).  Food  Fears:  From  Industrial  to  Sustainable  Food  Systems.  Aldershot:  Ashgate.    Born,  B.  &  M.  Purcell  (2006).  Avoiding  the  Local  Trap:  Scale  and  Food  Systems  in  Planning  Research.  Journal  of  Planning  Education  and  Research,  26:195-­‐207    Borron,  S.  (2006).  Building  Resilience  for  an  Unpredictable  Future:  How  organic  agriculture  can  help  farmers  adapt  to  climate  change.  Rome,  UN  Food  &  Agriculture  Organization.    Brodhead,  T.  (2011).  In  a  world  of  unprecedented  change,  what  Canada  needs  most  is  Resilience.  Montreal,  J.W.  McConnell  Family  Foundation.    Carney,  P.,  J.  Hamada,  R.  Rdesinski,  L.  Sprager,  K.  Nichols,  B.  Liu,  J.  Pelayo,  M.  Sanchez  &  J.  Shannon,  (2012).  Impact  of  a  Community  Gardening  Project  on  Vegetable  Intake,  Food  Security  and  Family  Relationships:  A  community-­‐based  participatory  research  study.  Journal  of  Community  Health  37(4),  874-­‐881.    Carson,  R.  (1962).  Silent  Spring.  NY,  NY:  Mariner  Books.    Coleman,  E.  (1989).  The  New  Organic  Grower:  A  Masters  manual  of  Tools  and  Techniques  for  the  Home  and  Market  Garden.  White  River  Junction,  VT:  Chelsea  Green.    Coleman,  E.  (1992).  Four-­‐Season  Harvest:  Organic  Vegetables  from  your  home  garden  all  year  long.  White  River  Junction,  VT:  Chelsea  Green.    Constance,  D.  (2009).  2008  AFHVS  presidential  address.  The  Four  Questions  in  agri-­‐food  studies:  a  view  from  the  bus.  Agriculture  and  Human  Values  26:  3-­‐14.    Conway,  G.  (1985).  Agroecosystem  Analysis.  Agricultural  Adminstration  20,  31-­‐55.    Crawford,  M.  (2010).  Creating  a  Forest  Garden:  Working  with  Nature  to  Grow  Edible  Crops.  Totnes,  UK:  Green  Books.    Dahlberg,  K.  (1994).  A  Transition  from  agriculture  to  Regenerative  Food  Systems.  Futures,  26(2):  170-­‐179.    Davis,  A.,  J.  Hill,  C.  Chase,  A.  Johanns,  &  M.  Liebman  (2012).  Increasing  Cropping  System  Diversity  Balances  Productivity,  Profitability  and  Environmental  Health.  PLoS  ONE  7(10),  e47149.  Doi:10.1371/journal.pone.0047149    De  la  Salle,  J.  &  M.  Holland  (2010).  Agricultural  Urbanism:  Handbook  for  Building  Sustainable  Food  &  Agriculture  Systems  in  21st  Century  Cities.  Winnipeg:  Green  Frigate  Books.    De  Schutter,  O.  (2011).  ‘Agroecology  and  the  Right  to  Food’,  Report  of  the  United  Nations  Special  Rapporteur  on  the  Right  to  Food  presented  at  the  16th  Session  of  the  United  Nations  Human  Rights  Council  [A/HRC/16/49].  Available  at  www.srfood.org/index.php/en/documents-­‐issued.    Desmarais,  A.,  N.  Wiebe,  H.  Wittman,  2011.  Food  Sovereignty  in  Canada:  Creating  Just  and  Sustainable  Food  Systems.  Winnipeg,  Fernwood.    Desmarais,  A.  &  H.  Wittman  (2014).  Farmers,  foodies  and  First  Nations:  getting  to  food  sovereignty  in  Canada.  The  Journal  of  Peasant  Studies.  

Page 39: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

39  

 Doherty,  D.  (2013).  Regrarian  Pedagogy.    Accessed  at  http://www.heenandoherty.com/  on  October  25,  2013.    Dresher,  J.  (2009).  “Enrichment  Forestry  at  Windhorse  Farm”  in  Drengson,  A.  &  D.  Taylor,  Wild  Foresting:  Practicing  Nature’s  Wisdom.  Gabriola  Island,  BC:  New  Society  Publishers.    Environmental  Commissioner  of  Ontario  (ECO).  Investing  in  Soils  for  a  Sustainable  Future:  The  Environmental  Commissioner  Soil-­‐Carbon  Roundtable  Summary  of  Proceedings  and  Final  Report.  March  30,  2012.  Accessed  at  http://www.eco.on.ca/  April  29,  2014)    Esbjorn-­‐Hargens,  S.  &  M.  Zimmerman  (2009).  Integral  Ecology:  Uniting  Multiple  Perspectives  on  the  Natural  World.  Boston:  Integral  Books.    Fairholm,  J.  (2003).  Oh  to  grow:  An  educational  primer  for  New  Famers  (2nd  ed.).  Guelph:  Ignatius  Farm  and  Jesuit  Centre.    Falk,  B.  (2013).  The  Resilient  Farm  and  Homestead:  An  Innovative  Permaculture  and  Whole  Systems  Design  Approach.  White  River  Junction:  Chelsea  Green.    FarmON  Alliance  (2012).  Learning  to  Become  a  Farmer:  Findings  from  a  FarmON  Alliance  Survey  of  New  Farmers  in  Ontario.    FarmOn  Alliance  (2012a).  Supporting  Success:  Coaching,  Mentorship  and  Advising  New  Farmers  in  Ontario:  How  farmers  are  passing  on  the  business  ‘know-­‐how’,  technical  production  knowledge  and  moral  support  to  a  new  generation.    Francis,  C.A.,  N.  Jordan,  P.  Porter,  T.A.  Breland,  G.  Lieblein,  L.  Salomonsson,  N.  Sriskandarajah,  M.  Wiedenhoeft,  R.  DeHaan,  I  Braden  and  V.  Langer  (2011).      Fraser,  E.,  W.  Mabee  &  F.  Figge  (2005).  A  framework  for  assessing  the  vulnerability  of  food  systems  to  future  shocks.  Futures  37(6),  465-­‐479.    Friedmann,  H.  (2007).  Scaling  Up:  Bringing  public  institutions  and  food  service  corporations  into  the  project  for  a  local,  sustainable  food  system  in  Ontario.  Agriculture  and  Human  Values,  24:  389-­‐398.    Fukuoka,  M.  (1978).  The  One-­‐Straw  Revolution.  New  York,  Rodale  Press.    Gliessman,  S.  (2011).  Editiorial:  Agroecology  and  Food  System  Change.  Journal  of  Sustainable  Agriculture,  v.  35,  p.  347-­‐349.    Gliessman,  S.  (1998).  Agroecology:  Ecological  Processes  in  Sustainable  Agriculture.  Chelsea,  MI:  Ann  Arbour  Press.    Glover,  J.D.  et  al.  (2010).  Increased  Food  and  Ecosystem  Security  via  Perennial  Grains.  Science  328,  p.  1.    Hansen,  L.,  E.  Noe  &  K.  Hojring  (2006).  Nature  and  nature  values  in  Organic  Agriculture:  Analysis  of  contested  concepts  and  values  among  different  actors  in  organic  farming.  Journal  of  Agricultural  and  Environmental  Ethics  19,  147-­‐168.    Hemenway,  T.  (2009).  Gaia’s  Garden:  A  Guide  to  Home  Scale  Permaculture  (2nd  Ed.).  White  River  Junction,  VT:  Chelsea  Green.    

Page 40: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      40  

Iles,  A.  &  R.  Marsh  (2012).  Nurturing  Diversified  Farming  Systems  in  Industrialized  Countries:  How  Public  Policy  Can  Contribute.  Ecology  &  Society  17(4):  42  http://www.ecologyandsociety.org/vol17/iss4/art42/        Ingham,  E.  (2015).  Soil  Food  Web.  Natural  Resource  Conservation  Service,  United  States  Department  of  Agriculture.  http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053868    IPCC,  2013:  Summary  for  Policymakers.  In:  Climate  Change  2013:  The  Physical  Science  Basis.  Contribution  of  Working  Group  I  to  the  Fifth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change  [Stocker,  T.F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.  Boschung,  A.  Nauels,  Y.  Xia,  V.  Bex  and  P.M.  Midgley  (eds.)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA.    Jacke,  D.  &  E.  Toensmeier  (2005).  Edible  Forest  Gardens:  Ecological  Vision,  Theory,  Design  &  Practice  for  Temperate  Climate  Permaculture,  v.  1  &  2.  White  River  Junction,  VT:  Chelsea  Green.    Jackson,  W.  &  J.  Piper  (1989).  The  Necessary  Marriage  Between  Ecology  and  Agriculture.  Ecology,  70(6):  1091-­‐1093    Jarosz,  L.  (2000).  Understanding  agri-­‐food  networks  as  social  relations.  Agriculture  and  Human  Values,  17:  279-­‐283.    Jeavons,  J.  (1974).  How  to  Grow  More  Vegetables:  A  Primer  on  the  Life-­‐Giving  Biodynamic/French  Intensive  Method  of  Organic  Horticulture.  Berkeley,  CA:  Ten  Speed  Press.    King,  C.  (2008).  Community  Resilience  and  Contemporary  Agri-­‐Ecological  Systems:  Reconnecting  People  and  Food,  and  People  with  People.  Systems  Research  and  Behaviour  Science  25,  111-­‐124.    King,  F.H.  (1911).  Farmers  of  Forty  Centuries:  China,  Korea,  Japan.      King,  M.  (2009).  Sustainable  Foodscapes:  Obtaining  Food  within  Resilient  Communities.  MES  Thesis  in  Environment  and  Resource  Studies,  University  of  Waterloo.    Kirschenmann,  F.  (2010).  Alternative  agriculture  in  an  energy-­‐  and  resource-­‐depleting  future.  Renewable  Agriculture  and  Food  Systems  25(2):  p.  85-­‐89    Koc,  M.  &  K.  Dahlberg  (1999).  The  restructuring  of  food  systems:  Trends,  research,  and  policy  issues.  Agriculture  and  Human  Values  16:  p.  109–116.    Kremen,  C.  &  A.  Miles  (2012).  Ecosystem  Services  in  Biologically  Diversified  versus  Conventional  Farming  Systems:  Benefits,  Externalities  and  Trade-­‐offs.  Ecology  &  Society  17(4):  40  http://www.ecologyandsociety.org/vol17/iss4/art40/        Kremen,  C.,  A.  Iles  &  C.  Bacon  (2012).  Diversified  Farming  Systems:  An  Agroecological,  Systems-­‐based  Alternative  to  Modern  Industrial  Agriculture.  Ecology  &  Society  17(4):  44  http://www.ecologyandsociety.org/vol17/iss4/art44/        Kuhnlein,  H.  V.  &  N.  J.  Turner  (2009).  Traditional  Plant  Foods  of  Canadian  Indigenous  Peoples:  Nutrition,  Botany  and  Use.  Gordon  &  Beach  Publishers.  Available  online  at  http://www.fao.org/wairdocs/other/ai215e/ai215e00.HTM    Landman,  K.,  A.  Blay-­‐Palmer,  S.  Kornelsen,  J.  Bundock,  M.  Davis,  K.  Temple,  S.  Megens,  E.  Nelson  &  R.  Cram  (2009).  Models  and  Best  Practices  for  Building  Effective  Local  Food  Systems  in  Ontario.      

Page 41: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

41  

Lauzon,  A.C.  (2013).  From  agricultural  extension  to  capacity  development:  exploring  the  foundations  of  an  emergent  form  of  practice.  International  Journal  of  Lifelong  Education,  v.  32(2),  p.  247-­‐266.    Leal,  D.  et  al.  (2007).  Rural  Landowner  Stewardship  Guide  for  the  Ontario  Landscape:  Self-­‐Assessment  for  your  environmental  performance  as  a  property  owner.  University  of  Guelph.    Levkoe,  C.Z.  (2011).  Towards  a  transformative  food  politics.  Local  Environment,  16(7):  687-­‐705      Lovell,  S.  et  al.,  2010.  Integrating  agroecology  and  landscape  multifunctionality  in  Vermont:  An  evolving  framework  to  evaluate  the  design  of  agroecosystems.  Agricultural  Systems,  103:  327-­‐341    Lynch,  D.,  R.  MacRae  &  R.  Martin  (2010).  Carbon  and  Global  Warming  Potential  Footprint  of  Organic  Farming.  Report  to  Market  Development  Working  Group,  OVCRT.    MacRae,  R.  (2011).  A  Joined-­‐Up  Food  Policy  for  Canada.  Journal  of  Hunger  &  Environmental  Nutrition  6,  424-­‐457.    MacRae,  R.,  P.  Beard,  R.  Martin,  R.  Ramirez  &  K.  Landman  (2011).  Developing  a  strategic  plan  to  address  climate  change,  ecosystem  degradation  and  dependency  upon  fossil  fuels:  Making  the  organic  sector  climate-­‐ready  and  resilient.  Unpublished  manuscript.    MacRae,  R.,  B.  Frick  &  R.  Martin  (2007).  Economic  and  social  impacts  of  organic  production  systems.  Canadian  Journal  of  Plant  Science,  87(5):  1037-­‐1044.    MacRae,  R.  (1999).  Not  just  What,  but  How:  Creating  Agricultural  Sustainability  and  Food  Security  by  Changing  Canada’s  Agricultural  Policy  Making  Process.  Agriculture  and  Human  Values  16:  187-­‐201.    Martin,  L.  &  K.  Stiefelmeyer  (2011).  Canadian  Agriculture  and  Food:  A  Growing  Hunger  for  Change.  The  MacDonald-­‐Laurier  Institute,  Available  at:  http://www.macdonaldlaurier.ca/files/pdf/Canadian-­‐Agriculture-­‐and-­‐Food-­‐A-­‐Growing-­‐Hunger-­‐for-­‐Change-­‐October-­‐2011.pdf    Metcalf  Foundation  (2008).  Food  Connects  Us  All:  Sustainable  Local  Food  in  Southern  Ontario.      Meter,  K.  (2006).  Evaluating  Farm  and  Food  Systems  in  the  US.  Minneapolis,  Crossroads  Resource  Center.  Available  at  http://www.crcworks.org.    Miewald,  C.  (2009).  Community  Food  System  Assessment:  A  Companion  Tool  for  the  Guide.  Vancouver,  B.C.,  Provincial  Health  Services  Authority.    Milestad,  R.  &  I.  Darnhofer  (2003).  Building  Farm  Resilience:  The  Prospects  and  Challenges  of  Organic  Farming.  Journal  of  Sustainable  Agriculture  22  (3):  81-­‐97.    Miller,  S.  (2010).  From  Land  to  Plate:  The  dilemmas  and  victories  of  alternative  food  distribution  in  Ontario.  OCTA  &  Sustain  Ontario.  Available  at:  http://sustainontario.com/wp2011/wp-­‐content/uploads/2010/11/FINAL-­‐From-­‐Land-­‐to-­‐Plate-­‐12.pdf    Mollison,  B.  (1988).  Permaculture:  A  Designers  Manual.  Tyalgum,  Tagari.    Moncure,  S.  and  C.  Francis  (2011).  Foundations  of  Experiential  Education  as  Applied  to  Agroecology.  NACTA  Journal,  September  Issue.    Mount,  P.  (2012).  Growing  Local  Food:  Scale  and  Local  Food  Systems  Governance.  Agriculture  and  Human  Values  29(1):  107-­‐121.  

Page 42: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      42  

 Mount,  P.,  Hazen,  S.,  Holmes,  S.,  Fraser,  E.,  Winson,  A.,  Knezevic,  I.,  Nelson,  E.,  Ohberg,  L.,  Andrée,  P.  &  K.  Landman.  (2013).  Barriers  to  the  local  food  movement:  Ontario's  community  food  projects  and  the  capacity  for  convergence.  Local  Environment  v.  18(5).    OPPI  (2011).  Healthy  Communities  and  Planning  for  Food:  Planning  and  Food  Systems  in  Ontario,  A  Call  to  Action.    Østergaard,  E.  G.  Lieblein,  T.A.  Breland  and  C.  Francis.  (2010).  Students  Learning  Agroecology:  Phenomenon-­‐Based  Education  for  Responsible  Action.  Journal  of  Agricultural  Education  and  Extension,  v.  16(1),  p.  23-­‐37.    Otrysko,  B.  (2008).  Permaculture  in  the  North:  An  experiment  in  Agroecology.  The  Canadian  Organic  Grower.    Patel,  R.  (2013).  The  Long  Green  Revolution.  Journal  of  Peasant  Studies,  v.  40(1),  p.  1-­‐63.    Patton,  M.  (2011).  Developmental  Evaluation:  Applying  Complexity  Concepts  to  Enhance  Innovation  and  Use.  New  York,  Guilford.    Pawlick,  T.F.  (2006).    The  End  of  Food:  How  the  Food  Industry  is  Destroying  our  Food  Supply  –  and  what  you  can  do  about  it.    Vancouver:  Greystone  Books.    Peters,  C.,  N.  Bills,  J.  Wilkins  &  G.  Fick  (2008).  Foodshed  analysis  and  its  relevance  to  sustainability.  Renewable  Agriculture  and  Food  Systems,  24(1):  1-­‐7    PFPP,  (2011).  Resetting  the  Table:  A  People’s  Food  Policy  for  Canada.  Food  Secure  Canada.    Pretty,  J.  (2011).  Interdisciplinary  progress  in  approaches  to  address  social-­‐ecological  and  ecocultural  systems.  Environmental  Conservation  38(2),  127-­‐139.    Pretty,  J.  (2008).  Agricultural  Sustainability:  Concepts,  Principles  and  Evidence.  Philosophical  Transactions:  Biological  Sciences,  v.  363(1491),  p.  447-­‐465.    Riches,  G.  (1999).  Advancing  the  human  right  to  food  in  Canada:  Social  policy  and  the  politics  of  hunger,  welfare,  and  food  security.  Agriculture  and  Human  Values,  16:  203-­‐211.    Roberts,  W.,  R.  MacRae  &  L.  Stahlbrand  (1999).  Real  Food  for  a  Change.  Toronto,  Random  House.    Rogers,  E.  M.  (2003).  Diffusion  of  innovations  (5th  edition).  New  York,  NY:  Free  Press.      Rojas,  A.  (2012).  Polycultures  of  the  Mind:  The  End  of  the  Peasant  and  the  Birth  of  Agroecology.  In  Dirlik,  Prazniak  and  Woodside,  Global  Capitalism  and  the  Future  of  Agrarian  Society,  London:  Paradigm.  p.  255-­‐278.    Rojas,  A.  et  al.  (2011).  Toward  Food  System  Sustainability  through  School  Food  System  Change:  Think  &  eat  Green  @  School  and  the  making  of  a  Community-­‐University  Research  Alliance.  Sustainability,  3:  763-­‐788.    Rosset,  P.  &  M.  E.  Martinez-­‐Torres  (2012).  Rural  Social  Movements  and  Agroecology:  Context,  Theory  and  Process.  Ecology  and  Society,  v.  17(3),  p.  17.    

Page 43: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      

43  

Schaefer,  M.  and  N.  Inglefield  (2013).  “On  Becoming  a  Farmer:  How  Internships  help  young  farmers  CRAFT  a  new  future  for  food”.  In  EFAO  Ecological  Farming  in  Ontario,  v.  34(3).    Schiff,  R.  (2008).  The  Role  of  Food  Policy  Councils  in  Developing  Sustainable  Food  Systems.  Journal  of  Hunger  and  Environmental  Nutrition,  3:  2-­‐3,  206-­‐228.    Schmidt,  M.,  J.  Kolodinsky,  T.  DeSisto  &  F.  Conte  (2011).  Increasing  farm  income  and  local  food  access:  A  case  study  of  a  collaborative  aggregation,  marketing  and  distribution  strategy  that  links  farmers  to  markets.  Journal  of  Agriculture,  Food  Systems  and  Community  Development,  1(4):  157-­‐175.    Scott,  J.  &  R.  Coleman  (2008).  Towards  a  healthy  farm  and  food  sector:  Indicators  of  Genuine  Progress.  Halifax,  GPI  Atlantic.    Shepard,  M.  (2013).  Restoration  Agriculture:  Real-­‐World  Permaculture  for  Farmers.  Austin,  Tx:  Acres  USA    Shiva,  V.  (2002).  Water  Wars:  Privatization  Pollution  and  Profit.  Toronto:  Between  the  Lines    Smithers,  J.,  J.  Lamarche  &  A.  Joseph.  (2008).  Unpacking  the  Terms  of  Engagement  with  Local  Food  at  the  Farmers’  Market:  Insight  from  Ontario.  Rural  Studies  24,  337-­‐350.    Steiner,  R.  (1993).  Agriculture.  Kimberton,  Bio-­‐Dynamic  Farming  and  Gardening  Association.    Stiglitz,  J.,  Sen.  A.,  &  J.P.  Fitoussi  (2009).  Report  by  the  Commission  on  the  Measurement  of  Economic  Performance  and  Social  Progress.  France.  Available  at  www.stiglitz-­‐sen-­‐fitoussi.fr/documents/rapport_anglais.pdf.    Sumner,  J.  (2011).  Serving  Social  Justice:  The  role  of  the  commons  in  sustainable  food  systems.  Studies  in  Social  Justice,  5(1):  63-­‐75.    Sumner,  J.  (2008).  Protecting  and  promoting  indigenous  knowledge:  environmental  adult  education  and  organic  agriculture.  Studies  in  the  Education  of  Adults,  v.  40(2)    Sumner,  J.,  H.  Mair  &  E.  Nelson  (2010).  Putting  the  culture  back  in  agriculture:  civic  engagement,  community  and  the  celebration  of  local  food.  International  Journal  of  Agricultural  Sustainability,  8(1&2):  54-­‐61    Sumner,  J.  (2009).  Sustainable  Horticulture  and  Community  Development:  More  than  just  Organic  Production.  Journal  of  Sustainable  Agriculture  33(4),  461-­‐483.    Sundkvist,  A.,  R.  Milestad  &  A.  Jansson  (2005).  On  the  importance  of  tightening  feedback  loops  for  sustainable  development  of  food  systems.  Food  Policy  30:  224-­‐239.    Thibert,  J.  &  M.  Badami  (2011).  Estimating  and  Communicating  Food  System  Impacts:  A  Case  Study  in  Montreal,  Quebec.  Ecological  Economics  70,  1814-­‐1821.    Toensmeier,  E.  (2007).  Perennial  Vegetables.  While  River  Junction,  VT:  Chelsea  Green.    Turner,  N.  J.,  L.J.  Luczaj,  P.  Migliorini,  A.  Pieroni,  A.L.  Dreon,  L.E.  Sacchetti  &  M.  G.  Paoletti  (2011).  Edible  and  Tended  Wild  Plants,  Traditional  Ecological  Knowledge  and  Agro-­‐ecology.  Critical  Reviews  in  Plant  Sciences,  v.  30,  p.  198-­‐225.    UNCTAD  (2013).  Trade  and  Environment  Review  2013.     Wake  up  Before  it  is  Too  Late:  Make  Agriculture  Truly  Sustainable  now  for  Food  Security  in  a  Changing  Climate.  

Page 44: OCT 6.2015 revised Clearwater Farm Review

CLEARWATER  FARM:  AN  AGROECOLOGICAL  SYSTEMS  DESIGN  REVIEW      44  

 UNHRC  (2012).  Report  submitted  by  the  Special  Rapporteur  on  the  right  to  food,  Olivier  De  Schutter.  A/HRC/22/50/.      UNHRC  (2011).  Report  submitted  by  the  Special  Rapporteur  on  the  right  to  food,  Olivier  De  Schutter.  A/HRC/19/59.      Vallianatos,  M.,  R.  Gottlieb  &  M.  Haase  (2004).  Farm-­‐to-­‐School:  Strategies  for  Urban  Health,  Combating  Sprawl  and  Establishing  a  Community  Food  Systems  Approach.  Journal  of  Planning  Education  and  Research,  23,  414-­‐423.    Vandermeer,  J.H.  (2011).  The  Ecology  of  Agroecosystems.  Sudbury,  MA:  Jones  &  Bartlett.    Vasey,  D.  (1992).  An  Ecological  History  of  Agriculture.  Ames:  Iowa  State  University  Press.    Wakefield,  S.  (2007).  Reflective  Action  in  the  Academy:  Exploring  Praxis  in  Critical  Geography  using  a  “Food  Movement”  Case  Study.  Antipode  39(2):  331-­‐354.    Ward,  D.  (2002).  Water  Wars:  Drought,  Flood,  Folly  and  the  Politics  of  Thirst.  NY,  NY:  Riverhead  Books.    Weis,  T.  (2012).  A  Political  Ecology  Approach  to  industrial  Food  Production.  In  Koc,  M.,  J.  Sumner  &  A.  Winson,  Critical  Perspectives  in  Food  Studies  (pp.104-­‐121).  Toronto,  Oxford.    Wezel,  A.,  S.  Bellon,  T.  Dore,  C.  Francis,  D.  Vallod  &  C.  David  (2009).  Agroecology  as  a  science,  a  movement  and  a  practice.  A  review.  Agronomy  for  Sustainable  Development,  v.  29,  p.  503-­‐515    Wezel,  A.  &  V.  Soldat  (2009).  A  quantitative  and  qualitative  historical  analysis  of  the  scientific  discipline  of  agroecology.  International  Journal  of  Agricultural  Sustainability,  v.  7(1),  p.  3-­‐18.    Wilson,  G.  (2010).  Multifuntional  ‘quality’  and  rural  community  resilience.  Transactions  Institute  of  British  Geographers,  35:  364-­‐381.    Winson,  A.  (1993)  The  Intimate  Commodity:  Food  and  the  Development  of  the  agro-­‐Industrial  Complex  in  Canada.  Toronto,  Garamond.    Wittman,  H.,  A.  Desmarais,  and  N.  Wiebe  (Eds.)  (2010).  Sovereignty:  Reconnecting  Food,  Naure  and  Community.  Halifax:  Fernwood.    World  Commission  on  Environment  and  Development  (1987).  Our  Common  Future.  Oxford:  Oxford  University  Press.  Available  at  www.un-­‐documents.net/ocf-­‐ov.htm.    Wormsbecker,  C.  (2007)  Moving  towards  the  local:  Barriers  and  Opportunities  for  Localizing  Food  Systems  in  Canada.  M.Sc.  Thesis  in  Environment  and  Resource  Studies,  University  of  Waterloo.