nuscale technology & economic overview simple, safe, economic

36
Nonproprietary © 2015 NuScale Power, LLC NuScale Technology & Economic Overview Simple, Safe, Economic Jay Surina Chief Financial Officer August, 2015

Upload: vuongnhu

Post on 12-Dec-2016

235 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: NuScale Technology & Economic Overview Simple, Safe, Economic

Nonproprietary

© 2015 NuScale Power, LLC

NuScale Technology & Economic Overview

Simple, Safe, EconomicJay Surina

Chief Financial Officer

August, 2015

Page 2: NuScale Technology & Economic Overview Simple, Safe, Economic

Disclaimer

2

“This material is based upon work supported by the Department of Energy under Award Number DE-NE0000633.”

“This report was prepared as an account of work sponsored by an agency of the United States (U.S.) Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.”

Page 3: NuScale Technology & Economic Overview Simple, Safe, Economic

3

NuScale Power History/Status

NIST-1 One-third scale Test Facility

NuScale technology in development and design since 2000 (DOE) MASLWR program

Electrically-heated 1/3-scale Integral test facility first operational in 2003

Began NRC design certification (DC) pre-application project in April 2008

Twelve-reactor simulated control room operational in May 2012 for Human Factors Engineering development

200 Patents Granted or Pending in 19 countries

>600 people currently on project DOE announced FOA win in 2013 and

Cooperative Agreement signed May 2014 $217M matching funds

Fluor has invested >$270MM life-to-date Plan is to submit DCA to NRC in December

2016 First deployment in Idaho by 2023.

Page 4: NuScale Technology & Economic Overview Simple, Safe, Economic

Plant Design Overview

4

containment

reactorvessel

steamgenerator

fuel

Page 5: NuScale Technology & Economic Overview Simple, Safe, Economic

*Source: NRC

NuScale Power ModuleCombined Containment Vessel and

Integral Reactor System

Typical Pressurized-Water ReactorContainment & Reactor System

Size Comparison

5

Page 6: NuScale Technology & Economic Overview Simple, Safe, Economic

Site Aerial View

annex building

warehouse 

cooling towers A

cooling towers B

reactor building

administration building

radwaste building

switchyard 

turbine building B

ISFSI (dry cask storage) 

turbine building A

parking

control building

protected area fence

6

Page 7: NuScale Technology & Economic Overview Simple, Safe, Economic

Reactor Building Cross‐SectionReactor building houses NuScale power modules, spent fuel pool, and reactor pool

reactor building cranerefueling machine

reactor poolweir reactor vessel flange tool

containment vessel flange tool

NuScale Power Module

biological shield

spent fuel pool

Page 8: NuScale Technology & Economic Overview Simple, Safe, Economic

Reactor Building Overhead View

reactor building cranecontainment vessel flange tool

reactor vessel flange tool

refueling machinespent fuel pool

module import trolley reactor poolNuScale Power 

Module

Page 9: NuScale Technology & Economic Overview Simple, Safe, Economic

Basic Plant Parameters

9

Overall Plant Net electrical output Up to 570 MWe (nominal)

Plant thermal efficiency > 30%

Number of power generation units Up to 12

Nominal plant capacity factor > 95% Total plant protected area Total owner controlled area

~32 acres~70 acres

Power Generation Unit Number of reactors One

Gross electrical output 50 MWe

Steam generator number Two independent tube bundles (50% capacity each)

Steam generator type Vertical helical coil tube (secondary coolant boils inside tube)

Steam cycle Superheated

Turbine throttle conditions 3.3 MPa (475 psia)

Steam flow 67.5 kg/s (536,200 lb/hr)

Feedwater temperature 149 C (300 F)

Reactor Core Thermal power rating 160 MWth (gross)

Operating pressure 12.7 MPa (1850 psia)

Fuel design UO2 (< 4.95% U235 enrichment); 37 half height 17x17 geometry lattice fuel assemblies; negative reactivity coefficients

Refueling interval 24 months (capable of 48 months)

Page 10: NuScale Technology & Economic Overview Simple, Safe, Economic

Simplicity Enhances Safety

Natural Convection for Cooling Passively safe, driven by gravity, natural

circulation of water over the fuel No pumps, no need for emergency generators

Seismically Robust System submerged in a below-ground pool of

water in an earthquake resistant building Reactor pool attenuates ground motion and

dissipates energy Simple and Small

Reactor core is 1/20th the size of large reactor cores

Integrated reactor design, no large-break loss-of-coolant accidents

Defense-in-Depth Multiple additional barriers to protect against the

release of radiation to the environment

Steel containment has >10 times pressure rating than typical PWR

Water volume to thermal power ratio is four times larger than typical PWR

Reactor core has onlyfive percent of the fuelof a large reactor

160 MWt NuScale Power Module

All safety equipment needed to protect the core is shown on this picture

10

Page 11: NuScale Technology & Economic Overview Simple, Safe, Economic

Containment Design

Containment volume sized so that core does not uncover following a LOCA (prevents fuel heat-up)

Large water pool keeps containment shell cool and promotes efficient post-LOCA steam condensation

Insulating vacuum significantly reduces heat transfer during normal operation requires no insulation on reactor vessel improves LOCA steam condensation rates by eliminating air prevents combustible hydrogen mixture in the unlikely event of

a severe accident (i.e., little or no oxygen) reduces corrosion and humidity problems inside containment

High Pressure Containment – Enhanced Safety

Containment

Reactor Vessel

11

Page 12: NuScale Technology & Economic Overview Simple, Safe, Economic

Normal Operation

Primary side natural circulation integral pressurizer No Reactor Coolant

Pumps

Secondary side feedwater plenums two helical steam

generators with large surface area per volume to maximize thermal efficiency

steam plenums

main steam line

pressurizer

helical coil steam generator

main feedwater line

hot leg riser

downcomercore

primary coolant flow path

12

Page 13: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale Power Train

NOT TO SCALE

main steam isolation valves

main feedwater isolation valves

decay heat removal actuation valves

decay heat removal passive condenser

control rod drives

reactor vent valves

steam header

feedwater header

control rodsreactor recirculation

valves

reactor pool

containment vessel

reactor pressure vessel pressurizer

upper plenum

steam generators

hot leg riser

reactor coredowncomer

lower plenum

safety relief valves

13

• Each NuScale power module feeds one turbine generator train eliminating single-shaft risk

• 100% turbine bypass capability• Generator is totally enclosed water to air

cooled (no hydrogen cooling required)• Small, simple components support short,

simple refueling outages

Page 14: NuScale Technology & Economic Overview Simple, Safe, Economic

Decay Heat Removal System

The DHR system is composed of:

– DHR actuation valves– DHR heat exchangers– Main steam and feedwater 

isolation valves– Ultimate heat sink (reactor 

pool)

Two 100% redundant trains

DHR Actuation Valves

DHR Heat Exchanger

FWIVs

MSIVs

Reactor Pool

14

Page 15: NuScale Technology & Economic Overview Simple, Safe, Economic

Emergency Core Cooling System

The ECC system is composed of:– Two reactor vent valves – Two reactor recirculation valves– Containment vessel– Containment isolation valves– Ultimate heat sink (reactor pool)

Only 1 RVV and 1 RRV neededReactor Vent Valve

Reactor Pool

Reactor Recirculation Valve

Containment

15

Page 16: NuScale Technology & Economic Overview Simple, Safe, Economic

Response to Loss of All Power

WATER COOLING BOILING AIR COOLING

Stable Long‐Term Cooling Under all ConditionsReactor and nuclear fuel cooled indefinitely without pumps or power

* Based on conservative calculations assuming all 12 modules in simultaneous upset conditions and reduced pool water inventory

16

Page 17: NuScale Technology & Economic Overview Simple, Safe, Economic

Reducing Plant Risk

Risk = (frequency of failure) X (consequences)

Probability of core damage due to NuScale reactor equipment failures is 1 in 100,000,000 years

Ground level

ReactorVessel

ContainmentPool StructureAnd Liner

Fuel Clad

Reactor Pool

BiologicalShield

Reactor Building

10‐8

10‐7

10‐6

10‐5

10‐4

10‐3

NRC Goal (new reactors)

Operating PWRs

Operating BWRs

New LWRs(active)

New LWRs(passive)

NuScale10‐9

Core Dam

age Freq

uency

17

Page 18: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale Reactor Qualification Test PlanNuScale Reactor Qualification Test Plan outlines Design Certification and First Of A Kind Engineering (FOAKE) projects for reactor safety code development, validation, reactor design and technology maturation to reduce First Of A Kind (FOAK) design risk.

18

Page 19: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale Integral System Test Facility

containment vessel

reactor building pool

reactor pressure vessel

pressurizer

steam drum

SG helical coils

core shroud

riser

core heaters

19

Page 20: NuScale Technology & Economic Overview Simple, Safe, Economic

Full Scale 12 Unit Control Room Simulator

Supports HFE studies, control room staffing exemption, and plant performance studies

NRC HFE audit of NuScale simulator in January 2013

20

Page 21: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale Non-Electrical Applications

NuScale Energy Supply for Oil Recovery and Refining Applications, Authored by NuScale and Fluor, ICAPP-2014, April 6-9, 2014

Integration of NuScale SMR With Desalination Technologies, Authored by NuScale, Fluor, and Aquatech, ASME 2014 SMR Symposium, Washington, DC, April 15-17, 2014

NuScale small modular reactor for Co-generation of electricity and water, Authored by NuScale, Fluor, and Aquatech, Published in Desalination 349,(2014) pp 84-93

Extending Nuclear Energy to Non-Electrical Applications, Authored by NuScale, Fluor, Aquatech and INL, (oil, desalination, H2 production) PBNC-2014, August 24-28, 2014

Can Nuclear Power and Renewables be Friends? Authored by NuScale, ENW, and UAMPS, ICAPP-2015, May 03-06, 2015

21

Page 22: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale Diverse Energy Platform (NuDEP) Initiative

22

• SAFE• SMALL• SCALABLE• FLEXIBLE• RELIABLE

Page 23: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale Diverse Energy Platform - Completed Studies

10‐Module Plant coupled to a 250,000 barrels/d refinery

Oil Refineries Study ‐ Reduction of Carbon Emissions (Fluor and NuScale)

Hydrogen Production Study – High‐Temperature  Steam Electrolysis

(INL and NuScale)

Desalination Study – Sized for the Carlsbad Site  

(Aquatech and NuScale)

1‐Module dedicated to UAMPS 57.6 MW wind farm

Integration with Wind Study ‐Horse Butte Site 

(UAMPS, ENW and NuScale)

23

6‐Module Plant for Emission Free Hydrogen Production

8‐Module Plant can produce 50 Mgal/d (190K m3/d) of clean water plus 350 MWe

Page 24: NuScale Technology & Economic Overview Simple, Safe, Economic

Summary The NuScale Design: Offers proven LWR components in a simple and innovative

operational framework. Provides a truly scalable approach to nuclear plant deployment. Captures the “Economy of Small” Is supported by comprehensive test programs and modeling. Provides long term protection against “Fukushima type events

(i.e., prolonged station blackout) without additional water, power, or operator action

NuScale plant can be used for non-traditional applications of nuclear power.

24

Page 25: NuScale Technology & Economic Overview Simple, Safe, Economic

© NuScale Power, LLC 2014

TM

NuScale Power, LLC Non‐Proprietary

Jay Surina

August 2015

NuScale Plant Market Competitiveness, Economics & Financeability

Page 26: NuScale Technology & Economic Overview Simple, Safe, Economic

SMR Market Potential• UK NNL* calculated the potential SMR market to be approximately 65‐85GW by 

2035, 55‐75 GW excluding Russia

• This is equivalent to 1100 – 1500 NuScale Power Modules (NPMs)• At 25% market share, and 10 year deployment timeframe, 28–38 NPM / year• At 36 NPM / year, approximately 1000 workers dedicated to machining, assembling 

and testing NPMs

*UK National Nuclear Laboratory “SMR Feasibility Study”, December 2014

Page 27: NuScale Technology & Economic Overview Simple, Safe, Economic

SMR Market Potential

Source: BP Statistical View of World Energy 2014

Page 28: NuScale Technology & Economic Overview Simple, Safe, Economic

SMRs & the Clean Power Plan (CPP)

TM28

EPA issued its proposed Clean Power Plan to regulate CO2 emissions from existing power plants under section 111(d) of the Clean Air Act

The CPP issued varying, state-specific targets; rule is not prescriptive about how to meet the targets The CPP is tough on coal plants, the largest and highest rate emitters, and many will have to close CPP 2022-2029 “glide path” matches well with NuScale first deployment in 2023 Base load power will have to come from nuclear power, CCGT or renewables + storage

Renewables + storage is currently too expensive to be used for base load demand Utilities will resist becoming overly dependent on natural gas as a fuel source

32% reduction in GHG from affected EGUs is ~100 GW of coal which could be replaced by a combination of renewables, energy efficiency and nuclear. 100 GW represents 2000 NuScale Power Modules or 175 570 MWe plants UK NNL forecast for US is 15 GW of SMR deployment by 2035

Page 29: NuScale Technology & Economic Overview Simple, Safe, Economic

Construction Cost SummaryOverall EPC Overnight Plant Costs

($1,000,000)

Note: Delivered costs shown are in 2014 $’s.

$ 5,078 per kWe net

Page 30: NuScale Technology & Economic Overview Simple, Safe, Economic

~10,000 man hour effort over 6 months.

Detailed equipment lists to individual valves and instruments.

Takeoffs developed for all piping, duct, wire, excavation, civil/structural materials, and architectural items.

Total equipment and commodity input over 14k line items.

All equipment tagged with building, system, unit, and safety classification.

Updated construction plan with estimate input.

84% of equipment pricing based on budgetary quotes.

Plant Cost Estimate Development

Page 31: NuScale Technology & Economic Overview Simple, Safe, Economic

Plant Cost Estimate Assumptions Generic southeastern USA site. Labor hours based on Fluor standard unit

rates with productivity adjustments. Labor rates based on existing Fluor

project. Indirect costs based on staffing plan,

construction schedule, and temporary facility plan. Bottoms up indirect cost estimate.

Schedule based on 51 months mobilization to mechanical completion. 28.5 month critical path - first safety concrete to mechanical completion.

Class 4 estimate per AACE with an expected accuracy range of +35%/-10%.

Owners cost, estimated at $300 mm, not included in EPC estimate. Estimates for transmission, admin building, licensing, etc. carried in LCOE costs.

Page 32: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale LCOE results of $98‐$108/MWhr (2015 $’s)Key Assumptions:

– Financing is 55% debt (@5.5%) and 45% equity (@10.0%).

– Modeled as a 40 year project life, but the plant is designed for 60 years

– Excludes owner’s costs such as:– HR and management infrastructure, central office– COLA, permits, NRC and ITAAC inspections, and 

legal fees– Switchyard– Owner's project development costs– Owner's engineering services (post‐COLA)– Owner contingency

– Including an estimate of owners costs would add ~ $6/MWhr

NuScale Levelized Cost of Electricity Estimates (LCOE)

Page 33: NuScale Technology & Economic Overview Simple, Safe, Economic

NuScale LCOE in North America

33

90

100 90

96116

147

66 64

91

128

104 96

48

10380

130

243

85

Gas: A

dv’d Com

bine

d Cycle w CCS

Gas: A

dv’d Com

bine

d Cycle

Gas: Con

vent’l Co

mbine

d Cycle

Advanced

 Coal w

 CCS

Advanced

 Coal

Conven

tional Coal

250

200

150

100

50

0

Hydro

Solar T

herm

al

Solar P

V

Wind

Biom

ass

Geo

thermal

Advanced

 Nuclear

Gas: A

dv’d Com

bustion Turbine

Gas: Con

ven’l Com

bustion Turbine

NuScale (12‐pack)

First ofa Kind (FOAK)

Gas power options

Source: U.S. Energy Information Administration, Levelized Cost and LevelizedAvoided Cost of New Generation Resources in the Annual Energy Outlook 2014, April 2014,except NuScale (12‐pack); NuScale LCOE Model

Estimated  Average US Levelized Cost of New Generation Resources2019 costs in 2012 $/MWh

NuScale FOAK (12‐Pack) LCOE of $100/MWh includes owner’s cost of $5.10/MWh. NuScale NOAK (12‐Pack) LCOE of $90/MWh includes Owner’s Cost of $5.10/MWh. For all other technologies, EIA included transmission investment from $1.10/MWh (Advanced Nuclear) to $6.00/MWh (Solar Thermal). NuScale included $1.10/MWh for transmission investment in the FOAK and NOAK LCOE values.

Assumptions for EIA and NuScale (12‐Pack): WACC  of 6.5%; 30 yr cost recovery period.

33

Note: EIA projects 2019 Henry Hub spot natural gas prices of approx.$4.70/mmbtu (2012 Dollars) (Annual Energy Outlook 2014)

Nth ofa Kind (NOAK)

Page 34: NuScale Technology & Economic Overview Simple, Safe, Economic

LCOE Breakdown

FOAK with Regulated Utility Financing (IOU)• 55% debt at 5.5%, 45% equity at 10%

FOAK with Municipal Financing • 100% debt at 3.5%, no equity

$ 108 USD $ 74 USD

Levelized Cost in 2015 US Dollars

Note: Capital costs reflect the Fluor SE estimate completed in 2014.

$52

$18

$24

$14

 $‐

 $20.00

 $40.00

 $60.00

 $80.00

 $100.00

LCOE (USD)

Other

Decommissioning

Fuel and Fuel WasteCosts

Outage Costs

O&M

Taxes (Incl. PropertyTaxes)

Capital

$31

$26

$16

 $‐

 $20.00

 $40.00

 $60.00

 $80.00

 $100.00

LCOE (USD)

Page 35: NuScale Technology & Economic Overview Simple, Safe, Economic

4732

4663

2822 17 16

248 16 11 9 4 8

24

20

25

40

1513 21

13

21

20 97 6 10 18

11

0

10

20

30

40

50

60

70

80

90

100

110

SO EXC D DUK PCG EIX FE ETR PPL NRG DTE AEE SCG DYN CPN

$ in Billions

Remaining Enterprise ValueMarket Cap

Reduced Financial Risks

Source:  Capital IQ; data for 1/23/2015; Platts; AlixPartners and NuScale AnalysisNote: SO Southern;  EXC Exelon; D Dominion; DUK Duke;  PCG PG&E Corp.; EIX Edison Int’l; FE FirstEnergy; ETR Entergy; PPL PPL Corp.; NRG NRG Energy; DTE DTE Energy; AEE Ameren; SCG 

Scana Corp; DYN Dynegy; CPN Calpine; nuclear capacity data based on plants shown as on operating status in Platts ; “Year spent” estimate for traditional nuclear plant based on JP Morgan and other sources

1 Edison, through Southern California Edison owns the San Onofre, CA nuclear plant.  All units have been permanently retired2 As part of a joint venture with Austin Energy and CPS, NRG operators 4 nuclear units at the South Texas plant generating 2.8 GW of capacity

Enterprise and Market Values of Major US Utilities

10 55 22 17 31 01 22 30 11 02 10 08 16 0% of  operating capacity from 

Nuclear

New nuclear units planned or under 

construction

2 0 1 4 0 0 0 0 1 0 1 00 2 0

“Year spent” cost of 2,200  MW traditional nuclear new build: $11‐17.6 Bn

Page 36: NuScale Technology & Economic Overview Simple, Safe, Economic

The Element of Nu

Jay SurinaChief Financial [email protected]

www.nuscalepower.com