numerical weather and climate forecasting in indonesia: a

26
Numerical Weather and Climate Forecasting in Indonesia: A Capacity Building Experience Presented by: Tri Wahyu Hadi Weather and Climate Predic0on Laboratory Bandung Ins0tute of Technology

Upload: lamtuyen

Post on 13-Jan-2017

232 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Numerical Weather and Climate Forecasting in Indonesia: A

Numerical Weather and Climate Forecasting in Indonesia: A Capacity Building Experience

Presented by:

Tri Wahyu Hadi

Weather  and  Climate  Predic0on  Laboratory    Bandung  Ins0tute  of  Technology    

Page 2: Numerical Weather and Climate Forecasting in Indonesia: A

The Beginning of Modern Meteorology (The “Mind “ Era) Vilhelm Bjerkness : “the central problem of Meteorology is the prediction of future weather” 1904: Weather forecasting

as a problem in physics

Exact solution to the system of equations is impossible

Lewis Fry Richardson: 1922: Weather prediction

by numerical process

Two weeks calculation by hand produced erroneous forecast

Early Numerical Weather Prediction (NWP): 1950: John von Neuman’s first

successful run of “simple” barotropic model for retrospective 24-forecast using ENIAC

1954: C.G. Rossby team’s first

numerical weather prediction in real-time in Sweden

Imaginary  “human”  computer  

Electronic  Numerical  Integrator  and  Computer  (ENIAC)  à  speed:  5000  opera0ons  per  second   It  works!  

Page 3: Numerical Weather and Climate Forecasting in Indonesia: A

Global Numerical Weather Prediction Model: Basic Idea of The Spectral Transform Method Signal  on  sphere  at  par0cular  0me  t  

The  simple  Barotropic  Vor0city  Equa0on  (BVE)  

Predict  the  future  value  of  each  spectral  coefficient    

Page 4: Numerical Weather and Climate Forecasting in Indonesia: A

Weather Forecasting Today (Mind and More Machines ) •   Clusters  installed  in  Maryland  and  West  Virginia  • Each  have  156  Power  575  nodes  linked  by  double  data  rate  (DDR)  InfiniBand  networks.    

• (IBM)  Power6  processors  run  at  4.7GHz  and  deliver  a  total  of  4,992  cores,  18.7TB  of  main  memory,  170TB  of  disk  capacity,  and  13PM  of  tape  archiving  capacity.  

(h^p://www.theregister.co.uk/2012/03/08/ibm_noaa_ncep_weather_super/  

European  Center  for  Middle  Range  Weather  Forecasts  

NOAA  -­‐  USA  

JMA  -­‐  JAPAN  

ECMWF  –  European  ConsorGum  

Page 5: Numerical Weather and Climate Forecasting in Indonesia: A

The Ultimate Goal: Seamless Suite of Weather and Climate Prediction

Tran

spor

tatio

n

Fore

cast

Lea

d Ti

me

Warnings & Alert Coordination

Watches

Forecasts

Threats Assessments

Guidance

Outlook P

rote

ctio

n of

Li

fe &

Pro

perty

Spa

ce

Ope

ratio

n

Rec

reat

ion

Eco

syst

em

Sta

te/L

ocal

P

lann

ing

Env

ironm

ent

Floo

d M

itiga

tion

& N

avig

atio

n

Agr

icul

ture

Res

ervo

ir C

ontro

l

Ene

rgy

Com

mer

ce

Societal Benefits

Hyd

ropo

wer

Fire

Wea

ther

Hea

lth

Forecast Uncertainty

Minutes

Hours

Days

1 Week

2 Week

Months

Seasons Years

Current  range  of  skillful  forecasts  

Range  of  forecasts  with  developing  skill  

Adapted  from  Lord  et  al.  (Symposium  on  50th  Anniversary  of  OperaGonal  Numerical  Weather  PredicGon,    University  of  Maryland  College  Park,  July  15,  2004)  

Page 6: Numerical Weather and Climate Forecasting in Indonesia: A

What we have been doing… Near real –time downscaling experiments

Mesoscale  Weather  Model  

(MM5/WRF)  

Output  of  global  model  

1°  ≈  111  km  

Output  

27  km  

9  km  

Data  freely  available  on  the  internet,  NCEP  GFS  global  model  output  :  •   Horizontal  resoluGon    :  0.5°  &  1°  available  •   VerGcal  resoluGon    :  24  sigma  levels    •   Time  resoluGon  :  3  hr  •   PredicGon  range  :  up  to  384  hour  (var.  res.)  •   Number  of  output  parameters    :  128    •   GRIB  ver.  2  data  format  

Targeeed  regional  model  characterisGcs  •   Coarse  grid  res.    :  27  km  x  27km  •   Finer  grid  res.  :  9  km  x  9  km  •   VerGcal  resoluGon  :  32  sigma  levels    •   Time  resoluGon  :  3  hr  •   Two-­‐way  nesGng  between  coarse  and          finer  domain  

No  local  data  assimilaGon    

Mainly  developed  to  support  educaGon  and  research  in  Meteorology  at  ITB  

IC  &  BC  

Page 7: Numerical Weather and Climate Forecasting in Indonesia: A

Number  of    node  (total  cores)  2  (1)   8  (8)     24  (6)   48  (2)  +  GPU  

Widyatmoko  (2006);  Junnaedhi  (2006);  

2011  3rd  Gen.  

2006  1st  Gen.  

2004  Gen.  0  

2009  2nd  Gen.  

Trilaksono  (2004);  Wahyudi  (2004)  

Near  real-­‐Gme  predicGon  

In-house Development of Computational Resources

•   NWP  was  first  introduced  into  curriculum  of  undergraduate  program  in  Meteorology  in  2003    •   Minimum  sustainable  facility  •   Thanks  to  open  source  codes  of  NWP  models        (MM5,  WRF,  etc.)    

Page 8: Numerical Weather and Climate Forecasting in Indonesia: A

Basic System Design

NOAA  

Dept.  Inf.  Science  Kochi  University  

Space  Science  and    Engineering  Center  (SSEC)  University  of    Wisconsin  

Block  A  :  Internet  Resources  

Dept.  Atm.  Sci.    University  of  Wyoming  

GFS    Data  

Sonde    Data  

MTSAT    IR  mages  

MTSAT/GOES  latest  images  

Block  B  :    DataServer  

Regional  model  Preprocessing  (if  data  is  adequate)  

Daily  rainfall    esGmaGon  

Model  run  up  to  48-­‐hour  lead  Gme  predicGon  

Topgraphy  and  land-­‐use  data  (fixed)  

Post  processing  of  regional  model  output  

-Monitoring  -­‐PredicGon    -­‐NowcasGng  -­‐Forcast  VerificaGon,  etc  

Block  D  :  Web  Server  

Postprocess  

Block  C  :  PC  Cluster  

? ?

Page 9: Numerical Weather and Climate Forecasting in Indonesia: A

Automated Run of the Forecast Cycle

NCEP-GFS Forecast Run at 1200 UTC

Download Time

2100 UTC

1200 UTC

Meso Forcast Run

1200 UTC

0000 UTC

Meso Regional Prediction effective forecast lead time

Data downloaded at 3 hr fcst interval

Cluster  assembled  inhouse  (typhoon  &  tornado):    •   2  nodes,  each  with        2  processor  AMD  12  core  •   48  GB  total  memory  •   5  TB  total  data  storage    

Mesoscale  models  are  :  MM5,  and  WRF-­‐ARW  

1700 UTC

Note:    improved  network  infrastructure  of  ITB  has  made  it  possible  to  reduce    latency  with  beeer  spaGal  and  temporal  resoluGon  of  global  output  data  ,  and  overall  process  to  finish  earlier;  Since  2008  more  collaboraGons  have  been  made  with  more  individuals.  

Page 10: Numerical Weather and Climate Forecasting in Indonesia: A

Example of logged data transfer Downloading  :  f.0000_tl.press_gr.1p0deg    at  Wed  Oct  13  01:15:01  WIT  2010                                                      -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  -­‐-­‐01:15:01-­‐-­‐    ip://tgip.nws.noaa.gov/SL.us008001/ST.opnl/MT.gfs_CY.12/RD.20101012/PT.grid_DF.gr2/f.0000_tl.press_gr.1p0deg                        =>  `/ops/noaa/avn-­‐tgip/20101012/f.0000_tl.press_gr.1p0deg'  Resolving  cache.itb.ac.id...  167.205.22.103  Connec0ng  to  cache.itb.ac.id|167.205.22.103|:8080...  connected.  Proxy  request  sent,  awai0ng  response...  200  OK  Length:  15,707,776  (15M)  [text/plain]            0K  ........  ........  ........  ........  ........  ........  20%    114.64  KB/s    3072K  ........  ........  ........  ........  ........  ........  40%    133.81  KB/s    6144K  ........  ........  ........  ........  ........  ........  60%    133.64  KB/s    9216K  ........  ........  ........  ........  ........  ........  80%    133.61  KB/s  12288K  ........  ........  ........  ........  ........  .......  100%    133.54  KB/s    01:17:14  (129.35  KB/s)  -­‐  `/ops/noaa/avn-­‐tgip/20101012/f.0000_tl.press_gr.1p0deg'  saved  [15707776/15707776]  

•   Download  of  NOAA  -­‐  GFS  model  output  through  ITB  Proxy      •   In  2010  we  used  minimum  data  for  ini0al  and  boundary  condi0on  :  :  

 Latency  à  Six-­‐hourly  data  à  9  files  x    (~2.5  min)    ~  25  min      Size  à  9  x  15  MB  =  135  MB  /  day      

Page 11: Numerical Weather and Climate Forecasting in Indonesia: A

Main Outputs Disseminated Online

Available  variables:    q Integrated  cloud  q Rainfall  with  10m  wind  

q Temperature  q Equivalent  poten0al  temperature  

2  days  forecast   3  hours  interval  

•   Updated  daily  at  hep://weather.meteo.itb.ac.id/  •   More  features  from  student  research    including  SMS  and  mobile  applicaGon  •   No  English  pages  yet  (sorry)    

Page 12: Numerical Weather and Climate Forecasting in Indonesia: A

Examples of Core Research: Improving Short Range Prediction with Radar Data Assimilation

Luthfi  Imanal  Satrya,  Undergraduate  final  project  2012  Indra  Gustari  (on  leave  from  BMKG),  Doctoral  Research  2011-­‐2014  

Experiments  using  WRF  Model  for  24-­‐hour  lead  0me  predic0on  of    rainfall  over  Jakarta  Area    

Model  Domain    

Several  weather  radars  have  been  installed  and  operated  by  BMKG,  LAPAN,  and  BPPT  but  data  have  not  been  used  in  NWP  à  long  way  for  opera0onal  implementa0on  

Page 13: Numerical Weather and Climate Forecasting in Indonesia: A

Introducing End-to-end Modeling Concept: Research on impact modeling of weather events APPLICATION     IMPACT  MODELING  

Early  Warning  System:  

-­‐  Flood     Mesoscale  weather  forecast  –  Flood  modeling  à  e.g.,  WRF-­‐ANUGA      

-­‐   Transporta0on  safety  –  Volcanic  ash        dispersion  

Volcanic  ash  dispersion  modeling  à  e.g.,  GFS-­‐PUFF,  WRF-­‐PUFF    

-­‐   Transporta0on  safety  –  opera0on  of          long-­‐span  bridge    

Coupled  mesoscale  weather  forecast  –  Computa0onal  Fluid  Dynamics    àe.g.,  WRF-­‐Open  FOAM    

•   AND…OTHER  APPLICATIONS  MAY  REQUIRE  OTHER  IMPACT  MODELING  APPROACH  •   MANY  IMPACT  MODELS  ARE  COMMERCIAL  SOFTWARES  BUT  WE  PREFER  OPEN  SOURCE  

Page 14: Numerical Weather and Climate Forecasting in Indonesia: A

Research on Weather-Impact Modeling: Coupled WRF-AnuGA Flood Model

Manggarai       Area  of  experiment    

Katulampa  

Summary   SpecificaGon  

Nodes   4  nodes  

Cores   16  cores  (4  cores/node)  

Processors    (per  nodes)  

AMD  FX  (tm)  –  8350,  4  Ghz  

Memory    (per  nodes)  

8  GB  DDR  3,  800  Mhz  

Dedicated  Server  

ANUGA  is  Free  and  Open  Source  (FOSS)  soiware  developed  by  Australian  Na0onal  University  and  Geoscience  Australian  (  h^p://anuga.anu.edu.au/)  à  Collabora0ve  research  involving  MAIPARK,              IRISIKO,  ANU,  and  (joining  soon)  LIPI  

Page 15: Numerical Weather and Climate Forecasting in Indonesia: A

Research on Impact Modeling: Example of Riverine Flood Simulation

Domain  

Triangular  mesh  More  than  330  thousands  of  total  element  Fine  element  (area  <  10m2)  near    the  Ciliwung  River  

Simulated  case  of  January  2013  Finite  vloume  formula0on  

Page 16: Numerical Weather and Climate Forecasting in Indonesia: A

Research on Impact Modeling: Volcanic Ash Dispersion

*)  Muhammad  Rais  Abdillah,  Undergraduate  final  project  2012  

Simpe  trajectory  model  (iniGal  Gaussian  size  distribuGon)    with  PUFF  model:  

Effect  of  parGcle  size  à  parGcle  “life  Gme”  in  the  atmosphere    

CASE  I:  5  November  2010  

CASE  II:  10  November  2010  

Page 17: Numerical Weather and Climate Forecasting in Indonesia: A

Research on Impact Modeling: Volcanic Ash Dispersion

α1 α2

α1  =  25.30°  α2  =  36.26°    AR1  =  2.46  AR2  =  1.33  

α1 α2

α1  =  22.07°  α2  =  41.84°    AR1  =  1.19  AR2  =  0.76  

PREDICTED  HORIZONTAL  DISTRIBUTION    OF  PARTICLES    

CASE  I   CASE  II  

Black  arrows  indicate  direc0on  of  horizontal  ash  dispersion  es0mated  from  MTSAT  imageries  (Asri  Susilawa0,  2012)  à  discrepancies  between  model  and  satellite  products  are  large  for  CASE  I  à  similar  results  using  GFS  and  WRF  wind  forecasts    

AR  =  5.43  α  =  1.01°  

AR  =  3.05  α  =  0.09°  

α

α

Page 18: Numerical Weather and Climate Forecasting in Indonesia: A

Research on Impact Modeling: Prediction of Wind Gust over Long Span Bridge (Coupled WRF – CFD )

*)  Bimo  Adi  Kusumo,  Undergraduate  final  project  2012  

Suramadu  Bridge    

•   Bridge  is  some0mes  closed  when  cross-­‐wind  speed  exceeds  certain  threshold        (40-­‐60  km/hour)  •   How  to  predict  wind  gust  over  the  deck  of  the  bridge?    •   Must  combine  weather  forecast  with  CFD  modeling    

Page 19: Numerical Weather and Climate Forecasting in Indonesia: A

0  

0.2  

0.4  

0.6  

0.8  

1  

18   19   20   21   22   23   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17  

Varia

nsi  

Waktu  

a.)  

0  0.5  1  

1.5  2  

2.5  3  

3.5  4  

4.5  

18   19   20   21   22   23   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17  

Varia

nsi  

Waktu  

Time  (hours;    UTC)    

10-­‐minute  moving  variance    

Case  I  

Case  II  

A B C D

Timur Barat

Timur

Barat

CASE  I      :  22  September  2010  (bridge  close  around  0500  UTC)  CASE  II    :    2  October  2010  (bridge  closed  around  0900-­‐1100  UTC)  

 Calculated  increase  of  maximum  wind  speed  ra0o  from  2-­‐hour  mean  values  are  around  60  %  (Case  I)  and  43%  (Case  II)  à  may  be  used  for  early  warning  if  local  wind  observa0ons  are  available  

Research on Impact Modeling: Wind Gust

Page 20: Numerical Weather and Climate Forecasting in Indonesia: A

Climate Prediction : Statistical Downscaling

For  predic0on  of    longer  0me  range,  and  climate  projec0on    we  currently  use  sta0s0cal  downscaling  of  ensemble  model  output  

ensemble members

ensemble mean

There  are  six  million  ways  !  

Page 21: Numerical Weather and Climate Forecasting in Indonesia: A

Climate Prediction : Analogue Method

database   target  

1982  

1982  

2000  

2000   2005  

2005  

 predictor  

predictand  

best  pa^ern  similarity  S(u)  F(t)  F(u)  

CH(u)   CH(t)  analogue  

-­‐  reduce  dimensionality  :  EOF  

-­‐  pa^ern  similarity:  cosine  similarity  

-­‐  CH(t)  ≈  CH(u)  where  S(u)  =    

-­‐  Constructed  analog    (untuk  mul0  window):    

Predictor  window  

Page 22: Numerical Weather and Climate Forecasting in Indonesia: A

Preliminary  results  of  hindcast  experiments  for  predicGng  10-­‐day  accumulated  staGon  rainfall  in  Indramayu,  West  Java  

Ongoing  doctoral  research  by    Elza  Surmaini  (2013)-­‐-­‐>  Applica0ons  for  early  warning  of  paddy  drought  

Climate Prediction : Seasonal Rainfall Prediction

Page 23: Numerical Weather and Climate Forecasting in Indonesia: A

What we lack of: Science Policy

Workshop  at  NCAR  in  November  2013  sponsored    by  :  

Giant  enterprises  with  ten’s  of  billions  of  dollars  of    annual  budget!        

Page 24: Numerical Weather and Climate Forecasting in Indonesia: A

What we lack of: Incomplete pillars of S & T

Weak    Meteorological  

Society  

Research    Ac0vi0es  

Users  Community  

Educa0on  

Very  limited  number  of  higher  educaGon  with  

program  in  Meteorology  

24  

Page 25: Numerical Weather and Climate Forecasting in Indonesia: A

Plenty Rooms for Collaborations & Sharing

Weather  Portals  

ObservaGonal  data!  

AWS  

SODAR  

Page 26: Numerical Weather and Climate Forecasting in Indonesia: A

Thank You