nucleosynthesis in supernovae and the big-bang · 2007. 6. 8. · bbn (big-bang nucleosynthesis)...

42
IV International Summer School 2005 Center for Nuclear Study, University of Tokyo August 18 – 23, 2005 Nucleosynthesis in Supernovae and the Big-Bang IITaka Kajino National Astronomical Observatory Department of Astronomy, University of Tokyo

Upload: others

Post on 19-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

IV International Summer School 2005Center for Nuclear Study, University of Tokyo

August 18 – 23, 2005

Nucleosynthesis in Supernovae

and the Big-Bang (II)

Taka KajinoNational Astronomical Observatory

Department of Astronomy, University of Tokyo

Page 2: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Solar System Abundance

+++ 232Th (14.05Gy)

238U (4.47 Gy)

Actinide

P

STARS

COSMIC-RAYS

R-PROCESS ELEMENTS UNKNOWN SITES ?

AGB STARS R

RR

S(N=82)

S(N=50)

S(N=126)

R-process elements,SUPERNOVAE ?

Supernova-γ Process ?

BIG-BANG Constrains ΩB and Cosmological Thoeries of ΩCDM & ΩΛ !

Page 3: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

OUTLINE

Universe is likely flat and accelerating!ΩB + ΩCDM + ΩΛ = 1

Six (eleven)Parameters !

Is BARYON, ΩB = 0.04, consistent with Big-Bang Cosmology andNucleosynthesis (as a CANDLE of dark side of the Universe) ?

What is the nature of CDM, ΩCDM = 0.26 ?Disappearing CDM Model in Brane World Cosmology !Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) 083518

What is DARK ENERGY, ΩΛ = 0.7 ?Growing CDM Model in Brane World Cosmology !Umezu, Ichiki, Kajino, Mathews Nakamura & Yahiro,(2005) (astro-ph/0507227)

COSMIC AGE (13.7 +- 0.2 Gy), strongly model-dependent ? Supernova R-Process & Origin of 232Th, 235,238U ! ---

Sasaqui, Kajino & Balantekin, ApJ (2005), in press. (astro-ph/0506100)

BBN constrains Brane Cosmology !

Model independent !

Page 4: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

The Universe is homogeneous and isotropicin a large enough scale.

T = 2.728 K

δT < 18 µK

2dF Quasar (Matter) Distribution:Homogeneous

Cobe Sky Maps of CMB;Isotropic

Page 5: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Newtonian Equation

Birkoff’s Theorem:Gravity due to mass interior to an arbitrary sphere.

E =12

mÝ r 2 −GmM

r

m

M

M = 4/3πρr3

r(t)12

mÝ r 2 =Gm[(4 / 3)πρr 3]

r+ E

x 1/2mr2

Ý r r

⎛ ⎝

⎞ ⎠

2

=83

πGρ +E

mr22

Page 6: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

General Relativity

G µν = Rµν −12

Rgµν = 8π GT µν + Λgµν

Rµν = Rλµλν = ∂λΓµν

λ − ∂ν Γµλλ + Γηλ

λ Γµνη − Γην

λ Γµλη

Γµνλ =

12

gλβ ∂ν gβµ + ∂µgβν − ∂βgµν

T µν =

−ρp

pp

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

gµν =

−1a2(t)

1−kr2

a2(t)r2

a2(t)r2sin2θ

⎢ ⎢ ⎢ ⎢ ⎢

⎥⎥⎥⎥⎥

Page 7: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Friedmann Eq. Cosmological Constant

H 2 =83

πGρ +ka2 +

Λ3

H 2 = H 02 Ωγ

a4 +ΩM

a3 +Ωk

a2 + ΩΛ

⎛ ⎝ ⎜

⎞ ⎠ ⎟

G 00 = 8π GT 00 + Λg00

Einstein Equation Newtonian Equation

Space-space component

Ωα = ρα/ρC

ρC = 3H02/8πG

a = a(t) = scale factor = r

Ý r r

⎛ ⎝

⎞ ⎠

2

=83

πGρ +E

mr2

H2 = (v/r)2 - k = E/m

ΩCDM /2<ΩΛ

acceleration !

Deceleration parameter

q0 = ー (d2r/dt2)/rH2 = [ΩCDM /2ー ΩΛ ]

Page 8: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Cosmic Expansion History

ΩMCM ΩΛ

acce

lera

ting

decelerating

critical

closed

Page 9: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

δTT

=l

∑ almm∑ Ylm (θ,φ)

Cl ≡ alm2

CosmicMicrowave Background

Anisotropies

WMAP

Cl=<δT/T(n)・δT/T(n+θ)>

Page 10: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Cosmological Parameter Dependence

Dark Matter potential ΩCDM

Baryon Drag

Baryon Mass ΩB Photon Pressure

Larger ΩCDM

Larger ΩB

Larger ΩΛ

TγMultipole l

Page 11: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Pie Chart of Cosmic Mystery Pie Chart of Cosmic Mystery t = 3 x 10t = 3 x 1055 yryr

Ordinary matter makes up Ordinary matter makes up a small fraction of mass/energy.a small fraction of mass/energy.

Dark matterDark matter andand dark energydark energydominate.dominate.

ΩΛ

ΩB

ΩCDM

Page 12: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

The Power of BBN is that the Physics is Accessible

ThermodynamicEquilibrium of

Particles and Nuclei

Cosmic Expansion

Nuclear Reactions

Page 13: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Supernova R-ProcessNSE

α-processR-process

(neutron-rich)

PRIMARY PROCESSES

Big-Bang Nucleosynthesis

Initially p & n

Page 14: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Evolution of Abundances

p

t d

n

6Li3He

4He

7Be

7Li

p4Hed t

3Hen

7Li7Be6Li

NSEDymanicalNucleosynthesis

Page 15: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

t = 3 min

Big-Bang NucleosynthesisConstraints

Cosmic Baryon DensityΩB

ΩB’s from BBN andCMB are inconsistent !

CMB (WMAP)Big-Bang Nucleosynthesis(BBN) Diagram

BBN-4He

Page 16: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

STANDARD QUARK MODELKMS (Kobayashi-Masukawa-

Cabbibo) MATRIX

N P

d u : Vud

Vud

Serevlov et al., Phys. Lett. B605 (2005), 72

NEW MEASUREMENT OF NEUTRON LIFE

ULTRA-COLD NEUTRON

δτn/τn = -1 %

Page 17: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Effect of Neutro-Life on BBN-4He : 2p + 2n 4He

1st effect: δτn δTd δ(n/p) δ(4He)

2nd effect: δτn δn δ(4He)

NET EFFECT:δτn< 0 δ(4He) < 0

Page 18: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Big-Bang Nucleosynthesis vs. CMBMathews, Kajino & Shima, PRD71 (2005) 021302 (R)

CMB - WMAP

4He

CONSISTENT !

7Li PROBLEM !?

Page 19: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

7Li Abundance in Halo Dwarf StarsRyan, Kajino, Beers, Suzuki, Romano, Matteucci & Rosolankova 2001, ApJ 549, 55.

SN II Nucleosynthesis contributes !

- 4 - 3 - 2 - 1 0 [Fe/H]Affected by SN ν-process ?

Is this plateau really Big-Bang origin ?

Page 20: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

SN1987A

SNe II Nucleosynthesis can produce 7Li and 11B as the BBN does in the early Universe !

Supernova ν - process !

Page 21: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

BeforeExplosion

AfterExplosion

Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101

Page 22: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Yoshida, Terasawa, Kajino & Sumiyoshi, Astrophys. J. 600 (2004), 204.Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101.

Calibrate ν-Temperature !Constrain ν-Oscillation ?

Page 23: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Primordial 7Li Abundance, observed ?Ryan, Kajino, Beers, Suzuki, Romano, Matteucci & Rosolankova 2001, ApJ 549, 55.

- 4 - 3 - 2 - 1 0 [Fe/H]

Primordial 7Li is NOT affected by the SN ν -PROCESS !

GCR + STARS

SN ν -PROCESS

Nuclear Physics can solve 7Li PROBLEM ?

Page 24: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

BBN Nuclear Uncertainties are Improving

Reaction Neededd(p,γ)3He 3.2%d(d,n)3He

2.0%d(d,p)3H 1.6%3He(α,γ)3He 2.3%

Descouvemont, Adahchour, Angulo, Coc, Vangioni-Flam. ApJ, (2004) Nollett & Burles, PRD, 61,

123505 (2000)

Page 25: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

7Be (d, p) 2α PRPROSAL of Coc et al. (2003)

then, 7Be would be destroyed !

Data from Kavanagh (1960)

If cross section were EXTREMELY larger,

Big-Bang Energy

Ast

roph

ysic

al S

-fact

or (

keV

b)

Ecm (MeV)

Page 26: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Big-Bang Nucleosynthesis Coc, Vangioni-Flam, Descouvemont, Adahchour & Angulo, ApJ 600 (2004) 544.

If 7Be would be destroyed, then ΩB’s from BBN and WMAP could be consistent !

New neutron life !Mathews, Kajino and Shima, PRD71 (2005) 021302 (R)

WMAP

Lyman-α !

7Be

Page 27: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

7Be (d, p) 2α Angulo et al. (2005) EXPERIMENT

Data from Kavanagh (1960)

Big-Bang Energy

Not very largely enhancement !

Primordial 7Li should be high!!

Ecm (MeV)

Page 28: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Supernova R-ProcessNSE

α-processR-process

(neutron-rich)

PRIMARY PROCESSES

Big-Bang Nucleosynthesis

Initially p & n

Page 29: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Inhomogeneous Big-Bang

Standard Big-Bang

INHOMOGENEOUS BIG-BANG NUCLEOSYNTHESIS

Kajino and Boyd, ApJ 359 (1990) 267; Orito, Kajino, Boyd & Mathews, ApJ 488 (1997) 515.

9Be

7Li(n,γ)8Li (n,γ)9Li(e-ν)9Be,7Li(t,n)9Be, 7Li(3He,p)9Be

7Li(n,γ)8Li(α,n)11B7Li(α,γ)11B

Page 30: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

OUTLINE

Universe is likely flat and accelerating!ΩB + ΩCDM + ΩΛ = 1

Six (eleven)Parameters !

Is BARYON, ΩB = 0.04, consistent with Big-Bang Cosmology andNucleosynthesis (as a CANDLE of dark side of the Universe) ?

What is the nature of CDM, ΩCDM = 0.26 ?Disappearing CDM Model in Brane World Cosmology !Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) 083518

What is DARK ENERGY, ΩΛ = 0.7 ?Growing CDM Model in Brane World Cosmology !Umezu, Ichiki, Kajino, Mathews Nakamura & Yahiro,(2005) (astro-ph/0507227)

COSMIC AGE (13.7 +- 0.2 Gy), strongly model-dependent ? Supernova R-Process & Origin of 232Th, 235,238U ! ---

Sasaqui, Kajino & Balantekin, ApJ (2005), in press. (astro-ph/0506100)Model independent !

BBN constrains Brane Cosmology !

Page 31: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

SUSY !?

5–th dimension, compactified.

Brane World Cosmology

Page 32: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Disappearing LSP (Lightest SUSY Particle) CDM ModelIs a likely possibility !

LSPs (CDM) disappear at cosmological time !

BARYONS do not !

vs. mB ~ 1 GeV

Page 33: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Modified Friedmann Equation

E = Dark Radiation orElectric part of the bulkWeyle tensor

Ichiki, Garnavich, Kajino, Mathews & YahiroPRD 68 (2003), 083518

Page 34: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Thermal History of the Universe

INFLATION: (GW)

BBN (Big-BangNucleosynthesis)

Type Ia SNe, CLUSTER M/L

10-43 sec 3 min 105 y 1-10 Gy

CMB Anisotropies

QCD phase trν-dec, e+e--annihi

Matter-Dom Era

Rad-Dom Era

Observablesat different cosmic

time !

Page 35: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Dark Radiation / Photon - Energy

BBN

Type IaSupernovae

t = 3 min

ΩΛ

PEAK

CMB Anisotropies

CLUSTERM/L ratio

t = 3x105 y

t = 1-10 Gyt = 1-10 Gy

Dark Radiation

Page 36: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Constraints on SUSY-Brane Cosmology(Disappearing CDM) Model

Ichiki, Garnavich, Kajino, Mathews & Yahiro,

PRD 68 (2003) 083518

Dark Energyis still needed !

Our Model is as good as

the standard model.

Page 37: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Brane World Cosmology

q = adjustable parameter

Dark Enerfy term:

CDM particles can exist in the bulk.

Then, they can FLOW IN from the bulk !

We propose Growing-CDM Model for DARK ENERGY ! ΩΛ = 0 model !

5–th dimension, compactified.

Page 38: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Supernova z vs. m-M Relation

Standard ΛCDM model ΩΛ = 0.71

Our best-fit model ΩΛ = 0

t = 1-10 Gy

Page 39: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

CMB Anisotropies

Cosmic Variance ?

t = 3x105 y

Only OUR MODELcan explain this quenching !

Our best-fit model ΩΛ = 0

Standard ΛCDMmodel ΩΛ = 0.71

Page 40: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Cosmic Microwave Background

WMAP shows evidence for suppression of quadrupole and octopole moments.

- Aligned in the direction of Virgo: Tegmark et al (2003)

- This could suggest a compact cosmology

- Use axis to guide search (l,b) ~ (-80°,60°)

Page 41: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Matter Power Spectrum P(k) t = 1-10 Gy

Our best-fit model ΩΛ = 0

Standard ΛCDM modelΩΛ = 0.71

Page 42: Nucleosynthesis in Supernovae and the Big-Bang · 2007. 6. 8. · BBN (Big-Bang Nucleosynthesis) Type Ia SNe, CLUSTER M/L 10-43 sec 3 min 105 y 1-10 Gy CMB Anisotropies QCD phase

Conclusion

Big-Bang Nucleosynthsis is one of the Pillars of very precise Particle-Nuclear Theory and Modern Cosmology.

Standard Quark Model --- KMC Matrix !Dark Matter --- SUSY Particles in Brane CosmologyDark Energy --- Flowing in of CDM in Brane Cosmology

Acceleration, due to CDM inflow without ΩΛ !Quenching of low multipoles in CMB, due to late ISW effect !7Li problem still remains ??

Core-Collapse Supernovae are Viable Astrophysical Sitesfor R-Process.

New Role of R-Process Elements 232Th & 235,238U--- Cosmochronology for Metal-Deficient Stars, hopeful but

needs more precision? --- Sensitivity of Neutrino Cutoff to BH vs. NS Formation !