nuclear analysis using raman spectroscopy

32
Nuclear analysis using Raman Spectroscopy Literature seminar #3 2021.9.3 M2 Tamiko Nozaki 1 Shen, Y.;…; Xu, W., Nanoscale 2018, 10, 1622–1630.

Upload: others

Post on 13-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nuclear analysis using Raman Spectroscopy

Nuclear analysis using Raman Spectroscopy

Literature seminar #32021.9.3

M2 Tamiko Nozaki

1Shen, Y.;…; Xu, W., Nanoscale 2018, 10, 1622–1630.

Page 2: Nuclear analysis using Raman Spectroscopy

2

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 3: Nuclear analysis using Raman Spectroscopy

3

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 4: Nuclear analysis using Raman Spectroscopy

Raman sca,ering

4Bakthavatsalam, S.;…Sodeoka, M. RSC Chem. Biol. 2021. h@ps://sisu.ut.ee/heritage-analysis/book/32-raman-spectroscopy

Raman spectroscopy

, modified

ü Raman scattering is an inelastic process in which the molecule returns to a higher or lower vibrational state.

ü Raman scattering reveals the vibrational, rotational and other low frequency modes of molecules

Page 5: Nuclear analysis using Raman Spectroscopy

Raman spectra of biological molecules

5Shipp, D. W.; … NoOngher, I. Adv. Opt. Photonics 2017, 9, 315.

Raman spectroscopy

<Nucleic acid>

<Protein>

<Lipid>

Page 6: Nuclear analysis using Raman Spectroscopy

Raman imaging of living cells

6

Raman spectroscopy

Hamada, K;… Kawata, S.. J. Biomed. Opt. 2008, 13, 044027. Shipp, D. W.; … No:ngher, I. Adv. Opt. Photonics 2017, 9, 315.

Raman spectra obtained from the cytosol of a living cell

753 cm−1 : The pyrrole breathing mode= cytochrome c

1686 cm−1 : Amide-I vibration= protein β sheet

2852 cm−1 : C-C stretching vibration modes = lipid molecules

Page 7: Nuclear analysis using Raman Spectroscopy

Fluorescence microscopy vs Raman microscopy

7Kann, B.;… Otto, C. Adv. Drug Deliv. Rev. 2015, 89, 71.,

Raman spectroscopy

ü Images with very high spa0al resolu0on.ü The high temporal resolu0on.

<Raman microscopy>

<Fluorescence microscopy >

h@ps://www.chem-staOon.com/molecule/2009/01/green_fluorescent_protein_gfp.htmlDunst, S.; Tomancak, P. GeneEcs 2019, 211, 15.

p Labeling of the target biomolecules with fluorescent small molecules / gene0cally encoded fluorescent proteins.�Large enough to affect the biochemical/biophysical

proper0es of the target biomolecules.�They affect the na0ve cellular environment,

p Raman imaging has not yet achieved the spatiotemporal resolution of fluorescence imaging

= Raman signals are too weak

ü Raman imaging can be performed without labelling or with minimal labelling.

ü The obtained informa0on has molecular level detail.

Page 8: Nuclear analysis using Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS)

8

Surface-enhanced Raman spectroscopy (SERS)

Ando, J.; Fujita, A, K. Rev. Laser Eng. 2010, 38 (6), 427.

Surface-enhanced Raman spectroscopy (SERS)

The Raman signal of the target molecule is enhanced when it is close to the surface of metals such as silver or gold.

p Since typical Raman scattering signals are compared to fluorescence yields.; The measurement of Raman spectra usually requires long exposure times, making

observations of living specimen difficult.

Page 9: Nuclear analysis using Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS)

9

Surface-enhanced Raman spectroscopy (SERS)

! = 34%

& ' − &!& ' + 2&!

+0

Re[& ' ] = −2&!: Localized Surface Plasmon Resonance

P : polariza?on, ! " ∶ dielectric func?on!! : dielectric constant, E0 : external electric field

Ando, J.; Fujita, A, K. Rev. Laser Eng. 2010, 38 (6), 427.

ü Localized surface plasmon polaritons are generated due to oscillation of free electrons in the metal.

ü SERS can enhance the Raman signal on average by 104 to 108 times, and up to 1014-1015

times.

ü Optical detection and spectroscopy of single molecules have been achieved.

Page 10: Nuclear analysis using Raman Spectroscopy

10

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 11: Nuclear analysis using Raman Spectroscopy

SERS for nuclear analysis

11Wubben, J. M.;… Borg, N. A. Cells 2020, 9 (12), 1 Chen, Y.; … Wu, J. Int. J. Nanomedicine 2020, 15, 9407..

.

SERS for nuclear profiling

Nuclear localization signal peptides (NLS)

ü ConjugaOon with NLS allows the targeOng of NPs to the cell nucleus.

SV40 large T an?gen : GGVKRKKKPGGCHIV-1 Tat protein NLS : GCGYGRKKRRQRRRG

Page 12: Nuclear analysis using Raman Spectroscopy

SERS for label free Nuclear analysis

12

Label-free method

Huefner, A.;… Mahajan, S. Nano LeK. 2013, 13, 2463.

RNA peaks DNA/histone peaks; DNA packaged with chromosomal proteins in heterochromaOn

; looser packaging

UndifferenOated cell DifferenOated cell

Shen, Y.;…; Xu, W., Nanoscale 2018, 10, 1622–1630. Chen, Y.; …; Hu, J.. Sci. Rep. 2016, 6, 1

Kang, B.; …El-Sayed, M. A. Nano LeK. 2012, 12, 5369.

n Cell nucleus imaging during the cell cycle n IdenOfying cell types

n Intracellular monitoring of pH n MulO-targeOng SERS imaging

Page 13: Nuclear analysis using Raman Spectroscopy

AuNR-MPy-targeCng (AMT) pH nano-sensors

13

SERS for nuclear profiling

Shen, Y.;…; Xu, W., Nanoscale 2018, 10, 1622–1630.

The organelle-targeting peptides(nucleus targeting peptide (NLS))

<AuNR-MPy-targeOng (AMT) pH nano-sensors>

pH-sensiOve molecule

Page 14: Nuclear analysis using Raman Spectroscopy

AuNR-MPy-targeCng (AMT) pH nano-sensors

14

SERS for nuclear profiling

Shen, Y.;…; Xu, W., Nanoscale 2018, 10, 1622–1630.

The organelle-targeOng pepOdes(nucleus targe0ng pep0de (NLS))

<AuNR-MPy-targeting (AMT) pH nano-sensors>

ü AM-pH nano-sensor has a good response for pH

ü Most of ANT can locate in the nucleus or its adjacent area.

pH-sensiOve molecule

Page 15: Nuclear analysis using Raman Spectroscopy

Intracellular monitoring of pH fluctuaCons in organelles of cancer and normal cells

15

SERS for nuclear profiling

Shen, Y.;…; Xu, W., Nanoscale 2018, 10, 1622–1630.

ü The lysosome is acidic, and nucleus and mitochondria are neutral or slightly alkaline.ü The pH of the subcellular organelles in the cancer cells is more acidic as compared to

that in the normal cells.

7.9 7.5

4.7

8.2 7.8

6.5

Page 16: Nuclear analysis using Raman Spectroscopy

16

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 17: Nuclear analysis using Raman Spectroscopy

SERS imaging of the Cme-dependent changes of cell nuclei during apoptosis

17Chen, Y.; …; Hu, J.. Sci. Rep. 2016, 6, 1

SERS for nuclear imaging

Rane

Early apoptosis stage: diminishing nuclei and slight condensaOon of chromaOn

Late apoptosis stage :: chromaOn decomposiOon and nuclearmembrane rupture The high-resoluOon SERS imaging of HeLa was constructed

from the total SERS intensity between 490 and 1630 cm-1.

Page 18: Nuclear analysis using Raman Spectroscopy

Multi-targeting SERS imaging of cell

18

MBA-coated AuNPs

CVa-coated AuNPs

CV-coated AuNPs

Chen, Y.; …Hu, J.. Sci. Rep. 2016, 6, 1. Liu, X.; …Wang, Z.. Nanoscale 2017, 9, 15390.Caires, A. J.;… Ladeira, L. O. J. Colloid Interface Sci. 2015, 455, 78.

SERS for nuclear imaging

HS

OH

O

N

NN

O

N

H2N NH

Three different Raman-acOve molecules was inserted into the gap of the Au@Au core-shell structure.

<Raman-dyes as SERS reporters>

label-free AuNPs (black)

Page 19: Nuclear analysis using Raman Spectroscopy

SERS imaging of a cell treated with Raman-dye coated AuNP

19

1078 1175 595

Chen, Y.; …; Hu, J.. Sci. Rep. 2016, 6, 1

SERS for nuclear imaging

SERS DAPI

ü The membrane- or nuclear-targe1ng AuNPs were found inside the nucleus and surrounding the cells, respec1vely.

Page 20: Nuclear analysis using Raman Spectroscopy

MulC-targeCng SERS imaging using coated AuNPs in the same single cell

20Chen, Y.; …; Hu, J.. Sci. Rep. 2016, 6, 1

SERS for nuclear imaging

ü The positions of the nucleus and membrane can be clearly distinguished.

ü The multi-targeting SERS imaging of various dye-AuNPs in the same cell.

Page 21: Nuclear analysis using Raman Spectroscopy

21

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 22: Nuclear analysis using Raman Spectroscopy

Alkyne-tag Raman imaging (ATRI) for nuclear imaging

22

Labeling method

Yamakoshi, H.; …S.; Sodeoka, M.. J. Am. Chem. Soc. 2012, 134, 20681. Palonpon, A. F.; S.; Fujita, K. Nat. Protoc. 2013, 8, 677.

AltQ2

ü Alkynes have strong Raman signals in the cellular silent region and can be excellent tags.

ü Multi-color imaging with ATRI was achieved due to the narrow line width of alkyne peak.

Silent region

O

OMeO

MeOPh

Page 23: Nuclear analysis using Raman Spectroscopy

Histone imaging with Raman tag incorporated via geneCc code expansion

23

Histone imaging using ATRI

Zhang, J.;… Wang, P. J. Phys. Chem. LeK. 2018, 9, 4679–4685. Bakthavatsalam, S.; ….; Sodeoka, M. RSC Chem. Biol. 2021

Page 24: Nuclear analysis using Raman Spectroscopy

IncorporaCon of a Raman tag via geneCc code expansion

24

Histone imaging using ATRI

Zhang, J.;… Wang, P. J. Phys. Chem. LeK. 2018, 9, 4679–4685.

� Expression of tRNA synthase

� The incorporaOon of UAA

ü A clear image of the Histone3.3 protein in the nucleus was observed @2135 cm−1.ü The vibraOonal signal of alkyne was very weak.

Page 25: Nuclear analysis using Raman Spectroscopy

IncorporaCon of a Raman tag via geneCc code expansion

25

Histone imaging using ATRI

Zhang, J.;… Wang, P. J. Phys. Chem. LeK. 2018, 9, 4679–4685.

in fixed cell

ü In the nucleus a strong Raman signal was observed @2225 cm-1.

��W�� !"#$%&'()*+,-./

Page 26: Nuclear analysis using Raman Spectroscopy

26

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 27: Nuclear analysis using Raman Spectroscopy

EdU as a nucleus localization interior label for SERS detection

27

SERS detecAon of nucleus with ATRI-tag

Zhang, J.; …Xu, W. Anal. Bioanal. Chem. 2018, 410, 585.

Silent region

Alkyne group

EDU (+)

EDU (-)

EdU (ATRI-tag) was adopted as an internal label to locate the nuclear region accurately.

Page 28: Nuclear analysis using Raman Spectroscopy

EdU as a nucleus localiza/on interior label for SERS detec/on

28

SERS detec)on of nucleus with ATRI-tag

Zhang, J.; …Xu, W. Anal. Bioanal. Chem. 2018, 410, 585.

Alkyne group

ü EdU as a nucleus localization interior label can allow us to realize accurate location of nuclei.→ Obtaining precise SERS spectra of nucleus to investigation the biomolecules from the cell

nucleus by SERS.

SERS spectra of presen?ng SERS signals at 1920 and 2265 cm−1 are from the nuclear region.

Page 29: Nuclear analysis using Raman Spectroscopy

33

Ø Introduc)on

- Raman spectroscopy

- Surface-enhanced Raman spectroscopy (SERS)

Ø Label-free method

-SERS for nuclear profiling

-SERS for nuclear imaging

Ø Labeling method

-Alkyne-tag Raman imaging (ATRI), Histone imaging using ATRI

-SERS detecAon of nucleus with ATRI-tag

ØMini-proposal

Ø Summary

Contents

Page 30: Nuclear analysis using Raman Spectroscopy

Summary

34

ü Raman imaging can be performed without labelling or with minimal labelling and obtain informaOon in molecular detail level.

ü SERS enhance the Raman signal of the target molecule when it is close to the surface of metals such as silver or gold.

ü SERS can be applied for nuclear analysis and the dynamics tracking of physiological processes.

ü ATRI realized the mulO-color imaging of biological molecules using alkyne funcOonalgroup.

ü CombinaOon of ATRI and SERS realized the detecOon of precise nuclear signal.

Page 31: Nuclear analysis using Raman Spectroscopy

Appendix

35

Page 32: Nuclear analysis using Raman Spectroscopy

SRES

36h@p://home.sato-gallery.com/research/JEMEA_databaseWG_metal_yudenritsu.pdf

h@ps://ir.library.osaka-u.ac.jp/repo/ouka/all/34490/26976_��.pdf

Surface-enhanced Raman spectroscopy (SERS)

��W������8TdJ5�Y<�=�`X "�IiJ��K@��Q[20Z�F")��Q[7C������#

o[q εm�aEW�o[1O ε(ω)%���5;�8TdrB�UA��ω �=[K�M]�/H`O�����.g[KE0�,�!$��#K@�

8TdrB_g�[B�t%G��j*��i6 P�o3�$#�^D��drBfn��.g[K�4k>�[K%bP��# ��fn[-�o3�$#�

ci6K(Ed) Ed = -4πLP �aE�N9����L : ci6:O, drB�;L�+U�5;rB�K@

L=1/3�

o[VW���i6[-�� #[K�?s�#ep��"�'&(�lR!�

" = $ % & = &+ 4)*E : hEW�[K, D : [Sm\, P : i6, ε(ω) : o[1O

������ * = ! " #$%& (1.1)

drB_g�[KE��.g[KE0�ci6[KEd!�

& = &! + &" (1.2)

(1.1), (1.2) "�o[q εm�aEW��#i6��* = $%&

! "!# #$

$' ! "!# #$

&! L=1/3����

* = 34)

$ % − $($ % + 2$(

&!