non-standard neutrino interaction search with icecube …...1.0 0.5 0.0 0.5 1.0 p nsi p si | | e...

1
Non-standard neutrino interaction search with IceCube DeepCore Elisa Lohfink and Thomas Ehrhardt for the IceCube Collaboration Institut f¨ ur Physik, Universit¨ at Mainz Non-standard neutrino interactions (NSI) I NC scattering on first-generation charged fermions relevant for neutrino propagation (coherent forward scattering) I NSI emerge from wide variety of neutrino mass models I described by effective 4-fermion Lagrangian: L NC NSI = -2 2G F f =e ,u ,d ¯ ν α γ μ Lν β ¯ f γ μ ε fL αβ L + ε fR αβ R f NSI imprint on oscillation probabilities I Hamiltonian for propagation in Earth matter: H ν (E ν , x )= 1 2E ν U diag ( 0, Δm 2 21 , Δm 2 31 ) U | {z } + V e (x ) diag (1, 0, 0) | {z } + ε ee - ε μμ ε e μ ε e τ ε ⊕* e μ 0 ε μτ ε ⊕* e τ ε ⊕* μτ ε ττ - ε μμ | {z } cos ϑ = -1 cos ϑ = -0.84 cos ϑ = -0.98 core inner atmosphere crust mantle upgoing downgoing outer core 1 5 10 50 100 500 E (GeV) 1.00 0.75 0.50 0.25 0.00 cos 1.0 0.5 0.0 0.5 1.0 P NSI P SI e = 0.14 | | I atmospheric neutrinos at baselines between 20 km and Earth diameter encounter different matter density profiles I difference in ν μ survival probabilities for flavor-changing NSI ε e μ of given strength IceCube and DeepCore I 1 km 3 Cherenkov detector at Geographic South Pole I 5160 optical modules equipped with downward-looking PMTs in 1.5 km–2.5 km deep glacial ice, distributed across 86 vertical strings I DeepCore sub-array with low energy threshold (5GeV) I ν μ , ¯ ν μ CC identification capabilities (track-like events) New results for 3 years of data I one-by-one NSI constraints obtained for: · flavor violation: ε αβ = ε αβ e i δ αβ (α 6= β ) · flavor non-universality: ε ee (ττ ) - ε μμ (R) ee - μμ ττ - μμ -10 0 -10 -1 -10 -2 0 10 -2 10 -1 10 0 90% allowed region SI/universal NSI IceCube preliminary μτ -10 -1 -10 -2 0 10 -2 10 -1 SI δ δ δ μτ 0 90 180 270 360 δ αβ =0 , 180 Super-K 2011 (2d) MINOS 2013 IC 2017 (public) global 2018 (w/ correl.) IC DC 2018 IC DC 2020 (public) IC DC 2020 I + 3D matter potential fit: strength & flavor structure · overall strength: ε [-1.2, -0.3] [0.2, 1.4] · rotation angles: ϕ 12 [-9 , 8 ], ϕ 13 [-14 , 9 ] New high-statistics sample: 8 years of data Enhanced event statistics in relevant regions of energy and zenith I energy range extended up to 300 GeV, increasing sensitivity to flavor-violating NSI couplings (and control over systematics) I binned χ 2 fit in energy, event type (track-like/cascade-like) and cos(zenith) with nuisance parameters s χ 2 mod = bins i ( μ data i - μ MC i ) 2 μ MC i +(σ MC i ) 2 + N prior j (s j - s central j ) 2 σ 2 s j 8-year discovery potential and sensitivity How well can SI be excluded at a given NSI truth hypothesis? I discovery potential for each fitted NSI parameter I ε e μ and ε μτ :3σ discovery potential for 8y sample within 3y sample’s observed 90% exclusion limit 0.000 0.007 0.014 0.020 | | 80° 160° 240° 320° IceCube preliminary 3 , 8y discovery potential 3y 90% observed 0 10 20 30 40 50 60 2 mod 0.000 0.035 0.071 0.106 | e | 80° 160° 240° 320° e IceCube preliminary 3 , 8y discovery potential 3y 90% observed 0 5 10 15 20 25 30 2 mod 8y sensitivity: MC-based NSI exclusion power in absence of NSI I assume complex parameters I expect strongest model-independent bounds on flavor- violation and non- universality NSI strengths for Earth matter so far IceCube preliminary References [1] P. S. Bhupal Dev et al., SciPost Phys. Proc. 2, 001 (2019), [2] M. G. Aartsen et al. (IceCube Collaboration), JINST 12 (03), P03012, [3] G. Mitsuka et al. (Super-Kamiokande Collaboration), Phys. Rev. D 84, 113008 (2011), [4] P. Adamson et al. (MINOS Collaboration), Phys. Rev. D 88, 072011 (2013), [5] J. Salvado et al., J. High Energy Phys. 2017 (1), 141, [6] I. Esteban et al., J. High Energy Phys. 2018 (8), 180, [7] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev. D 97, 072009 (2018), [8] S. V. Demidov, J. High Energy Phys. 2020 (3), 105 background image credit: Bill Spindler (www.southpolestation.com) [email protected], [email protected] vacuum SI NSI ε αβ ε eV αβ +3 ε uV αβ + ε dV αβ (vector couplings) see poster of E. Bourbeau 90% CL here: flavor violation constrained to real plane to be published soon see posters of K. Leonard, T. Stuttard

Upload: others

Post on 07-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-standard neutrino interaction search with IceCube …...1.0 0.5 0.0 0.5 1.0 P NSI P SI | | e =0.14 Iatmospheric neutrinos at baselines between 20km and Earth diameter encounter

Non-standard neutrino interaction search with IceCube DeepCoreElisa Lohfink and Thomas Ehrhardt for the IceCube Collaboration

Institut fur Physik, Universitat Mainz

Non-standard neutrino interactions (NSI)

I NC scattering on first-generation charged fermions relevant forneutrino propagation (coherent forward scattering)

I NSI emerge from wide variety of neutrino mass models

I described by effective 4-fermion Lagrangian:

L NCNSI =−2

√2GF ∑

f =e,u,d

[ναγ

µLνβ

][f γµ

(εfLαβ

L+ εfRαβ

R)f]

NSI imprint on oscillation probabilities

I Hamiltonian for propagation in Earth matter:

Hν(Eν,x) =1

2Eν

Udiag(

0,∆m221,∆m2

31

)U†︸ ︷︷ ︸+Ve(x)

diag (1,0,0)︸ ︷︷ ︸+

ε⊕ee− ε⊕µµ ε⊕eµ ε⊕eτ

ε⊕∗eµ 0 ε⊕µτ

ε⊕∗eτ ε⊕∗µτ ε⊕ττ− ε⊕µµ

︸ ︷︷ ︸

cos

ϑ =

-1

cos

ϑ = -0.84

cos

ϑ =

-0.

98 coreinner

atmo

sphe

re

crust

mantle

upgoingdowngoing

outer core

1 5 10 50 100 500E (GeV)

1.00

0.75

0.50

0.25

0.00

cos

1.0

0.5

0.0

0.5

1.0

PNSI

PSI

e = 0.14| |

I atmospheric neutrinos atbaselines between 20 km andEarth diameter encounterdifferent matter density profiles

I difference in νµ survivalprobabilities for flavor-changingNSI ε⊕eµ of given strength

IceCube and DeepCore

I 1 km3 Cherenkov detector atGeographic South Pole

I 5160 optical modules equipped withdownward-looking PMTs in 1.5 km–2.5 km deepglacial ice, distributed across 86 vertical strings

I DeepCore sub-array with low energy threshold(∼ 5GeV)

I νµ, νµ CC identification capabilities(track-like events)

New results for 3 years of data

I one-by-one NSI constraints obtained for:· flavor violation: ε⊕αβ

=∣∣∣ε⊕

αβ

∣∣∣e iδαβ (α 6= β )· flavor non-universality: ε⊕ee(ττ)− ε⊕µµ (∈ R)

ε⊕ee−ε⊕µµ

ε⊕ττ− ε⊕µµ

−100

−10−1

−10−2

0

10−2

10−1

100

90%

allo

wed

regi

on

SI/universal NSI

IceCube preliminary

ε⊕eµ ε⊕eτ ε⊕µτ

−10−1−10−2

010−210−1

SI

δeµ δeτ δµτ0◦

90◦180◦270◦360◦

δαβ = 0◦, 180◦

Super-K 2011 (2d)

MINOS 2013IC 2017 (public)

global 2018 (w/ correl.)

IC DC 2018

IC DC 2020 (public)

IC DC 2020

I + 3D matter potential fit: strength & flavor structure· overall strength: ε⊕ ∈ [−1.2,−0.3]∪ [0.2,1.4]· rotation angles: ϕ12 ∈ [−9◦,8◦], ϕ13 ∈ [−14◦,9◦]

New high-statistics sample: 8 years of data

Enhanced event statistics in relevant regions of energy and zenith

I energy range extended up to 300 GeV, increasing sensitivity toflavor-violating NSI couplings (and control over systematics)

I binned χ2 fit in energy, event type (track-like/cascade-like) andcos(zenith) with nuisance parameters s

χ2mod =

bins

∑i

(µdatai −µMC

i

)2

µMCi + (σMC

i )2+

Nprior

∑j

(sj− scentralj )2

σ 2sj

8-year discovery potential and sensitivity

How well can SI be excluded at a given NSI truth hypothesis?

I discovery potential for eachfitted NSI parameter

I ε⊕eµ and ε⊕µτ: 3σ discoverypotential for 8y sample within 3ysample’s observed 90% exclusionlimit

0.000 0.007 0.014 0.020| |

80°

160°

240°

320° IceCube preliminary

3 , 8y discoverypotential3y 90% observed

0

10

20

30

40

50

60

2 mod

0.000 0.035 0.071 0.106| e |

80°

160°

240°

320°

e

IceCube preliminary

3 , 8y discoverypotential3y 90% observed

0

5

10

15

20

25

30

2 mod

4 2 0 2ee

0

4

8

12

16

2 mod

IceCube preliminary

8y discoverypotential3y observed

0.050 0.025 0.000 0.025 0.0500

4

8

12

16

2 mod

IceCube preliminary

8y discoverypotential3y observed

8y sensitivity: MC-based NSI exclusion power in absence of NSI

I assume complexparameters

I expect strongestmodel-independentbounds on flavor-violation and non-universality NSI strengthsfor Earth matter so far

IceCube preliminary

References[1] P. S. Bhupal Dev et al., SciPost Phys. Proc. 2, 001 (2019), [2] M. G. Aartsen et al. (IceCube

Collaboration), JINST 12 (03), P03012, [3] G. Mitsuka et al. (Super-Kamiokande Collaboration), Phys.

Rev. D 84, 113008 (2011), [4] P. Adamson et al. (MINOS Collaboration), Phys. Rev. D 88, 072011 (2013),

[5] J. Salvado et al., J. High Energy Phys. 2017 (1), 141, [6] I. Esteban et al., J. High Energy Phys. 2018

(8), 180, [7] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev. D 97, 072009 (2018), [8] S. V.

Demidov, J. High Energy Phys. 2020 (3), 105

background image credit: Bill Spindler (www.southpolestation.com)

[email protected], [email protected]

vacuum SI

NSI

ε⊕αβ≈ εeV

αβ+ 3(

εuVαβ

+ εdVαβ

)(vector couplings)

see poster ofE. Bourbeau

}90% CL

here: flavor violation

constrained to real

plane

to be published soon

see posters of K.Leonard, T. Stuttard