non-accelerator-based neutrino experiments yifang wang institute of high energy physics beijing,...

44
Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Upload: lorin-preston

Post on 14-Jan-2016

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Non-accelerator-based neutrino experiments

Yifang Wang

Institute of High Energy Physics

Beijing, 100039

Page 2: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Recent results on • Neutrino oscillations

– Atmospheric neutrinos: m223 and sin2223

– Solar neutrinos: m212 and sin2212

– 13 and CP phase: sin2213 and

• Neutrino masses– Absolute neutrino masses– Neutrinoless decays

• Neutrino magnetic moments

Page 3: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Neutrino oscillations:

Pontecorvo-Maki-Nakagawa-Sakata Matrix

Majorana phasesOnly appear in 0 decays

cij=cosij, sij=sinij

Atmospheric SolarCP phase

Mass eigenstates

Weak eigenstates

Sub-dominant 13 oscillations

A total of 6 parameters: 2 m2, 3 angles, 1 phases

+ 2 Majorana phases

Page 4: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Evidence of Neutrino Oscillations

Unconfirmed:LSND:m2 ~ 0.1-10 eV2

Confirmed:Atmospheric:m2 ~ 210-3 eV2

Solar:m2 ~ 8 10-5 eV2

Psin22sin2(1.27m2L/E)2 flavor oscillation in vacuum:

Page 5: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Atmospheric neutrinos --- SuperKamiokande

L ~ 20 km

L ~ 104 km

Earth

E ~ 300 MeV - 2 GeV

Super-K

p, He

e

P(l l )1 sin2 (2 )sin2 m 2L

4E

Oscillation probability:SK-I: 1996-2001

SK-II:2003-2005

e/ 1/2

e

e

Page 6: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Full analysis of SK-I ---- Zenith angle distributions

~15km ~13000km ~500km

2-flavor oscillations

Null oscillation Best fit

Saji’s talk

sin22=1.0, m2=2.1x10-3 eV2

2 = 175.2/177 dof

90% C.L. region:

sin22> 0.92,

1.5 < m2 < 3.4x10-3 eV2

Page 7: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

L/E Oscillation result

m2=2.4x10-3,sin22=1.00

2min=37.9/40 d.o.f

(sin22=1.02, 2min=37.7/40 d.o.f)

1.9x10-3 < m2 < 3.0x10-3 eV2

0.90 < sin22 @ 90% C.L.

Strong constraint on m2

standard zenith angleanalysis(90%C.L.)

Best fit expectation

w/ systematic errors

Mostly upwardMostly downward

Page 8: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

3-Flavor Analysis result

no

rmal

inve

rted

Bestfit: m2 = 2.7x10-

3ev2, sin223 = 0.5, sin213 = 0.0

no evidence for non zero 13

m3

m2

m1

m3

m2

m1

sin223

sin

2 1

3

m2

sin213

m2

sin

2 1

3

(preliminary)

Page 9: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Standard Solar model: BP04

pp (1010 cm-2 s -1)

pep (108 cm-2 s -1)

hep (103 cm-2 s -1)

7Be (109 cm-2 s -1)

8B (106 cm-2 s -1)13N (108 cm-2 s -1)15O (108 cm-2 s -1)17F (106 cm-2 s –1)

5.94 (1%)

1.40 (2%)

7.88 (16%)

4.86 (12%)

5.82 (23%)

5.71 (36%)

5.03 (41%)

5.91 (44%)

Cl SNU

Ga SNU

10-36 atom-1 s –1

8.5 1.8

131 11

Bahcall, Pinsonneault, PRL2004

Solar neutrino experiments ----- Super-K, SNO, KamLAND

Page 10: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Z

mantle

core

SK Day

z

SK: Un-bined day/night analysis of SKIEnergy and zenith angle dependence of event rate variatoin.

(Δm2 = 6.3×10-5 eV2, tan2θ = 0.55)

L e iBi S

i 1

N bin

1

ni

Bi U i c mi S p c , E z c , E

#B.G. in eachenergy bin

#SignalEvents

Event“Time"

BackgroundShape

Solar signalshape

ADN 0.018 0.016 0.0120.013

cf. old method 0.02 0.021 0.0120.013

j j

i

MC

MC

Ishihara’s talk

Page 11: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Average of SK-I

Period '96-'01 accident '03-'05#PMTs 11,146 5,182Photo Coverage 40 % 19 %Light yield ~6 p.e./MeV ~2.8 p.e/MeV Energy threshold 5.0 MeV 8.0 MeV

SKII works well

Page 12: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

The Sudbury Neutrino Observatory

• 2092 meters deep underground• 1000 tons of ultrapure D2O in a 12 meter diameter acrylic vessel

• 7000 tons of ultrapure H2O as shield • 9500 PMTs • 40 helium proportional counters with total length of 398 m

Page 13: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

CC:e + d e- + p + p

NCx + d x + n + p

ESx + e- x + e-

e

x= e+

x= e+()/6

Page 14: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Three neutron detection methods

Page 15: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

energy

Isotropyradius

direction

Signal extraction in salt phaseDeng’s talk

Page 16: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Neutrino flux: > 0

)sys()stat(21.2Φ 10.010.0-

+0.310.26-ES

+=

)sys()stat(76.1Φ 09.009.0-

+0.060.05-CC

+=

)sys()stat(39.2Φ 12.012.0-

+0.240.23-ES

+=

)sys()stat(09.5Φ 46.043.0-

+0.440.43-NC

+=

)sys()stat(59.1Φ 06.008.0-

+0.080.07-CC

+=

)sys()stat(21.5Φ 38.038.0-

+0.270.27-NC

+=

D2O phase salt phase(unit 106/cm2/s)

SSM8

meas8 )(0.23(th))exp)(04.088.0()( BB

Page 17: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

First salt results

Page 18: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

KamLAND

Page 19: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Sources: reactor neutrinos

• 200 MeV/fission

• 6 e/fission

6 1020 e/s/3GWth

Flux and spectrum of reactor neutrino are known within 3%

Page 20: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Null Oscillation Probability

Disappearance 99.995%Shape Distortion 99.9%Combined 99.99996%

Hypothesis test

Scaled no oscillation

excluded at 99.9% C.L.

Shimizu’s talkShimizu’s talk

Page 21: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Combined solar Combined solar νν – KamLAND 2-flavor analysis – KamLAND 2-flavor analysis

Includes (small) matter effectsIncludes (small) matter effects

07.009.040.0tan

105.06.02.8

122

25212

eVm

Page 22: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

A new background just found:

preliminary

13C(, n)16O ~ 10 event

Accidental 2.69 ± 0.028He/9Li 4.8 ± 0.9 induced n < 0.89

Previously estimated backgrounds

Page 23: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

An incomplete list of “exotic” explanations• Atmospheric neutrinos (m2

23)– Atmospheric neutrino production model:

K2K– e, s

– CHOOZ, SK Fit, Tau appearance

– Decoherence: SK, KamLAND

– neutrino decays: SK, KamLAND

• Solar neutrinos (m212)

– Standard Solar Neutrino(SSN) model– Solar density profile– SNO( appearance), KamLAND

– SMA, QVO-VO, LOW solutions: KamLAND– Spin-Flip, non-standard interactions, …

– KamLAND

– Decoherence: SK, KamLAND

– neutrino decays: SK, KamLAND

Page 24: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Neutrino oscillations established

SuperK KamLAND

Decay* excluded at 95% CL

Decoherence† excluded at 94% CL

*V.Barger et al. Phys. Rev. Lett. 82 (1999) 2640

†E.Lisi et al., Phys. Rev. Lett. 85 (2000) 1166

Page 25: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

A total of six mixing parameters :Known : | m2

32|, sin2232 --Super-K

m221, sin2221 --SNO,KamLAND

Unknown : sin22 , , sign of m232

at reactors:

Pee 1 sin22sin2 (1.27m2L/E)

cos4sin22sin2 (1.27m2L/E)

at LBL accelerators:

Pe ≈ sin2sin22sin2(1.27m2L/E) +

cos2sin22sin2(1.27m212L/E)

A()cos213sinsin()

Page 26: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Why at reactors• Clean signal, no cross talk with and matter

effects• Relatively cheap compare to accelerator based

experiments • Can be very quick• Provides the direction to the future of neutrino physics

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 1 10 100

Nos

c/Nn

o_os

c

Baseline (km)

Small-amplitude

oscillation due to 13

Large-amplitude

oscillation due to 12

Page 27: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Current Knowledge of 13

Maltoni etal., hep-ph/0405172

Sin2(213) < 0.09

Sin2(213) < 0.18

At m231 = 2103 eV2,

sin22 < 0.15

K.B.Luk’s talk

Page 28: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

How to reach 1% precision ?• Three main types of errors: reactor

related(~2-3%), background related (~1-2%) and detector related(~1-2%)• far/near detector to cancel reactor errors• movable detectors, near far ?• optimum baseline • detector design threshold, fiducial volume, resolution, scintillator,

light transport, … • sufficient shielding • calibration• statistics

Typical precision: 3-6%

Page 29: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

xperi

Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USAChooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

Daya Bay, China

Page 30: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Currently Proposed sites/experiments

Site

(proposal)

Power

(GW)

Baseline

Near/Far (m)

Detector

Near/Far(t)

Overburden

Near/Far (MWE)

Sensitivity

(90%CL)

Angra dos Reis (Brazil)

4.1 300/1300 50/500 200/1700 0.007

Braidwood (US) 6.5 270/1800 25/50 450/450 0.01

Chooz-II (France) 8.4 150/1050 10/10 60/300 0.03

Daya Bay (China) 11.6 350/1800 20/40 250/1200 0.01

Diablo Canyon (US)

6.4 400/1800 25/50 100/700 0.01

Kashiwazaki (Japan)

24.3 350/1300 8.5/8.5 300/300 0.02

Krasnoyarsk (Russia)

3.2 115/1000 46/46 600/600 0.01

Page 31: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Sensitivities to Sin2213 @ 90%CL

Double Chooz

KASKA

BraidwoodDaya Bay

PowerBaselineDetectorOverburden

Page 32: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039
Page 33: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

rock

watermodule with 10

t Gd-doped liquid scintillator

Two veto detectors: Water + RPC multiple detector modules for

Redundancy is important to achieve <1% precision

Daya Bay experiment

Page 34: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Absolute neutrino masses

• β-decay:

(m ve)eff =[Σi | Uei |2 m2 vi

]1/2

• Endpoint of decays

3H → 3He + e- + e

E0 = 18.574 KeV

• Currently the best limit:

m< 2.2 eV @ 95%CL

• Katrin expected: m

< 0.3 eV @ 95%CL

Page 35: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Neutrino mass from

Cosmology

Data mi

@95%CL)*References

2dFGRS < 1.8 eV Elgaroy et al. PRL 89, 2002

WMAP+2dF+… < 0.7 eV Spergel et al. APJS 148,2003

WMAP+2dF < 1.0 eV Hannestad, JCPA 0305, 2003

XLF+WMAP+2dF+…

0.56+0.30 -0.26 eV Allen et al. MNRAS346(2003)

SDSS+WMAP < 1.7 eV Tegmark et al. PRD 69,2004

WMAP+ACBAR+

2dF+SDSS+…

< 1.0 eV Crotty et al. PRD 69,2004

*With different assumptions, fitting constrains and datasets

A strong constraint to LSND and Heidelberg-Moscow decay results

Page 36: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Continuous spectrum Monochromatic spectrum

decays : <Mee> = | Σi (Uei )2 m vi

|

Resolution and backgrounds are critical

Page 37: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

NEMO-03 first results

Ec1+Ec2 (keV)

DataMonte-CarloRadonMonte-CarloT1/2 = 3.5 1023

100Mo 6914 g

216.4 days4.10 kg.y

Ec1+Ec2 (keV)

100Mo: T1/2() > 3.5 1023 y (@90% C.L.) m < 0.7 – 1.2 eV82Se: T1/2() > 1.9 1023 y (@90% C.L.) m < 1.3 – 3.6 eV

3 m

4 mB (25 G)

20 sectorsLalanne’s talk

100Mo 6.914 kg

Q= 3034 keV

82Se 0.932 kg

Q= 2995 keV

Page 38: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Current 0 resultsNucleus Detector (kg yr) Present T1/2

0 (yr) <m> (eV)

48Ca >9.5*1021 (76%CL)76Ge† Ge diode ~30 >1.9*1025 (90%CL) < 0.39+0.17

-0.28

82Se Foils 0.5 >1.9*1023 (90%CL) <1.3-3.6100Mo foils 4.1 >3.5*1023 (90%CL) <0.7-1.2116Cd >7.0*1022 (90%CL)128Te TeO2

cryo~3 >1.1*1023 (90%CL)

130Te TeO2 cryo

~3 >2.1*1023 (90%CL) < 1.1 - 2.6

136Xe Xe TPC ~10 >1.2*1024 (90%CL) < 2.9150Nd >1.2*1021 (90%CL)160Gd >1.3*1021 (90%CL)

† Controversial claim of positive 0signal with m = .39 eV c.f. Klapdor-Kleingrothaus Mod. Phys Lett. A27 (2001) 2409

Page 39: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

EXO – a novel technology to remove backgrounds

• 136Xe 136Ba++ + 2e-

identified using optical spectroscopy

2P1/2

4D3/2

2S1/2

493nm

650nm

metastable 47s

30%

8 ns

850 m

Hz/bin

• Ions observed in .01 torr xenon

• Indefinite gas lifetime

• Trap dynamics dominate

• to be demonstrated in liquid or high

pressure gas environment

SNR ~100:1

S.Waldman’s talk

200 kg prototype underway

Page 40: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Strategy of the XMASS project

Dedicated detector forDouble beta decay search

~1 ton detector(FV 100kg)Dark matter search

~20 ton detector(FV 10ton)Solar neutrinosDark matter search

Prototype detector (FV 3kg) R&D

~2.5m~1m~30cm

NOW

Confirmation of feasibilities of the ~1 ton detectorAnalysis techniquesSelf shielding performanceLow background propertiesPurification techniques

Takeuchi’s talk

Page 41: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Future -decay experiments

Isotopes enrichment Mass

(t)

Sensitivity

(eV) (90%CL)

CUORE 130Te no 0.75 ~ 0.03

GENIUS 76Ge yes 0.1-1.0 ~ 0.01

Majorara 76Ge yes 0.42 ~ 0.02

MOON 100Mo yes 3.0 ~ 0.01

Super-NEMO 82Se yes 0.1 ~ 0.03

EXO 136Xe yes 10.0 ~ 0.01

A few of them will be realized

Page 42: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Direct searches of Neutrino magnetic moments

Finite mass Finite (e), SM: ~ 10-19 B

Enhanced by new physics

Signature: 1/T excess due to

-e scattering via channel

Sources: Kuo-Sheng reactor in Taiwan

Detector: 1Kg HPGe

No excess for ON/OFF

Limit:

e) < 1.3 10-10 B (90% CL)

Texono, Jin Li’s talk

22

11)(2

ETmedT

de

Page 43: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Current experimental limitsExperiments Up Limits @ 90% CL References

Texono e ) < 1.3 10-10 B PRL 90, 2003

MUNU e ) < 1.0 10-10 B PLB564, 2003

SK+all data + KamLAND ) < 1.1 10-10 B PRL93, 2004

Borexino ) <5.5 10-10 B PLB 563,2003

LSND e ) < 1.1 10-9 B

) < 6.8 10-10 B

PRD 63, 2001

DONUT ) < 3.9 10-7 B PLB 513, 2001

Future experimentsExperiments Sensitivity @ 90% CL Status

GEMMA e ) 3 10-11 B 2004

MAMONT e ) 2 10-12B R&D

Texono(ULEGe) e ) 2 10-11B R&D

Page 44: Non-accelerator-based neutrino experiments Yifang Wang Institute of High Energy Physics Beijing, 100039

Summary• Neutrino oscillations established

– Solar: m212 = (8.2+0.6

-0.5)10-3 eV2

tan212 = 0.40 +0.09-0.07 large but not maximal

– Atmospheric: m223 = (2.40.4)10-3 eV2

sin2223 > 0.92 @ 90%CL maximal – From global fit: sin2213 < 0.09 @ 90%CL

• Our next goal:– Absolute neutrino masses -decay experiments

– Dirac or majorana ? 0-decay experiments

– 13, CP and Mass hierarchy Reactor, Long baseline accelerator based experiments

A great success in the past A long way to go in the future