noisy-channel models: ii lecture 4 (part...

88
Noisy-channel models: II Lecture 4 (part 1) Klinton Bicknell & Roger Levy LSA Institute 2015 U Chicago 0 a/1 cat/3 sat/3 1 <eps>/1 a cat/2 sat/2 a/1 cat/3 sat/3 2 <eps>/3 a/2 cat sat/1 a/1 cat/3 sat/3 3 <eps>/3 a/2 cat/1 sat a/1 cat/3 sat/3

Upload: others

Post on 30-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Noisy-channel models: II Lecture 4 (part 1)

Klinton Bicknell & Roger Levy

LSA Institute 2015 U Chicago

0

a/1

cat/3

sat/3

1

<eps>/1

a

cat/2

sat/2

a/1

cat/3

sat/3

2

<eps>/3

a/2

cat

sat/1

a/1

cat/3

sat/3

3

<eps>/3

a/2

cat/1

sat

a/1

cat/3

sat/3

Page 2: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A new view of reading

2

• rich linguistic knowledge and perceptual input combine to identify text

• trade-off between prior probability and visual input: when linguistic context provides more information, need less perceptual input to be confident

Page 3: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A new view of reading

3

a new bottleneck in reading: gathering visual input

• eye movement decisions (how long to fixate, where to move next) made to get visual input (cf. Legge et al., 1997)

• get more perceptual information about a word by fixating it longer/more

• language system determines the most useful visual input to get-> when/where to move the eyes

• reading as active

• principled solution: optimal control, decision theory

Page 4: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

How would this link yield interesting linguistic effects?

4

look at quantitative predictions of this account for shape of linguistic effects via a computational model

trade-off between prior probability and visual input

efficient language users will make fewer and shorter fixations on words with high probability given context

efficient language users will be more likely to skip over words with high probability given context

Page 5: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A computational model

5

probabilistic inference

Bicknell & Levy (2010, 2012)

efficient eye movement control

realistic environment

Page 6: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A computational model

6

probabilistic inference

• combines visual information with probabilistic language knowledge using methods from computational linguistics

Bicknell & Levy (2010, 2012)

efficient compositionefficient inference: closed under

intersection with wFSAs

visual information as weighted finite-state automata (wFSAs)

0 1a:a/0.7b:b/0.3

2a:a/0.2b:b/0.8

3a:a/0.1b:b/0.9

<eps>:<eps>

probabilistic language knowledge

PCFG: S -> NP VP / 0.9

S -> S Conj S / 0.05

n-grams: p(York|New) = .4p(Brunswick|New) = .01

abb

Page 7: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A computational model

7

efficient eye movement control

• determines efficient eye movement behavior in response to incremental comprehension using machine learning methods

• to maximize reward R, a linear function of speed and accuracy

• first-cut accuracy: log probability of sentence string under model beliefs after reading

• parameterized behavior policies control the eyes

• determine parameters that maximize R using reinforcement learning (PEGASUS algorithm, Ng & Jordan, 2000)

Bicknell & Levy (2010, 2012)

fit model behavior to maximize reward, not fit

Page 8: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A computational model

8

realistic environment

• embed model in realistic environment using findings from psychophysics and oculomotor control

• exponentially decreasing visual acuity

• saccade initiation delays

• normally-distributed motor error

Bicknell & Levy (2010, 2012)

Page 9: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A computational model

9

probabilistic inference

Bicknell & Levy (2010, 2012)

efficient eye movement control

realistic environment

Page 10: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Model simulation results

10

methods

• evaluate model on human effects of word frequency and predictability

• frequency: word's overall rate of occurrence in language

• more frequent: dog

• less frequent: parsnip

• predictability: probability of word in context

• more predictable: The children went outside to play …

• less predictable: My friend really likes to play …Bicknell & Levy (2012)

Page 11: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Model simulation results

11

methods

• simulate model reading typical psycholinguistic sentences

• analyze three word-based eye movement measures

• only fit one free parameter of model (visual input rate) to match average human word reading time. (others fit to optimize reading efficiency)

• any match to effect shape falls out of principles of efficient identification and linguistic structure

Bicknell & Levy (2012)

Page 12: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Model simulation results

12

frequency predictability

Bicknell & Levy (2012)

gaze duration: total duration of all fixations on word

human model

250

275

300

325

−6−5−4−3−2 −6−5−4−3−2Log frequency

Gaz

e du

ratio

n (m

s)

human model

225

250

275

300

325

−6 −4 −2 0−6 −4 −2 0Log predictability

Gaz

e du

ratio

n (m

s)

Page 13: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Model simulation results

13

frequency predictability

Bicknell & Levy (2012)

refixation probability: probability of making more than one fixation on the word

human model

0.00

0.05

0.10

0.15

0.20

−6−5−4−3−2 −6−5−4−3−2Log frequency

Ref

ixat

ion

prob

abilit

y

human model

0.00

0.05

0.10

0.15

0.20

0.25

−6 −4 −2 0−6 −4 −2 0Log predictability

Ref

ixat

ion

prob

abilit

y

Page 14: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Model simulation results

14

frequency predictability

Bicknell & Levy (2012)

skipping probability: probability of not directly fixating word

human model

0.2

0.4

0.6

−6−5−4−3−2 −6−5−4−3−2Log frequency

Skip

ping

pro

babi

lity

human model

0.2

0.4

0.6

−6 −4 −2 0−6 −4 −2 0Log predictability

Skip

ping

pro

babi

lity

Page 15: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Model simulation results

15

predictability Bicknell & Levy (2012)

human model

250

275

300

325

−6−5−4−3−2 −6−5−4−3−2Log frequency

Gaz

e du

ratio

n (m

s)

human model

0.00

0.05

0.10

0.15

0.20

−6−5−4−3−2 −6−5−4−3−2Log frequency

Ref

ixat

ion

prob

abilit

y

human model

0.2

0.4

0.6

−6−5−4−3−2 −6−5−4−3−2Log frequency

Skip

ping

pro

babi

lity

human model

225

250

275

300

325

−6 −4 −2 0−6 −4 −2 0Log predictability

Gaz

e du

ratio

n (m

s)

human model

0.00

0.05

0.10

0.15

0.20

0.25

−6 −4 −2 0−6 −4 −2 0Log predictability

Ref

ixat

ion

prob

abilit

y

human model

0.2

0.4

0.6

−6 −4 −2 0−6 −4 −2 0Log predictability

Skip

ping

pro

babi

lity

frequency

predicts shape of all effects

Page 16: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Part One: Summary

16

• implemented model efficiently controlling eyes to gather perceptual info for text identification

• model well predicts shape of linguistic effects on eye movements, fitting only one parameter to average reading time

• provides motivated reason why linguistic effects appear on eye movements in reading

• reason is not because language processing operations take substantial time (in fact, they are instant in the model)

Page 17: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

probabilistic inference

Reading

17

rich probabilistic language knowledge

probabilistic inference[perceptual input]

likelihood prior

rational action

[comprehension behavior]Get more input about words with low prior probability given context [cf. surprisal]

principle:

beliefs about identity of the text

Page 18: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Part Two

18

Viewing reading as visual information gathering solves the puzzle of regressions.

Page 19: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

The puzzle

19 movie by Piers Cornelissen

Why would it be useful to regress to previous words so often?

~10% of saccades move the eyes back (‘regress’) to previous words

Page 20: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A solution

20

confidence falling

p(jacket)=.9 → p(jacket)=.4

p(racket)=.1 → p(racket)=.6

p(packet)=.0 → p(packet)=.0

confidence high → confidence low

‘From the closet, she pulled out a #acket for the upcoming match’‘From the closet, she pulled out a #acket …’

Bicknell & Levy (2010)

Maybe regressions an effective way to deal with this?

Page 21: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

−3

−2

−1

2.00 2.25 2.50 2.75 3.00 3.25Sentence reading time (sec)

Accu

racy

(Log

pro

babi

lity)

non−regressiveregressive

A solution

21

simulations

• compare behavior policies that make regressions to those that don't

• regressive policies are strictly more efficient (both faster and more accurate)

Bicknell & Levy (2010)

but do humans make regressions when confidence falls?

Page 22: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Human regressions

22

methods

• Dundee corpus: large corpus of eye movements reading newspaper editorials [Kennedy & Pynte, 2005]

• derived broad coverage measure of confidence falling: ∆c

• ∆c = log frequency - log predictability (ask me about the derivation!)

• logistic mixed-effects regression model predicting whether or not the eyes will make a regression to a previous word

[statistics]

[eyes]

Bicknell & Levy (2011)

Page 23: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Human regressions

23

methods

• predictors

• ∆c for current word (wordn) & previous word (wordn-1) for late-triggered regressions

• variables suggested by other accounts of regressions (frequency, length, landing position, saccade length, fixation duration)

• predict more regressions for high ∆c (on either word)

Bicknell & Levy (2011)

Page 24: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Human regressions

24

(Log) Saccade lengthWord n−1 fix. dur.

Word n fix. dur.Word n−1 land. pos.

Word n land. pos.(Log) Word n−1 length

(Log) Word n−1 freq.Word n−1 Delta_c

(Log) Word n length(Log) Word n freq.

Word n Delta_c

−0.4 0.0 0.4 0.8Standardized coefficient estimate

Pred

icto

r

Relevant for today

• more regressions when current word or previous word makes confidence fall

• confidence falling one of most reliable predictors

Bicknell & Levy (2011)

Page 25: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Part Two: Summary

25

explaining regressions

• efficient reader will update uncertain beliefs about prior material on the basis of new input: confidence falling

• confidence falling & regressions

• regressions help make reading more efficient

• confidence falling explains short-range regressions in naturalistic text

• can differentiate types of ‘processing difficulty’

• words of low prior probability -> more/longer fixations

• losing confidence in prior material -> regressions

Page 26: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Reading

26

rich probabilistic language knowledge

probabilistic inference[perceptual input]

likelihood prior

rational action

[comprehension behavior]

1. Get more input about words with low prior probability given context [cf. surprisal]

2. Regress to previous words if confidence about them falls [cf. EIS]

principles:

beliefs about identity of the text

Page 27: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Summary

27

This part of today's lecture argued that comprehension is well understood as

probabilistic inference on noisy perceptual input.

Page 28: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Conclusion

28

what this buys us

• part 1: a solution to the problem of local coherences

• they change beliefs about what readers thought they saw (EIS)

• part 2: a principled reason why reading times on a word should be well described by surprisal

• need less visual information to be confident in identity of words that have high contextual probability

• part 3: a principled reason why readers should make regressions

• language often makes readers doubt what they thought they saw

Page 29: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Conclusion

29

lots more recent work in this area (papers on class website)

• Gibson et al. (2013): evidence for noisy-channel inferences about what sentences mean

• "The ball kicked the girl" can mean "The girl kicked the ball"

• Lewis et al. (2013): evidence that readers rationally change their eye movement control given their goal functions (as predicted by a computational model)

Page 30: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Probabilistic models of language acquisitionLecture 4 (part 2)

Klinton Bicknell & Roger Levy

LSA Institute 2015University of Chicago

Page 31: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Situating language acquisition

31

day 1: sound categorization

−20 0 20 40 60 80

0.00

00.

005

0.01

00.

015

0.02

00.

025

0.03

0

VOT

Prob

abilit

y de

nsity

/b/ /p/

27

Figure 5.2: Likelihood functions for /b/–/p/ phoneme categorizations, with µb =0, µp = 50, σb = σp = 12. For the inputx = 27, the likelihoods favor /p/.

−20 0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

VOT

Post

erio

r pro

babi

lity o

f /b/

Figure 5.3: Posterior probability curvefor Bayesian phoneme discrimination asa function of VOT

the conditional distributions over acoustic representations, Pb(x) and Pp(x) for /b/ and/p/ respectively (the likelihood functions), and the prior distribution over /b/ versus /p/.We further simplify the problem by characterizing any acoustic representation x as a singlereal-valued number representing the VOT, and the likelihood functions for /b/ and /p/ asnormal density functions (Section 2.10) with means µb, µp and standard deviations σb, σp

respectively.Figure 5.2 illustrates the likelihood functions for the choices µb = 0, µp = 50, σb = σp =

12. Intuitively, the phoneme that is more likely to be realized with VOT in the vicinity of agiven input is a better choice for the input, and the greater the discrepancy in the likelihoodsthe stronger the categorization preference. An input with non-negligible likelihood for eachphoneme is close to the “categorization boundary”, but may still have a preference. Theseintuitions are formally realized in Bayes’ Rule:

P (/b/|x) = P (x|/b/)P (/b/)

P (x)(5.10)

and since we are considering only two alternatives, the marginal likelihood is simply theweighted sum of the likelihoods under the two phonemes: P (x) = P (x|/b/)P (/b/) +P (x|/p/)P (/p/). If we plug in the normal probability density function we get

P (/b/|x) =1√2πσ2

b

exp!− (x−µb)2

2σ2b

"P (/b/)

1√2πσ2

b

exp!− (x−µb)2

2σ2b

"P (/b/) + 1√

2πσ2p

exp!− (x−µp)2

2σ2p

"P (/p/)

(5.11)

In the special case where σb = σp = σ we can simplify this considerably by cancelling the

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 85

Page 32: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Situating language acquisition

32

S!

c! category

sound value

• c ~ discrete choice, e.g., p(p) = p(b) = 0.5

• S|c ~ Gaussian(μc, σ2c)

day 1: inferring sound category c from sound token S

Page 33: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Statistical  Model

day 2a: sound similarity

Page 34: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Statistical  Model

c

S

Choose a category c with probability p(c)

Articulate a target production T with probability p(T|c)

Listener hears speech sound S with probability p(S|T)

Tp(T |c) = N(µc,�

2c )

p(S|T ) = N(T,�2S)

day 2a: inferring target production T from sound token S

Page 35: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Statistical  Model

day 2b: incremental parsing

Garden path models 2

• The most famous garden-paths: reduced relative clauses (RRCs) versus main clauses (MCs)

• From the valence + simple-constituency perspective, MC and RRC analyses differ in two places:

The horse raced past the barn fell.

(that was)

Page 36: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Statistical  Model

w

T ~ PCFG

words are leaves of the trees

T

day 2b: inferring syntactic structure T from words w

Page 37: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Statistical  Model

day 3a: noisy channel sentence processing

The coach smiled at the player tossed the frisbee The coach smiled at the player thrown the frisbee The coach smiled toward the player tossed the frisbee The coach smiled toward the player thrown the frisbee

Page 38: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Statistical  Model

a tree T ~ PCFG

words are leaves of the tree

visual input I ~ noise(w)

T

I

w

day 3a: inferring words w and trees T from perceptual input I

Page 39: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Situating language acquisition

39

day 3b: sentence meaning judgments

Page 40: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Situating language acquisition

40

day 3b: inferring meaning M from linguistic form F and processing pressures P

M P

F

F ~ function(M, P)

Page 41: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Situating language acquisition

41

in all these cases

• step 1: identify the relevant sources of information

• step 2: make a generative model in which

• the thing to be inferred was a latent variable

• the relevant information was used to specify a prior for the latent variable or the likelihood of the data given that latent variable

• step 3: apply Bayesian inference (relatively easy here: given prior and likelihood)

Page 42: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

42

step 1

let's apply step 1 (identify relevant information sources) to problems in acquisition

Page 43: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

43

learning to segment words

[yuwanttusiðəbʊk]?

-> you want to see the book?

[e.g., Goldwater et al., 2009]

Page 44: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

44

learning word meanings

[e.g., Frank et al., 2009]

Page 45: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

45

learning phonotactics

[blɪk]

[mdwɨ] Polish mdły: 'tasteless'

[e.g., Hayes & Wilson, 2008]

Page 46: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

46

learning syntax

The boy is hungry. -> Is the boy hungry?

The boy who is smiling is happy. -> ???

Is the boy who is smiling happy?

*Is the boy who smiling is happy?

[e.g., Perfors et al., 2011]

Page 47: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

47

learning the sound categories in the language from the sounds

• are long VOTs [t] and short VOTs [d] functionally different sounds or just natural variation?

[e.g., Pajak et al., 2013]

Page 48: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

Problems in acquisition

48

steps 2 and 3: construct a generative model, perform inference

• a bit different than before

• we'll go in depth through an example of sound category learning

• note: much of the work we'll be discussing is by Dr. Bożena Pająk (now a learning scientist at Duolingo), who also made many of the visualizations you'll see

Page 49: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

learning sound categories

• how do we learn that [t] and [d] are different categories?

• information source 1: distributional information

Distributional information

49

VOT

Page 50: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

experimental evidence

• we know that babies and adults use distributional information to help infer category structure [Maye & Gerken, 2000; Maye et al., 2002]

• Pajak & Levy (2011) performed an experiment replicating this with adults, which I'll describe

Distributional information

50

/s/ /ss/ length

sound&class:&FRICATIVES&

singleton) geminate)

Page 51: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

51

Experimental  data  (Pajak  &  Levy  2011)

▪ Distributional  training:    ▪ adult  English  native  speakers  exposed  to  words  in  a  new  language,  

where  the  middle  consonant  varied  along  the  length  dimension

                 [aja]145ms                    [ina]205ms                    [ila]115ms                    [ama]160ms  

Page 52: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

52

Experimental  data  (Pajak  &  Levy  2011)

0

4

8

12

16

0

4

8

12

16

Expt1:sonorantsExpt2:fricatives

100 120 140 160 180 200 220 240 260 280Stimuli length continuum (in msec)

Fam

iliariz

atio

n fre

quen

cy

bimodalunimodal

Page 53: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

53

▪ Testing:  ▪ participants  made  judgments  about  pairs  of  words  

▪ dependent  measure:  proportion  of  ‘different’  responses  (as  opposed  to  ‘same’)  on  ‘different’  trials  

▪ if  learning  is  successful,  we  expect:

Example: [ama]-[amma] “Are these two different words in this language or two repetitions of the same word?”

Experimental  data  (Pajak  &  Levy  2011)

‘DIFFERENT’  RESPONSES

Bimodal  training Unimodal  training>

Page 54: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

54

Experimental  data  (Pajak  &  Levy  2011)

0

4

8

12

16

0

4

8

12

16

Expt1:sonorantsExpt2:fricatives

100 120 140 160 180 200 220 240 260 280Stimuli length continuum (in msec)

Fam

iliariz

atio

n fre

quen

cy

bimodalunimodal

test stimuli

Page 55: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

55

Experimental  data  (Pajak  &  Levy  2011)

Expt1−trained Expt1−untrained

Prop

ortio

n of

'diff

eren

t' re

spon

ses

0.0

0.2

0.4

0.6

0.8

1.0

BimodalUnimodal

Page 56: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

distributional information is used

• adults and babies use distributional information to infer categories

• next steps: put this information into a generative model and perform inference

Distributional information

56

Page 57: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

A generative model

57

our model from before of where sounds come from

S!

c! category

sound value

• c ~ discrete choice, e.g., p(p) = p(b) = 0.5

• S|c ~ Gaussian(μc, σ2c)

VOT

still pretty appropriate!

Page 58: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

a model of where categories and sounds come from

58

y

µΣ

m

n

(a) Simple model

y

µΣ

α

m

n

(b) Bayesian model priorsover category parameters

y

µΣ

Σφ

α

m

n

(c) Learning category proba-bilities as well

Figure 9.3: Graphical model for simple mixture of Gaussians

−5 0 5 10

0.0

0.1

0.2

0.3

0.4

x

P(x)

Figure 9.4: The generative mixture of Gaussians in one dimension. Model parameters are:φ1 = 0.35, µ1 = 0, σ1 = 1, µ2 = 4, σ2 = 2.

θ = ⟨φ,µ,Σ⟩. This model is known as a mixture of Gaussians, since the observa-tions are drawn from some mixture of individually Gaussian distributions. An illustrationof this generative model in one dimension is given in Figure 9.4, with the Gaussian mixturecomponents drawn above the observations. At the bottom of the graph is one sample fromthis Gaussian mixture in which the underlying categories are distinguished; at the top of thegraph is another sample in which the underlying categories are not distinguished. The rela-tively simple supervised problem would be to infer the means and variances of the Gaussianmixture components from the category-distinguished sample at the bottom of the graph; themuch harder unsupervised problem is to infer these means and variances—and potentiallythe number of mixture components!—from the category-undistinguished sample at the topof the graph. The graphical model corresponding to this unsupervised learning problem isgiven in Figure 9.3a.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 210

y ~ N(μi, Σi)i ~ discrete(ϕ)

(S before)(c before)

n = # observationsm = # categories

(σ2 before)

ϕ ~ distribution()μi ~ distribution()Σi ~ distribution()

A generative model

'mixture of Gaussians' made up!}set in

advance

Page 59: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

final step: inference

• now we have generative model with prior on variables of interest and well-defined likelihood

• but inference is usually quite hard

• two common classes of methods for inference, which I'll describe now

59

Inference

Page 60: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

inference method 1: Expectation Maximization (EM)

• if we knew the category parameters (means, variance, probability), it would be easy to categorize datapoints like before

• if we knew how the datapoints were categorized, it would be easy to find category parameters

• Q: how?

• idea behind EM:

• randomly initialize category assignments of datapoints

• estimate category parameters from current assignments

• now assign datapoints to categories based on category parameters

• estimate category parameters from current assignments

• …60

Inference

Page 61: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

EM illustrations (on board)

• bimodal data

• two categories

61

Inference

Page 62: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

EM issues

• only finds most likely value for variables, not posterior distribution on them

• can get stuck in 'local optima'

62

Inference

Page 63: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

inference method 2: Markov chain Monto Carlo

• like EM, the model is in some state at each point in time (with current guesses for latent variables)

• like EM, the model transitions between states

• unlike EM, the model sometimes moves to lower probability states

• if you calculate the transition probabilities correctly, the amount of time the model spends in each state is proportional to its posterior probability

• thus: don't just get most likely variables out, but full posterior distribution

• also: guaranteed to converge (not getting stuck in local optima)

• however, this guarantee is only with infinite time…

63

Inference

Page 64: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

mixture of Gaussian models to learn phonetic categories

• many groups have had success, at least on simple problems (Vallabha et al., 2007; McMurray et al., 2009; Feldman et al., 2009)

• but it seems clear that other information sources are needed too, because categories overlap too much

• next up: work by Pajak and colleagues on another information source

64

Modeling category learning

Page 65: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

normally not considered part of the phonetic inventory of the Bulgarian language. The Bulgarian obstruentconsonants are divided into 12 pairs voiced<>voiceless on the criteria of sonority. The only obstruent withouta counterpart is the voiceless velar fricative /x/. The contrast 'voiced vs. voiceless' is neutralized in word-finalposition, where all obstruents are voiceless (as in most Slavic languages); this neutralization is, however, notreflected in the spelling.

BilabialLabio-

dental

Dental/

Alveolar

Post-

alveolarPalatal Velar

Nasalhard m (ɱ) n (ŋ)soft mʲ ɲ

Plosivehard p b t d k ɡsoft pʲ bʲ tʲ dʲ c ɟ

Affricatehard ts͡ (d͡z) tʃ͡ d͡ʒsoft ts͡ʲ (d͡zʲ)

Fricativehard f v s z

ʃ ʒx (ɣ)

soft fʲ vʲ sʲ zʲ (xʲ)

Trillhard rsoft rʲ

Approximant

hard (w)soft j

Lateral

hard ɫ (l)soft ʎ

^1 According to Klagstad Jr. (1958:46–48), /t tʲ d dʲ s sʲ z zʲ n/ are dental. He also analyzes /ɲ/ as palatalizeddental nasal, and provides no information about the place of articulation of /ts͡ ts͡ʲ r rʲ l ɫ/.

^2 Only as an allophone of /m/ and /n/ before /f/ and /v/. Examples: инфлация [iɱˈflaʦijɐ] 'inflation'.[5]

^3 As an allophone of /n/ before /k/ and /g/. Examples: тънко [ˈtɤŋko] 'thin' (neut.), танго [tɐŋˈgɔ] 'tango'.[6]

^4 /ɣ/ exists as an allophone of /x/ only at word boundaries before voiced obstruents. Example: видях го [viˈdʲaɣgo] 'I saw him'.[7]

^5 Not a native phoneme, but appears in borrowings from English.

^6 /l/ can be analyzed as an allophone of /ɫ/ as it appears only before front vowels. A trend of l-vocalization isemerging among younger native speakers and more often in colloquial speech.

Hard and palatalized consonants

 

BULGARIAN  consonants  

1  

What  may  help  solve  this  problem  

(Wikipedia:  Bulgarian  phonology)  

VOICING  PALATALIZATION  

§  Learning  may  be  facilitated  by  languages’  extensive  re-­‐use  of  a  set  of  phoneAc  dimensions  (Clements  2003)  

 

Page 66: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  Learning  may  be  facilitated  by  languages’  extensive  re-­‐use  of  a  set  of  phoneAc  dimensions  (Clements  2003)  

 

2  

What  may  help  solve  this  problem  

(Wikipedia:  Thai  language)  

Monophthongs of Thai. From Tingsabadh& Abramson (1993:25)

Diphthongs of Thai. From Tingsabadh &Abramson (1993:25)

Front Back

unrounded unrounded rounded

short long short long short long

Close/i/ -ิ

/iː/ -ี

/ɯ/ -ึ

/ɯː/ -ื-

/u/ -ุ

/uː/ -ู

Close-mid/e/เ-ะ

/eː/เ-

/ɤ/เ-อะ

/ɤː/เ-อ

/o/โ-ะ

/oː/โ-

Open-mid/ɛ/แ-ะ

/ɛː/แ-

/ɔ/เ-าะ

/ɔː/-อ

Open /a/

-ะ, -ั-/aː/-า

The vowels each exist in long-short pairs: these are distinct phonemes forming unrelated words in Thai,[12] butusually transliterated the same: เขา (khao) means "he" or "she", while ขาว (khao) means "white".

The long-short pairs are as follows:

Long Short

Thai IPA Example Thai IPA Example

–า /aː/ ฝาน /fǎːn/ 'to slice' –ะ /a/ ฝน /fǎn/ 'to dream'

–ี /iː/ กรีด /krìːt/ 'to cut' –ิ /i/ กริช /krìt/ 'kris'

–ู /uː/ สูด /sùːt/ 'to inhale' –ุ /u/ สุด /sùt/ 'rearmost'

เ– /eː/ เอน /ʔēːn/ 'to recline' เ–ะ /e/ เอ็น /ʔēn/ 'tendon, ligament'

แ– /ɛː/ แพ /pʰɛ́ː / 'to be defeated' แ–ะ /ɛ/ แพะ /pʰɛʔ́/ 'goat'

–ื- /ɯː/ คล่ืน /kʰlɯ̂ːn/ 'wave' –ึ /ɯ/ ข้ึน /kʰɯ̂n/ 'to go up'

เ–อ /ɤː/ เดิน /dɤ̄ː n/ 'to walk' เ–อะ /ɤ/ เงิน /ŋɤn̄/ 'silver'

โ– /oː/ โคน /kʰôːn/ 'to fell' โ–ะ /o/ ขน /kʰôn/ 'thick (soup)'

–อ /ɔː/ กลอง /klɔːŋ/ 'drum' เ–าะ /ɔ/ กลอง /klɔŋ̀/ 'box'

The basic vowels can be combined into diphthongs. Tingsabadh &Abramson (1993) analyze those ending in high vocoids as underlyingly/Vj/ and /Vw/. For purposes of determining tone, those marked with anasterisk are sometimes classified as long:

 

THAI  vowels      

LENGTH  

Page 67: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  Learning  may  be  facilitated  by  languages’  extensive  re-­‐use  of  a  set  of  phoneAc  dimensions  (Clements  2003)  

§  ExisAng  experimental  evidence  supports  this  view  §  both  infants  and  adults  generalize  newly  learned  phoneAc  category  disAncAons  to  untrained  sounds  along  the  same  dimension  (McClaskey  et  al.  1983,  Maye  et  al.  2008,  Perfors  &  Dunbar  2010,  Pajak  &  Levy  2011)  

3  

What  may  help  solve  this  problem  

/s/ /ss/ length

singleton   geminate  

/n/ /nn/ length

voicing /b/ /p/  

voicing /g/ /k/ voiced   voiceless  

Page 68: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  What  are  the  mechanisms  underlying  generalizaAon?  §  How  do  learners  make  use  of  informaAon  about  some  

phoneAc  categories  when  learning  other  categories?  

/s/ /ss/ length

/n/ /nn/ length

4  

How  do  people  learn  phoneAc  categories?  

Page 69: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

How  do  people  learn  phoneAc  categories?  

§  Pajak  et  al.’s  proposal:  §  in  addiAon  to  learning  specific  categories,  people  also  

learn  category  types  

/s/ /ss/ length /n/ /nn/ length

5  

singleton  <-­‐>  geminate  

Page 70: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  Experimental  data  illustraAng  generalizaAon  across  analogous  disAncAons  (from  Pajak  &  Levy  2011)  

§  Our  computaAonal  proposal  for  how  this  kind  of  generalizaAon  might  be  accomplished  

§  SimulaAons  of  Pajak  &  Levy’s  data  

6  

outline  

Page 71: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

7  

Experimental  data  (Pajak  &  Levy  2011)  

/s/ /ss/ length

sound  class:  FRICATIVES  

/n/ /nn/ length

sound  class:  SONORANTS  

singleton   geminate  

Page 72: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

8  

Experimental  data  (Pajak  &  Levy  2011)  

§  DistribuAonal  training:    §  adult  English  naAve  speakers  exposed  to  words  in  a  new  language,  where  the  middle  consonant  varied  along  the  length  dimension  

                 [aja]145ms                    [ina]205ms                    [ila]115ms                    [ama]160ms  

…  

Page 73: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

9  

0

4

8

12

16

0

4

8

12

16

Expt1:sonorantsExpt2:fricatives

100 120 140 160 180 200 220 240 260 280Stimuli length continuum (in msec)

Fam

iliariz

atio

n fre

quen

cy

bimodalunimodal

[n]-­‐…-­‐[nn]  [m]-­‐…-­‐[mm]  [l]-­‐…-­‐[ll]  [j]-­‐…-­‐[jj]  

[s]-­‐…-­‐[ss]  [f]-­‐…-­‐[ff]  [ʃ]-­‐…-­‐[ʃʃ]  [θ]-­‐…-­‐[θθ]  

this  difference  reflects  natural  distribuYons  of  length  in  different  sound  classes  

Experimental  data  (Pajak  &  Levy  2011)  Training  

Page 74: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

10  

§  TesAng:  §  parAcipants  made  judgments  about  pairs  of  words  

 

 §  dependent  measure:  proporAon  of  ‘different’  responses  (as  opposed  to  ‘same’)  on  ‘different’  trials  

§  if  learning  is  successful,  we  expect:  

   

§  to  assess  generalizaAon,  tesAng  included  both  trained  and  untrained  sound  classes  (i.e.,  both  sonorants  and  fricaAves)  

Example: [ama]-[amma] “Are these two different words in this language or two repetitions of the same word?”

 

Experimental  data  (Pajak  &  Levy  2011)  

‘DIFFERENT’  RESPONSES  

Bimodal  training   Unimodal  training  >  

Page 75: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

0

4

8

12

16

0

4

8

12

16

Expt1:sonorantsExpt2:fricatives

100 120 140 160 180 200 220 240 260 280Stimuli length continuum (in msec)

Fam

iliariz

atio

n fre

quen

cy

bimodalunimodal

11  

[n]-­‐…-­‐[nn]  [m]-­‐…-­‐[mm]  [l]-­‐…-­‐[ll]  [j]-­‐…-­‐[jj]  

[s]-­‐…-­‐[ss]  [f]-­‐…-­‐[ff]  [ʃ]-­‐…-­‐[ʃʃ]  [θ]-­‐…-­‐[θθ]  

untrained  sound  class  (e.g.,  ama-­‐amma)  

trained  sound  class  (e.g.,  asa-­‐assa)  

EXPT  1:  ALIGNED  CATEGORIES  

EXPT  2:  MISALIGNED  CATEGORIES  

TesYng  

Experimental  data  (Pajak  &  Levy  2011)  

x  

trained  sound  class  (e.g.,  ama-­‐amma)  untrained  sound  class  (e.g.,  asa-­‐assa)  untrained  sound  class  (e.g.,  asa-­‐assa)  

x  

Page 76: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

12  

Expt1−trained Expt1−untrained

Prop

ortio

n of

'diff

eren

t' re

spon

ses

0.0

0.2

0.4

0.6

0.8

1.0

BimodalUnimodal

Expt2−trained Expt2−untrained

Prop

ortio

n of

'diff

eren

t' re

spon

ses

0.0

0.2

0.4

0.6

0.8

1.0

BimodalUnimodal

EXPT  1:  ALIGNED  CATEGORIES  

EXPT  2:  MISALIGNED  CATEGORIES  

Experimental  data  (Pajak  &  Levy  2011)  

learning  generalizaYon  

trained  untrained  

trained  untrained  

Page 77: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

ComputaAonal  modeling  

① How  can  we  account  for  distribuAonal  learning?  

② How  can  we  account  for  generalizaAon  across  sound  classes?  

13  

Page 78: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  Mixture  of  Gaussians  approach  (de  Boer  &  Kuhl  2003,  Vallabha  et  al.  2007,  McMurray  et  al.  2009,  Feldman  et  al.  2009,  Toscano  &  McMurray  2010,  Dillon  et  al.  2013)  

14  

Modeling  phoneYc  category  learning  

zi

di i 2 {1..n}

datapoint  (perceptual  

token)  

phoneAc  category  

di ⇠N (µzi ,s2zi)

length /s/ /ss/

μs,  σs2   μss,  σss2  

120ms      201ms      165ms      182ms      115ms  …  

inference  

Page 79: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

H

G0g

zi

di i 2 {1..n}

§  Our  general  approach  (following  Feldman  et  al.  2009):  §  learning  via  nonparametric  Bayesian  inference  §  using  Dirichlet  processes,  which  allow  the  model  to  learn  the  number  of  categories  from  the  data  

15  

Modeling  phoneYc  category  learning  

datapoint  (perceptual  

token)  

phoneAc  category  

H : µ ⇠ N (µ0,s2

k0)

s2 ⇠ InvChiSq(n0,s20 )

G0 ⇠ DP(g,H)zi ⇠ G0di ⇠ N (µzi ,s2

zi)

prior  

/s/ /ss/

μs,  σs2   μss,  σss2  

length /s/ /ss/

μs,  σs2   μss,  σss2  

x  

x  

x  

x  

Page 80: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

ComputaAonal  modeling  

① How  can  we  account  for  distribuAonal  learning?  

② How  can  we  account  for  generalizaAon  across  sound  classes?  

16  

✓  ① How  can  we  account  for  distribuAonal  learning?  

② How  can  we  account  for  generalizaAon  across  sound  classes?  

Page 81: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  In  addiAon  to  acquiring  specific  categories,  learners  infer  category  types,  which  can  be  shared  across  sound  classes  

§  This  means  that  already  learned  categories  can  be  directly  re-­‐used  to  categorize  other  sounds  

§  To  implement  this  proposal,  we  use  a  hierarchical  Dirichlet  process,  which  allows  for  sharing  categories  across  data  groups  (here,  sound  classes)  

17  

Proposal  

/s/ /ss/ length /n/ /nn/ length

singleton  <-­‐>  geminate  

fricaYves   sonorants  

Page 82: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

H

G0g

Gca0

zic

dic i 2 {1..nc}c 2 C

18  

Modeling  generalizaYon:  HDP  

prior  

datapoint  (perceptual  

token)  

phoneAc  category  

sound  class  

fricaYves  

length /s/ /ss/

sg gem

c  =  fricaYves    

son-sg son-gem

H : µ ⇠ N (µ0,s2

k0)

s2 ⇠ InvChiSq(n0,s20 )

G0 ⇠ DP(g,H)Gc ⇠ DP(a0,G0)zic ⇠ Gc

dic ⇠ N (µzic ,s2zic)

c  =  sonorants    

fric-sg fric-gem

μfric-­‐sg  σfric-­‐sg2  

μfric-­‐gem  σfric-­‐gem2  

/n/ /nn/ length

sonorants  

x  

x  

x  

x  

x  x  

x  

x  

x  

Page 83: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

§  But  people  are  able  to  generalize  even  when  analogous  category  types  are  implemented  phoneAcally  in  different  ways  

§  We  want  the  model  to  account  for  potenAal  differences  between  sound  classes  

19  

Modeling  generalizaYon:  HDP  

length /s/ /ss/

fricaYves  

length /n/ /nn/

sonorants  

Page 84: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

H

G0g

Gca0

zic

dic

fc

s f

i 2 {1..nc}c 2 C

20  

Modeling  generalizaYon:  HDP  AccounAng  for  differences  between  sound  classes:  

prior  

datapoint  (perceptual  

token)  

phoneAc  category  

sound  class  

learnable  class-­‐specific  ‘offsets’  by  which  data  in  a  class  are  shioed  along  a  phoneAc  dimension  (cf.  Dillon  et  al.  2013)  

H : µ ⇠ N (µ0,s2

k0)

s2 ⇠ InvChiSq(n0,s20 )

G0 ⇠ DP(g,H)Gc ⇠ DP(a0,G0)zic ⇠ Gc

fc ⇠ N (0,s2f )

dic ⇠ N (µzic ,s2zic)+ fc

fricaYves  

length /s/ /ss/

length

sonorants  

/n/ /nn/

Page 85: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

21  

SimulaYon  results  

trained untrained

0.00

0.25

0.50

0.75

1.00

bim

odal

unim

odal

bim

odal

unim

odal

Prop

ortio

n of

2−c

ateg

ory

infe

renc

es

Extended model:Experiment 2

trained untrained

0.00

0.25

0.50

0.75

1.00

bim

odal

unim

odal

bim

odal

unim

odal

Prop

ortio

n of

2−c

ateg

ory

infe

renc

esExtended model:

Experiment 1EXPT  1:  ALIGNED  CATEGORIES  

EXPT  2:  MISALIGNED  CATEGORIES  

Expt1−trained Expt1−untrained

Prop

ortio

n of

'diff

eren

t' re

spon

ses

0.0

0.2

0.4

0.6

0.8

1.0

BimodalUnimodal

Expt2−trained Expt2−untrained

Prop

ortio

n of

'diff

eren

t' re

spon

ses

0.0

0.2

0.4

0.6

0.8

1.0

BimodalUnimodal

HUMAN  DATA  

trained  untrained  

trained  untrained  

Page 86: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

other work on category learning

• Feldman et al. (2009) add a (latent) lexicon to category learning

66

Modeling category learning

1000150020002500

300

400

500

600

700

800

900

Second Formant (Hz)

First

Fo

rma

nt (H

z)

Vowel Categories (Men)(a)

i

ɪ

e

ɛ

ɝ

æ

u

ʊo

ɔ

a

ʌ

1000150020002500

300

400

500

600

700

800

900Second Formant (Hz)

Firs

t For

man

t (H

z)

Lexical−Distributional Model(b)

1000150020002500

300

400

500

600

700

800

900Second Formant (Hz)

Firs

t For

man

t (H

z)

Distributional Model(c)

1000150020002500

300

400

500

600

700

800

900

Firs

t For

man

t (H

z)

Second Formant (Hz)

Gradient Descent Algorithm(d)

Figure 3: Ellipses delimit the area corresponding to 90%of vowel tokens for Gaussian categories (a) computed frommen’s vowel productions from Hillenbrand et al. (1995) andlearned by the (b) lexical-distributional model, (c) distribu-tional model, and (d) gradient descent algorithm.

boring vowel categories. Positing the presence of a lexi-con therefore showed evidence of helping the ideal learnerdisambiguate overlapping vowel categories, even though thephonological forms contained in the lexicon were not givenexplicitly to the learner.

Pairwise accuracy and completeness measures were com-puted for each learner as a quantitative measure of modelperformance (Table 1). For these measures, pairs of voweltokens that were correctly placed into the same category werecounted as a hit; pairs of tokens that were incorrectly assignedto different categories when they should have been in thesame category were counted as a miss; and pairs of tokensthat were incorrectly assigned to the same category whenthey should have been in different categories were countedas a false alarm. The accuracy score was computed as

hitshits+false alarms and the completeness score as hits

hits+misses .Both measures were high for the lexical-distributional learner,but accuracy scores were substantially lower for the purelydistributional learners, reflecting the fact that these modelsmistakenly merged several overlapping categories.

Results suggest that as predicted, a model that uses theinput to learn word categories in addition to phonetic cate-gories produces better phonetic category learning results thana model that only learns phonetic categories. Note that thedistributional learners are likely to show better performanceif they are given dimensions beyond just the first two formants(Vallabha et al., 2007) or if they are given more data pointsduring learning. These two solutions actually work againsteach other: as dimensions are added, more data are necessaryto maintain the same learning outcome. Nevertheless, we do

100020003000

200

400

600

800

1000

1200

Second Formant (Hz)

Vowel Categories (All Speakers)

First

Fo

rma

nt (H

z)

(a)

i ɪ

ɝ

æ

u

ʊ o

ɔ

a

ʌ

100020003000

200

400

600

800

1000

1200

Second Formant (Hz)

Lexical−Distributional Model

Firs

t For

man

t (H

z)

(b)

100020003000

200

400

600

800

1000

1200

Second Formant (Hz)

Firs

t For

man

t (H

z)

Distributional Model(c)

100020003000

200

400

600

800

1000

1200

Second Formant (Hz)

Firs

t For

man

t (H

z)

Gradient Descent Algorithm(d)

Figure 4: Ellipses delimit the area corresponding to 90% ofvowel tokens for Gaussian categories (a) computed from allspeakers’ vowel productions from Hillenbrand et al. (1995)and learned by the (b) lexical-distributional model, (c) distri-butional model, and (d) gradient descent algorithm.

not wish to suggest that a purely distributional learner cannotacquire phonetic categories. The simulations presented hereare instead meant to demonstrate that in a language wherephonetic categories have substantial overlap, an interactivesystem, where learners can use information from words thatcontain particular speech sounds, can increase the robustnessof phonetic category learning.

DiscussionThis paper has presented a model of phonetic category acqui-sition that allows interaction between speech sound and wordcategorization. The model was not given a lexicon a priori,but was allowed to begin learning a lexicon from the data atthe same time that it was learning to categorize individualspeech sounds, allowing it to take into account the distribu-tion of speech sounds in words. This lexical-distributionallearner outperformed a purely distributional learner on a cor-pus whose categories were based on English vowel cate-gories, showing better disambiguation of overlapping cate-gories from the same number of data points.

Infants learn to segment words from fluent speech aroundthe same time that they begin to show signs of acquiringnative language phonetic categories, and they are able tomap these segmented words onto tokens heard in isolation(Jusczyk & Aslin, 1995), suggesting that they are perform-ing some sort of rudimentary categorization on the wordsthey hear. Infants may therefore have access to informationfrom words that can help them disambiguate overlapping cat-egories. If information from words can feed back to constrainphonetic category learning, the large degree of overlap be-

2212

Page 87: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

probabilistic models in acquisition

• in general: still working on trying to incorporate many sources of information

• it seems that infants, children, and adults use many sources of information to learn language

• one very exciting information source: other languages

67

Conclusions

Page 88: Noisy-channel models: II Lecture 4 (part 1)idiom.ucsd.edu/~rlevy/teaching/lsa2015/lectures/lecture-4/lecture4_a… · A new view of reading 3 a new bottleneck in reading: gathering

computational psycholinguistics

• this course gave a very broad overview of many areas: perception, comprehension, production, acquisition

• gave a sense for how probabilistic models can be used

• also covered much of the essential technical knowledge to use probabilistic models

• this is still very much the beginning of probabilistic modeling in the study of language: very many open questions and models yet to build!

• hope you enjoyed!

68

Conclusions