next%generationsequencing,elucidatesrna%editing, drosophila*

60
NextGeneration Sequencing Elucidates RNAEditing in Discrete Cell Populations of the Circadian System in Drosophila Master's Thesis Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Interdepartmental Program in Neuroscience Michael Rosbash, Advisor In Partial Fulfillment of the Requirements for Master's Degree by Abigail N. Zadina May 2013

Upload: others

Post on 03-Oct-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

Next-­‐Generation  Sequencing  Elucidates  RNA-­‐Editing    in  Discrete  Cell  Populations  of  the  Circadian  System  in  Drosophila  

     

Master's  Thesis    

Presented  to    

The  Faculty  of  the  Graduate  School  of  Arts  and  Sciences  Brandeis  University  

Interdepartmental  Program  in  Neuroscience  Michael  Rosbash,  Advisor  

   

In  Partial  Fulfillment    of  the  Requirements  for    

 Master's  Degree  

 by  

Abigail  N.  Zadina        

May  2013  

Page 2: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

                   

Copyright  by    

Abigail  N.  Zadina    

©  2013

Page 3: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  iii  

ABSTRACT      

Next-­‐Generation  Sequencing  Elucidates  RNA-­‐Editing    in  Discrete  Cell  Populations  of  the  Circadian  System  in  Drosophila  

   

A  thesis  presented  to  the  Interdepartmental  Program  in  Neuroscience  

     

Graduate  School  of  Arts  and  Sciences  Brandeis  University  

Waltham,  Massachusetts    

By  Abigail  N.  Zadina        

  The  circadian  system  of  Drosophila  is  composed  of  discrete  populations  of  

neurons.    Previous  studies  purified  two  of  these  populations,  the  sLNvs  and  lLNvs,  

and  characterized  their  expression  using  microarrays.    These  studies  were  useful  in  

elucidating  the  functions  of  these  cells  and  identifying  new  circadian  genes.    

However,  microarray  data  is  limited  and  cannot  provide  information  regarding  

isoform  expression,  alternative  splicing,  or  RNA-­‐editing.    Therefore,  using  the  same  

purification  method,  we  sought  to  create  RNA-­‐sequencing  libraries  from  these  

populations  and  use  the  data  to  identify  RNA-­‐editing  sites.    Overall,  we  were  able  to  

create  3'-­‐biased  libraries  by  extracting  RNA  from  cells  and  amplifying  the  mRNA  

using  dT-­‐priming.    We  did  this  for  PDF-­‐  and  TH-­‐expressing  cells,  which  encompass  

Page 4: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  iv  

the  sLNvs/lLNvs  and  dopaminergic  neurons  in  the  brain,  respectively.    Using  the  

sequencing  data  from  these  cells  we  identified  potential  editing  sites,  which  we  then  

verified  using  site-­‐specific  PCR.    In  this  manner  we  identified  a  total  of  20  editing  

sites.    17  of  these  sites  had  been  previously  identified  in  heads,  and  3  were  novel  

and  fly  strain  specific.    Additionally,  some  of  the  edited  sites  found  in  both  cell  types  

showed  variations  in  editing  levels  and  cycling  across  two  time-­‐points.    These  

results  suggest  that  RNA-­‐editing  may  be  regulated  in  a  tissue-­‐specific  manner  and  

that  the  circadian  system  may  control  some  aspects  of  this  regulation.

Page 5: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  v  

TABLE  OF  CONTENTS        

Title  Page               i    Copyright               ii    Abstract               iii    List  of  Figures  and  Tables           vi      Introduction               1    1.  RNA-­‐Seq  from  Cells           7     1.1  Background               1.2  Results                 1.3  Discussion     1.4  Figures              2.  RNA-­‐Editing  in  PDF-­‐  and  TH-­‐cells       20     2.1  Background               2.2  Results                 2.3  Discussion               2.4  Figures    Conclusions               42    Appendix               44     A.1  Supplementary  Tables           A.2  Materials  and  Methods                    References               50

Page 6: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  vi  

LIST  OF  FIGURES  AND  TABLES        Figure  1.1          Methodology  for  Creating  Libraries  from  Cells   15       1.2          RNA  Amplification  Protocol   16       1.3          Quantification  of  RNA  from  Cells   17     1.4          Validation  of  cDNA#1   17       1.5          Quantification  of  cRNA#1   18     1.6          3'-­‐biased  Libraries   18     1.7          Random  vs  dT  Primed  Libraries   19    Figure  2.1          Bioinformatic  Analysis  of  RNA-­‐Editing   37     2.2          PDF-­‐expressing  Neurons   37     2.3          Editing  Levels  in  Cells   38     2.4          Strain  Specific  Editing  Sites   38     2.5          Edited  Gene  Ontology   39     2.6          Cycling  Editing  Levels  in  Cells   39     2.7          Schematic  of  Insect  nAChR   40     2.8          Editing  in  nAcRalpha-­‐34E   40     2.9          Editing  in  Brd8   41    Supplementary  Table  1          Editing  Sites  Across  Cell  Types   44    

Page 7: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  1  

         

INTRODUCTION        

Circadian  rhythms  are  behavioral  and  physiological  oscillations  that  occur  

over  twenty-­‐four  hour  periods.    Driven  by  pacemaker  cells  in  the  mammalian  

suprachiasmatic  nucleus  and  a  subset  of  150  neurons  in  the  Drosophila  brain  (1,  2),  

these  evolutionarily  conserved  cycles  enable  organisms  to  respond  to  and  anticipate  

daily  changes  in  the  external  environment  and  serve  to  coordinate  in  time  processes  

at  the  molecular,  cellular,  tissue,  and  systems  levels.    These  circadian  influenced  

processes  impact  sleep/wake  behavior,  metabolism,  immune  response,  learning  and  

memory,  reproduction,  and  mating  (1).    Moreover,  the  disruption  of  the  circadian  

clock  has  been  implicated  in  several  metabolic,  sleep,  neurological,  and  

neurodegenerative  diseases  (3,  4),  further  underscoring  the  importance  of  circadian  

regulation  to  organismal  health  and  survival.  

Underlying  these  rhythms  is  a  molecular  feedback  mechanism  consisting  of  

four  key  proteins.    In  Drosophila  melanogaster,  these  proteins  are  CLOCK  (CLK)  (5),  

CYCLE  (CYC)  (6),  PERIOD  (PER)  (7-­‐9),  and  TIMELESS  (TIM)  (10),  which  are  

homologous  to  the  mammalian  CLOCK,  BMAL1  (corresponding  to  CYC),  PERIOD1,  

and  PERIOD2  proteins.    There  is  no  mammalian  homolog  of  TIM,  which  is  instead  

replaced  by  mammalian  CRY1  and  CRY2  in  the  core  feedback  loop  (2).    In  this  

negative  feedback  loop,  the  transcription  factors  CLK  and  CYC  form  a  heterodimer  

and  activate  the  expression  of  per  and  tim  (11).    PER  and  TIM  subsequently  dimerize  

Page 8: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  2  

in  the  cytoplasm,  enter  the  nucleus,  and  bind  the  CLK/CYC  heterodimer,  effectively  

turning  off  their  own  expression  (12).      

This  alternation  of  transcriptional  activation  and  repression  cycles  with  a  

twenty-­‐four  hour  period.    The  CLK/CYC  heterodimer  drives  per  and  tim  

transcription  during  the  day,  with  peak  levels  of  per  and  tim  accumulating  by  late  

day/early  night.    The  PER/TIM  dimer  then  translocates  to  the  nucleus  during  the  

night,  inhibiting  CLK/CYC  activity  (13).    The  repression  of  CLK/CYC  continues  until  

PER  and  TIM  are  degraded.    The  ubiquitin  ligase,  SLIMB,  ubiquitinates  

phosphorylated  PER,  signaling  PER’s  degradation  (14),  while  TIM  undergoes  light-­‐

induced  degradation  that  is  mediated  by  the  photoreceptor,  CRYPTOCHROME  (CRY)  

(15,  16),  and  the  ubiquitin  ligase  JETLAG  (17).      

Phosphorylation  states  not  only  impact  the  degradation  of  the  core  clock  

proteins,  but  also  play  a  role  in  their  functional  activity.    For  example,  PER  

hyperphosphorylation  by  DOUBLETIME  (DBT,  CASEIN  KINASE  Iε)  leads  to  PER  

ubiquitination  and  degradation  (18),  and  changes  the  repressor  activity  of  PER  (19).    

The  phosphorylation  state  of  PER  is  rhythmic  due  to  the  actions  of  phosphatase  

PP2A  (20).  As  for  TIM,  phosphorylation  by  SHAGGY  (SGG,  GLYCOGEN  SYNTHASE  

KINASE  3β)  assists  in  the  translocation  of  TIM  to  the  nucleus  (21).    Additionally,  

phosphorylation  of  CLK  by  a  PER-­‐DBT  dimer  facilitates  the  cycling  of  CLK’s  

functional  activity  and  leads  to  CLK  degradation  (18,  22).    

Besides  the  principal  feedback  loop  involving  CLK/CYC  activation  of  per  and  

tim  transcription,  there  is  an  additional  loop  involving  the  transcription  of  Par  

domain  protein  1  (Pdp1)  and  vrille  (vri)  (23).    CLK/CYC  drives  the  expression  of  

Page 9: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  3  

Pdp1  and  vri,  which  are  transcriptional  activators  and  repressors,  respectively.    

PDP1  then  activates  clk  and  cry  transcription  at  a  time  opposite  of  when  per  and  tim  

expression  occurs.    VRI,  which  accumulates  faster  than  PDP1,  represses  clk  and  cry,  

reinforcing  the  timing  of  circadian  feedback  loops.  

The  principal  and  ancillary  feedback  loops  likely  have  considerable  influence  

over  downstream  systems.    Expression  studies  using  fly  heads  have  identified  many  

genes  whose  transcription  appears  to  cycle  (24-­‐26).    Other  studies  have  shown  that  

key  circadian  transcription  factors,  such  as  CLK  and  CYC,  rhythmically  bind  to  gene  

targets  (27).    These  studies  are  limited,  however,  by  the  heterogeneity  of  the  fly  

head.    For  example,  the  genes  bound  by  CLK  change  when  the  eyes  are  ablated  from  

the  head.    Moreover,  when  subsets  of  neurons  were  sorted  and  their  expression  

profiles  characterized  with  arrays,  as  was  done  for  the  small  and  large  ventral-­‐

lateral  neurons  (28,  29),  the  profiles  were  markedly  different  from  pan-­‐neuronal  

expression  experiments.    This  indicates  that  further  characterization  of  circadian  

genes  and  dynamics  at  the  level  of  specific  neuronal  groups  will  be  beneficial  for  

identifying  new  clock  genes  and  outputs.  

Within  the  fly  brain  there  are  three  groups  of  clock  neurons,  i.e.,  neurons  

expressing  CLK,  CYC,  PER,  and  TIM.    Identified  using  immunostaining  techniques,  

these  clock  neurons  are  categorized  as  the  lateral  neurons  (LNs),  dorsal  neurons  

(DNs),  and  lateral  posterior  neurons  (LPNs)  (30-­‐32).    The  LNs  are  further  broken  

down  into  four  groups:  small  lateral-­‐ventral  neurons  (sLNvs),  large  lateral-­‐ventral  

neurons  (lLNvs),  the  5th  sLNv,  and  the  lateral-­‐dorsal  neurons  (LNds).    The  sLNvs  and  

lLNvs  are  commonly  denoted  as  PDF-­‐cells  because  they  are  the  only  neurons  in  the  

Page 10: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  4  

brain  that  express  PIGMENT  DISPERSING  FACTOR  (PDF),  a  neuropeptide  (33).    The  

PDF-­‐cells  likely  target  areas  near  the  Pars  Intercerebralis,  a  brain  region  that  

influences  growth  and  sleep  (34).    There  are  three  groups  of  DNs,  the  DN1s,  DN2s,  

and  DN3s.    The  DN1s  consist  of  anterior  and  posterior  clusters  (DN1ps  and  DN1as)  

that  are  GLASS  (a  transcription  factor)  negative  and  positive,  respectively  (35).    

Additionally,  the  DN1ps  can  be  either  CRY-­‐positive  or  –negative  (36,  37).    The  DN1s  

and  DN3s  are  glutamatergic  and  are  believed  to  provide  input  to  the  sLNvs  (38).      

Each  of  these  neuronal  groups  contributes  to  the  maintenance  of  circadian  

behavior.    Flies  typically  show  oscillations  in  locomotor  activity,  being  more  active  

during  the  day  with  peaks  of  activity  appearing  in  the  morning,  at  lights-­‐on,  and  

evening,  at  lights-­‐off  (39).    Using  related  observations  of  hamster  activity  rhythms,  

Pittendrigh  and  Daan  (40)  developed  the  dual  oscillator  model  to  explain  circadian  

behavior.    The  morning  (M)  oscillator  is  phase  matched  to  sunrise  and  accelerates  in  

response  to  light.    The  evening  (E)  oscillator  is  matched  to  sundown  and  decelerates  

in  response  to  light.    These  proposed  oscillators  have  been  traced  to  specific  

neurons  within  the  fly  and  are  responsible  for  the  observed  morning  and  evening  

peaks  in  activity.  

The  sLNvs  and  CRY(+)  DN1ps  are  responsible  for  the  M  peak  (37,  41,  42),  

while  the  5th-­‐sLNv,  LNds,  and  CRY(-­‐)  DN1ps  control  the  E  peak  (36,  41,  42).    When  

the  sLNvs  and  lLNvs  are  genetically  ablated  the  M  peak  disappeared.    Similarly,  

when  the  LNds  were  ablated,  flies  did  not  display  an  E  activity  peak  (42).    

Complementing  this  result,  it  was  also  shown  that  rescue  of  per  in  the  LNvs  of  per01  

flies,  which  are  normally  arrhythmic,  restored  M  activity.    This  rescue  was  

Page 11: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  5  

dependent  upon  the  sLNvs  because,  when  per  was  rescued  in  only  the  lLNvs,  the  

per01  flies  remained  arrhythmic  (41).  

The  other  circadian  neuronal  groups  (e.g.  lLNvs,  DNs,  LPNs)  have  been  

implicated  in  mediating  light  signals  and  entraining  the  clock  to  temperature  

oscillations.    Light  is  the  main  environmental  cue  that  entrains  the  clock  to  a  12-­‐

hour:12-­‐hour,  light-­‐dark  cycle.    The  light  cues  can  impact  the  clock  via  the  

photoreceptor  CRY,  but  also  through  neuronal  signaling  that  originates  from  

photoreceptors  in  the  eyes,  and/or  Hobfauer-­‐Buchner  eyelets  (43).    This  light-­‐

induced  neuronal  signaling  may  target  the  lLNvs,  which  show  increased  activity  in  

response  to  light  (44,  45).    While  the  LNs  appear  to  primarily  mediate  entrainment  

to  light  cues,  the  DNs  and  LPNs  may  be  involved  in  relaying  temperature  cues.    

When  researchers  placed  flies  in  an  environment  in  which  the  light-­‐dark  cycle  was  

90-­‐degrees  out  of  phase  relative  to  the  temperature  cycle,  the  DNs  and  LPNs  were  

found  to  have  modified  molecular  oscillations.    The  molecular  oscillations  in  the  

LNs,  though,  remained  in  phase  with  the  light-­‐dark  cycle  (46).    Modifications  in  

molecular  oscillations  in  response  to  temperature  are  likely  due  to  the  differential  

splicing  of  per  and  tim  transcripts,  which  has  been  shown  to  be  temperature  

dependent  (47).      

Besides  the  150  clock  neurons,  other  neuronal  populations  may  interact  with  

the  circadian  system.  The  dopamine  system  in  flies,  which  consists  of  about  200  

neurons  in  the  adult  brain,  is  associated  with  learning  and  memory,  as  well  as  sleep  

and  arousal  levels  (48).    Dopaminergic  neurons  may  be  involved  in  the  circadian  

system  because  CLK  has  been  implicated  in  controlling  dopamine  levels  by  down-­‐

Page 12: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  6  

regulating  its  synthesis  at  night.    Clk  mutant  flies  also  show  increased  nighttime  

activity,  which  is  mediated  by  elevated  dopamine  in  the  brain.    Additionally,  the  

increased  activity  due  to  dopamine  requires  the  action  of  CRY  in  the  lLNvs,  further  

tying  the  dopamine  and  circadian  circuitry  together  (49).    Finally,  dopamine  may  

even  impact  the  ability  of  the  clock  to  entrain  to  some  types  of  light.    Flies  deficient  

for  dopamine  were  unable  to  entrain  to  low  intensity  blue  light.    These  same  flies  

also  showed  weakened  circadian  motor  rhythms  (50).      

  Considering  that  distinct  cells  are  responsible  for  various  aspects  of  

circadian  behavior,  the  work  presented  here  focuses  on  further  characterizing  the  

transcriptomes  of  two  relevant  populations,  PDF-­‐expressing  neurons  and  TH-­‐

expressing  neurons,  using  next-­‐generation  sequencing  of  RNA  libraries.    Though  

gene  expression  in  PDF-­‐positive  cells  was  characterized  previously  using  

microarrays  (28,  29),  those  data  are  limited  to  gene  expression  levels  only  and  

cannot  provide  insight  into  isoform  expression,  differential  splicing,  or  RNA-­‐editing.    

Due  to  the  limitations  of  microarrays,  we  set  out  to  develop  adequate  protocols  for  

the  creation  of  RNA-­‐sequencing  libraries  from  small  collections  of  cells  and  use  the  

sequencing  data  obtained  to  analyze  RNA-­‐editing  in  these  discrete  cell  populations.  

 

 

Page 13: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  7  

         

CHAPTER  ONE    

RNA-­‐Seq  from  Cells    

   1.1  BACKGROUND       Many  studies  of  the  Drosophilian  brain  rely  on  the  use  of  whole  heads.    

However,  the  head  is  made  up  of  many  tissues  that  are  involved  in  discrete  

processes.    One  method  to  elucidate  the  nature  of  these  different  populations  is  to  

purify  the  tissue  of  interest  and  characterize  its  gene  expression.    This  was  done  

previously  to  study  the  circadian  system  (28,  29).    In  these  studies,  LNvs  in  

Drosophila  were  selectively  labeled  with  Green  Fluorescent  Protein  (GFP)  using  a  

UAS/Gal4  binary  system  (PDF-­‐GAL4>UAS-­‐mcD8GFP).  Brains  from  these  modified  

flies  were  dissected  and  dissociated  into  individual  cells  across  four  time-­‐points.    

The  dissociated  cells  were  then  plated  and  GFP-­‐positive  cells  were  manually  sorted  

under  a  fluorescent  dissecting  microscope,  and  separated  into  samples  of  lLNvs  and  

sLNvs.    Approximately  one  hundred  cells  per  time-­‐point  were  lysed  and  processed  

for  RNA  extraction.    The  RNA  was  then  amplified  using  reverse-­‐transcription  PCR  

(RT-­‐PCR),  which  employed  a  dT-­‐primer  fused  to  a  T7  promoter  sequence  (dtT7-­‐RT-­‐

PCR),  and  in-­‐vitro  transcription  (IVT),  as  outlined  in  Fig.  1.1  and  detailed  in  Fig.  1.2.    

The  amplified  RNA,  enriched  for  mRNA  transcripts  via  dT-­‐priming,  was  then  

analyzed  using  Drosophila  genome  arrays.      This  array  data  was  used  to  look  for  

enrichment  of  gene  transcripts  in  lLNvs  and  sLNvs  compared  to  pan-­‐neuronal  cell  

Page 14: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  8  

collections  and  heads.    While  these  studies  were  able  to  identify  transcripts  

enriched  uniquely  in  lLNvs  and  sLNvs,  and  identify  new  circadian  genes,  analysis  

beyond  gross  expression  levels  was  limited  by  the  microarray  technology  employed.  

  Microarrays  are  solid  chips  to  which  short  oligonucleotide  probes  are  

attached.    These  probes  are  genome  specific  and  generally  designed  to  hybridized  to  

the  3’-­‐end  of  genes  (Affymetrix  GeneChip  Drosophila  Genome  2.0  Array).    Therefore,  

array  data  fail  to  quantify  the  5’-­‐end  of  transcripts,  data  necessary  for  characterizing  

alternative  start-­‐sites,  isoform  expression,  and  alternative  splicing  within  the  

transcriptome.    Arrays  also  cannot  provide  information  concerning  SNPs  and  RNA-­‐

editing,  which  require  resolution  down  to  nucleotide  levels.    Finally,  from  a  

bioinformatics  standpoint,  arrays  prove  to  be  variable  across  experiments  and  may  

inadequately  quantify  some  transcripts  due  to  probe  saturation  (51).    

  In  order  to  gain  nucleotide-­‐sequence  resolution  and  obtain  information  

regarding  isoform  expression,  alternative  splicing,  and  RNA-­‐editing  in  specific  

subsets  of  neurons,  we  applied  the  same  method  of  cell  sorting  and  RNA  

amplification  to  the  creation  of  sequencing  libraries  from  PDF-­‐expressing  cells.    

Using  this  method  (Fig.  1.2),  we  obtained  biased  libraries  enriched  for  the  3’-­‐end  of  

mRNA  transcripts  for  PDF-­‐expressing  and  ELAV-­‐expressing  neurons.    This  bias  is  

likely  due  to  the  inefficiency  of  reverse  transcriptase,  which  generally  fails  to  fully  

replicate  the  full  mRNA  strands  when  beginning  from  a  3’-­‐dT  primer.    To  try  and  

overcome  this  bias  we  tried  a  method  of  amplification  that  employed  a  mix  of  both  

dT-­‐T7  and  random-­‐T7  primers.    While  this  method  worked  for  diluted  head  RNA,  it  

was  unsuccessful  for  RNA  samples  from  cells.    

Page 15: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  9  

1.2  RESULTS  

  Two  separate  fly  lines,  one  expressing  ELAV-­‐Gal4>UAS-­‐eGFP  (ELAV>gfp),  

and  the  other  expressing  PDF-­‐Gal4>UAS-­‐mcD8GFP  (PDF>gfp),  were  entrained  to  a  

12hr/12hr  light:dark  cycle  at  22-­‐25°C.    At  ZT2  and  ZT14,  flies  from  each  strain  were  

collected  and  their  brains  dissected.    The  brains  (50-­‐60  from  PDF>gfp,  and  ~15  

from  ELAV>gfp)  were  then  dissociated  and  approximately  100-­‐120  GFP-­‐positive  

cells  were  collected  per  sample.  RNA  was  extracted  and  quantified  on  the  2100  

Agilent  BioAnalyzer  using  a  PicoChip.    From  100  cells,  approximately  200-­‐400  pg  of  

RNA  was  obtained  (Fig.  1.3).    As  indicated  with  blue  arrows,  the  RNA  had  the  

characteristic  ribosomal  RNA  peaks  around  2000  nucleotides.    Indicated  with  red  

arrows,  the  samples  also  showed  peaks  for  <100  nucleotide  sequences.    The  RNA  

samples  were  then  amplified  using  dT-­‐T7  primers  in  a  four  step  amplification  

process  (Fig.  1.2):  1)  cDNA#1  synthesis,  2)  IVT  Round  #1  (cRNA#1),  3)  cDNA#2  

synthesis,  4)  IVT  Round  #2  (cRNA#2).      

  cDNA#1  from  all  cell  samples,  and  primers  for  pdf  and  tim  mRNA,  were  used  

to  validate  the  identity  of  the  cell  collections  and  check  that  the  cycling  levels  of  

circadian  transcripts  is  preserved  through  the  amplification  process.    As  shown  in  

Fig.  1.4a,  pdf  mRNA  enrichment  in  PDF-­‐cell  collections  is  40,000-­‐60,000  times  

greater  than  that  of  ELAV-­‐cell  collections.    tim  mRNA  is  also  enriched  in  PDF-­‐cell  

collections  (Fig.  1.4b)  and  cycles  as  expected  between  low  and  high  abundance  from  

ZT2  to  ZT14,  respectively.  

  The  integrity  and  amounts  of  cRNA#1  was  examined  using  a  PicoChip  and  

the  2100  Agilent  Bioanalyzer  (Fig.  1.5).    Roughly  90-­‐200  ng  per  sample  of  cRNA  was  

Page 16: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  10  

obtained  from  IVT  Round  #1  of  the  amplification  process.    This  cRNA  included  

sequences  25  to  >4000  nucleotides  long,  but  showed  peak  abundance  for  sequences  

of  length  ~600  nucleotides  and  <200  nucleotides.      

  cRNA#1  was  subsequently  amplified  with  a  second  round  of  cDNA  synthesis  

and  IVT.    The  resulting  cRNA#2  was  used  to  make  RNA-­‐seq  libraries  according  to  

Illumina’s  RNA  TRUseq  v2  Kit.    The  libraries  were  sequenced  and  the  reads  were  

mapped  to  the  Drosophila  genome  using  TopHat.    Quantification  of  expression  levels  

was  carried  out  using  Cufflinks  and  read  densities  across  the  genome  were  

visualized  using  IGV_2.2.10.    As  shown  in  Fig.  1.6a,  the  cell  identity  of  each  sample  

was  maintained.    PDF-­‐gfp  cell  collections  showed  characteristic  enrichment  for  pdf  

mRNA.    Additionally,  cycling  of  tim  mRNA  was  maintained  from  ZT2  to  ZT14  in  both  

cell  sets  (Fig.  1.6b).    Finally,  as  indicated  by  the  arrows,  the  libraries  are  heavily  

biased  toward  the  3’-­‐end  of  transcripts.    There  are  almost  no  reads  in  the  first  exon  

of  tim  in  any  of  the  libraries.    This  bias  is  consistent  across  long  genes.    In  the  5’-­‐UTR  

of  Gapdh2,  there  are  few  reads  compared  to  the  3’-­‐end  (Fig.  1.6c).      

  To  eliminate  the  3’-­‐bias,  we  modified  the  amplification  protocol  to  use  

random-­‐T7  primers  in  the  first  cDNA  synthesis.    We  used  two  samples  of  3ng  of  

diluted  RNA  from  fly  heads  and  two  samples  of  RNA  that  had  been  extracted  from  

100  ELAV-­‐cells  to  test  four  cDNA  synthesis  conditions:  1)  head  RNA  with  dT-­‐T7  

priming,  2)  head  RNA  that  was  pA-­‐purified  with  oligo-­‐dT  beads  and  random-­‐T7  

priming,  3)  cell  RNA,  pA-­‐purified  with  random-­‐T7  priming,  and  4)  cell  RNA,  pA-­‐

purified  with  a  mix  of  random-­‐  and  dT-­‐T7  priming.    The  cDNA  from  each  condition  

was  then  used  in  one  round  of  IVT  and  the  cRNA  was  used  to  make  Illumina  RNA-­‐

Page 17: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  11  

seq  libraries.    The  library  from  3ng  of  diluted  head  RNA  that  had  been  pA-­‐purified  

and  random-­‐T7  primed  showed  no  3'-­‐bias  (Fig.  1.7),  but  instead  was  slightly  5'-­‐

biased  and  only  mapped  37%  of  reads.    The  5'-­‐bias  was  exacerbated  when  cell  RNA  

and  random-­‐T7  priming  was  used.      Finally,  when  cell  RNA  and  a  mix  of  random-­‐  

and  dT-­‐T7  priming  was  used,  the  majority  of  any  3'-­‐  or  5'-­‐bias  was  eliminated.    

However,  in  the  library  from  cells  using  mixed  priming,  only  11%  of  sequencing  

reads  mapped  to  the  genome.    This  is  a  significant  decrease  from  the  cell  libraries  

prepped  using  only  dT-­‐T7  priming,  which  generally  map  at  levels  of  50-­‐70%.  

 

   

Page 18: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  12  

1.3  DISCUSSION  

  Extracting  and  amplifying  RNA  using  dT-­‐priming  resulted  in  the  enrichment  

of  the  3’-­‐end  of  mRNA  transcripts.    Libraries  from  this  amplified  material  were  

therefore  biased.    This  bias  is  likely  due  to  the  failure  of  reverse  transcriptase  to  

reach  the  5’-­‐end  of  the  majority  of  transcripts  during  cDNA  synthesis.    Testing  

across  three  different  reverse  transcriptases,  it  was  found  that  the  abundance  cDNA  

synthesized  drops  off  significantly  around  ~1000  base  pairs  (data  not  shown).    In  

the  amplification  protocol,  these  truncated  sequences  then  become  more  enriched  

in  subsequent  IVT  reactions,  because  more  copies  of  the  shorter  sequences  can  be  

made  in  a  given  time  period  compared  to  the  number  of  copies  of  long  sequences  

that  can  be  synthesized.        

  Compounding  the  limitations  of  reverse  transcriptase,  the  RNA  extracted  

from  cells  is  of  low  quality.    As  seen  in  Fig.  1.3,  the  cell  samples  all  contain  peaks  in  

the  25-­‐100  nucleotide  range.  This  suggests  that  the  material  is  partially  degraded.    

Degradation  could  result  from  RNase  contamination  during  cell  collection.    The  cell  

collection  protocol  take  four  to  six  hours  to  complete,  and  the  cells  are  at  room  

temperature  for  some  of  this  time.    We  tried  to  minimize  contamination  during  cell  

collection  by  keeping  the  cells  on  ice  and  filtering  all  of  the  collection  buffers  used.    

Degradation  could  also  be  due  to  the  limits  of  RNA  extraction  methods  from  such  

limited  numbers  of  cells.    We  tried  two  different  methods  of  RNA  extraction,  one  

relying  upon  purification  of  whole  RNA  on  a  column,  and  the  other  using  oligo-­‐dT  

beads  to  extract  mRNA,  and  found  little  difference  in  the  quality  of  the  resulting  

RNA-­‐seq  libraries.      

Page 19: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  13  

  To  overcome  the  problem  of  3’-­‐bias,  we  tried  a  method  of  amplification  that  

used  a  mix  of  dT  and  random  primers.    The  amplification  of  rRNA,  tRNA,  and  

intergenic  sequences  is  a  concern  when  starting  from  whole  RNA  and  using  random  

priming.    The  whole  RNA  in  cells  is  generally  60-­‐90%  rRNA.      Unless  rRNA  is  

selected  against  during  library  preparation,  potentially  more  than  75%  of  the  reads  

from  the  sequenced  library  will  be  from  rRNA  sequences  (52).    Selection  against  

rRNA  sequences  might  be  acheived  during  amplification  by  using  random  hexamers  

that  do  not  exactly  match  any  portion  of  rRNA  sequences  (53).    Alternatively,  one  

can  select  for  mRNA  using  oligo-­‐dT  beads.    We  used  the  latter  method,  and  found  

that  the  amplification  of  rRNA  was  limited  in  our  samples.       Overall,  our  method  

for  pA-­‐selection  and  random-­‐T7  priming  worked  well  for  diluted  whole  RNA  from  

heads.    Most  genes  had  reads  across  all  axons,  and  there  was  only  a  slight  5'-­‐bias.    

However,  for  RNA  from  cells,  the  introduction  of  random  primers  significantly  

increased  the  amount  of  contaminating  oligos  in  the  samples  and  resulted  in  

libraries  that  were  very  biased  towards  the  5'-­‐ends  of  genes.    The  5'-­‐bias  was  

eliminated  in  cells  when  dT  and  random  primers  were  mixed,  but  contaminating  

oligos  were  still  an  issue.    The  libraries  from  cells  were  as  much  as  90%  non-­‐mRNA  

material,  the  majority  of  which  was  from  primer-­‐dimers  and  non-­‐Drosophilian  

sources.    To  address  these  contamination  issues,  future  experiments  will  need  to  

focus  on  developing  "clean"  methods  of  working  and  size-­‐selecting  against  primer-­‐

dimer  artifacts.  

  Overall,  we  were  able  to  create  biased  RNA-­‐seq  libraries  from  specific  cell  

populations.    These  libraries  showed  50-­‐70%  mapping  to  Drosophila  genes  and  

Page 20: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  14  

were  able  to  replicate  the  expected  behavior  of  known  circadian  genes.    Given  that  

samples  amplified  with  a  mix  of  dT  and  random  primers  introduced  contaminating  

factors  and  mapped  poorly,  we  decided  to  move  forward  with  dT-­‐primed  libraries  

to  analyze  RNA-­‐editing.    RNA-­‐editing  occurs  primarily  in  the  3'-­‐  and  5'-­‐UTRs  of  

transcripts  (54).    Therefore,  we  reasoned  that  the  biased  libraries  might  provide  

enough  coverage  to  at  least  identify  editing  sites  in  the  3'-­‐UTR  and  3'-­‐exons  of  genes.    

Unfortunately,  the  bias  makes  quantifying  isoform  expression  and  alternative  

splicing  prohibitively  difficult  because  shorter  isoforms  will  be  over  represented  

relative  to  longer  isoforms  of  the  same  gene.  

 

   

Page 21: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  15  

1.4  FIGURES  

 

Brain&Dissec+on&•  50060&brains&

Cell&Dissocia+on&•  Papain&dissocia+on&•  Tritura+on&

Sort&GFP&Cells&•  1000200&cells&

RNA&Extrac+on&•  2000500&pg& 1st&cDNA&

Synthesis&(cDNA#1)&

1st&IVT&(cRNA#1)&

2nd&cDNA&Synthesis&(cDNA#2)&

2nd&IVT&(cRNA#2)&

Libraries&Sequencing&

CELL&SORTING&

RNA&EXTRACTION&AND&AMPLIFICATION&

RNA0SEQ&

12#

3#4#

Fig#1.1#Methodology&for&the&crea+on&of&RNA0seq&libraries&from&discrete&cell&popula+ons.&&Brains&from&flies&expressing&GFP&in&cells&of&interest&were&dissected&and&dissociated.&&The&dissociated&cell&suspension&was&plated&in&a&culture&dish&and&fluorescent&cells&were&sorted&under&a&dissec+ng&microscope.&&Samples&of&100&cells&were&lysed&and&their&RNA&extracted.&&The&RNA&was&then&amplified&using&a&four&step&process.&&Step&#1&used&either&dT0T7&priming&or&a&mix&of&dT0T7&plus&random0T7&primers.&&AZer&amplifica+on,&cRNA#2&was&used&in&Illumina’s&standard&RNA&TRUseq&v2&protocol&to&make&libraries.&&These&libraries&were&then&sequenced&on&the&Illumina&Genome&Analyzer.#

Page 22: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  16  

 

IN#VITRO(TRANSCRIPTION(ROUND(2(

LIBRARY(PROTOCOL(

1" 2"

3" 4"

Fig"1.2(RNA(Amplifica:on(Four(Step(Protocol.(Step(1)(mRNA(is(reverse(transcribed(using(dT#T7(priming.((The(mRNA(strand(is(degraded(by(RNaseH(and(the(short(sequences(prime(second(strand(synthesis.((Step(2)(RNA(Polymerase(transcribes(the(cDNA(from(the(T7(promoter,(linearly(amplifying(the(the(original(transcripts.((Step(3)((cDNA(is(synthesized(from(the(cRNA(coming(out(of(Step(2.((This(cDNA(synthesis(using(random(priming(for(the(first(strand(and(dT#T7(priming(for(the(second(strand.((Step(4)((IVT(is(performed(using(the(cDNA(from(Step(3(and(the(resul:ng(cRNA(is(used(to(make(RNA#seq(libraries.(Note:(The(original(5’#end(of(the(RNA(transcript(is(in(blue(and(gets(shortened(throughout(the(amplifica:on(process.((The(main(source(of(5’#end(trunca:on(is(alerted(to(in(the(red(circle(and(occurs(in(the(ini:al(cDNA(synthesis."

Page 23: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  17  

 

 

A) #410#pg# B) #340#pg#

C) #280#pg# D) #210#pg#

Fig#1.3!RNA!Extrac+on!from!~100!cells.!!RNA!was!extracted!from!sorted!cells!using!Arcturus!Picopure!Kit.!!The!RNA!was!quan+fied!using!PicoChip!on!the!Agilent!2100!BioAnalyzer.!!Total!amounts!of!RNA!extracted!for!each!sample!are!indicated!in!the!figure.!!Blue!arrows!point!to!the!ribosomal!RNA!peak!that!is!characteris+c!of!whole!RNA!samples.!!Red!arrows!point!to!peaks!in!the!25K100!nucleo+de!range,!which!are!likely!indica+ve!of!degrada+on!of!the!RNA.!!The!spike!at!25!nucleo+des!is!a!control!marker.#

0"

10"

20"

30"

40"

50"

60"

70"

80"

ZT"2" ZT"14"

!m#signal#over#R

PL32#

!m#mRNA#cycles#in#cDNA#1#

PDF"cells"

ELAV"cells"

0"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

ZT"2" ZT"14"

PDF;cell/ELAV

;cell#signa

l#

pdf#mRNA#Enrichment#in#cDNA#1#A#

B#

Fig#1.4"Valida;on"of"cDNA#1"Amplified"from"Small"Amounts"of"RNA.""A)"Signal"of"pdf"mRNA"from"PDFLcells"rela;ve"to"signal"from"ELAVLcells."Samples"were"normalized"to"RPL32"signal.""B)"Cycling"signal"of";m"mRNA"normalized"to"RPL32"from"PDFLcells"and"ELAVLcells.#

Page 24: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  18  

 

 

A) #213#ng#

D) #92#ng#C) #95#ng#

B) #208#ng#

Fig#1.5!Quan&fica&on!of!cRNA#1!from!RNA!Amplifica&on.!!cRNA!from!STEP!2!of!amplifica&on!was!quan&fied!on!a!PicoChip!using!the!Agilent!

2100!Bioanalyzer.!!Total!amounts!of!cRNA!obtained!from!IVT!are!indicated!in!the!figure.!!Red!arrows!point!to!a!~100!nucleo&de!peak!that!is!

likely!the!result!of!over!enrichment!of!short!nucleo&de!sequences.!!Average!yield!for!cRNA#1!was!150!ng.!!This!is!equivalent!to!a!~500Ofold!

amplifica&on!from!the!original!300!pg!of!RNA!coming!from!cells.#

PDF$cell$ZT2$$

PDF$cell$ZT$14$$

ELAV$cell$ZT2$$

ELAV$cell$ZT14$___________$

GENOME$

PDF$cell$ZT2$$

PDF$cell$ZT$14$$

ELAV$cell$ZT2$$

ELAV$cell$ZT14$___________$

GENOME$

PDF$cell$ZT2$$

PDF$cell$ZT$14$$

ELAV$cell$ZT2$$

ELAV$cell$ZT14$___________$

GENOME$

pdf$mRNA$

$$$$

%m$mRNA$

$$$$$

gapdh2$mRNA$

A)#

C)#

B)#

Fig#1.6$3’:Biased,$dT:Primed$and$Amplified$RNA:seq$Libraries.$$Sequencing$reads$from$libraries$made$using$amplified$cell$RNA$was$visualized$using$IGV.$$A)$VisualizaRon$of$reads$across$pdf$gene.$$B)$Rm$gene.$C)$gapdh2$gene.$$IdenRty$of$the$cell$samples$and$Rme:points$are$indicated$in$the$figure.$$Red$arrows$indicate$the$3’$bias$across$long$genes.$#

Page 25: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  19  

 

head%RNA,%dT+T7%%%

head%RNA,%pA+selected,%random+T7%%%

cells,%pA+selected,%random+T7%%%

%cells,%pA+selected,%random/dT+T7%%%

____________________________%%%%%%

GENOME%

%head%RNA,%dT+T7%

%%

head%RNA,%pA+selected,%random+T7%%%

cells,%pA+selected,%random+T7%%%

%cells,%pA+selected,%random/dT+T7%%

____________________________%%%

GENOME%%

!m#mRNA%

%%%%%%%%%%

gapdh2#mRNA%

A)#

B)#

Fig#1.7#Random%vs%dT%Primed%Libraries.%%3%ng%of%RNA%from%heads%was%amplified%using%dT+T7%priming%and%made%into%an%RNA+seq%library.%%AddiJonally,%an%RNA+seq%library%was%made%from%3%ng%of%RNA%from%heads%that%was%pA+selected%using%dT+beads%and%amplified%using%random+T7%priming.%%Finally,%libraries%from%ELAV+cell%RNA%were%made%using%1)%pA+selecJon%and%random+T7%amplificaJon%and%2)%pA+selecJon%and%a%mix%of%random+%and%dT+T7%amplificaJon.%%A)%library%visualizJon%in%IGV%for%!m.%B)%visualizaJon%of%gapdh2.%%Red%arrows%indicate%3’+bias.%%Green%arrows%indicate%5’+bias.#

Page 26: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  20  

         

CHAPTER  TWO    

RNA-­‐Editing  in  PDF-­‐  and  TH-­‐cells        

2.1  BACKGROUND       RNA-­‐editing  involves  changing  the  sequence  of  RNA  transcripts  through  the  

insertion,  deletion,  or  conversion  of  nucleotide  bases  (54,  55).  The  first  discovery  of  

an  editing  event  was  in  1986  when  researchers  found  four  additional  uridine  bases  

within  the  cox2  transcript  of  trypanosomes  (56,  57).      Since  then,  editing  events  have  

been  found  in  many  other  organisms  and  is  believed  to  greatly  contribute  to  the  

diversity  of  protein  products  that  can  be  obtained  from  the  genome.    In  fact,  it  has  

been  noted  that  for  many  genomes,  the  number  of  genes  encoded  is  much  less  than  

the  number  of  unique  proteins.    RNA-­‐editing,  along  with  other  mechanisms  such  as  

alternative  splicing,  is  one  way  for  biology  to  create  these  additional  gene  products.    

Editing  is  known  to  achieve  this  through  affecting  splice  sites,  modifying  stop  

codons,  and  altering  codons  to  specify  different  amino  acids  (54,  55).      

  RNA-­‐editing  is  important  for  organismal  health.    Underediting  and  functional  

mutations  in  the  editing  proteins,  ADARs,  have  been  implicated  in  dyschromatosis  

symmetrica  hereditaria,  sporadic  amyotrophic  lateral  sclerosis,  and  psychiatric  

disorders  such  as  schizophrenia  (54).    Additionally,  ADAR1  null  mice  die  as  

embryos,  while  ADAR2  null  mice  show  signs  of  seizures  and  die  soon  after  birth.    

ADAR  is  also  important  in  Drosophila.    Mutant  flies  made  null  or  hypomorphic  for  

Page 27: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  21  

ADAR  display  a  lack  of  coordination,  seizures,  disrupted  circadian  activity  patterns,  

and  temperature  sensitive  paralysis  (54,  55,  58).  

  In  humans,  two  types  of  editing  events  have  been  described.    The  first,  

discovered  in  1987,  involved  a  cytidine  to  uridine  (C  to  U)  deamination  event  in  the  

apolipoproteinB  mRNA.    This  editing  event  is  specific  to  liver  and  intestinal  tissue,  

and  results  in  the  creation  of  an  early  stop  codon,  causing  a  truncated  protein  

product  (56,  59).    APOBEC1  is  the  cytidine  deaminase  responsible  for  this  C  to  U  

conversion.    This  enzyme  is  currently  the  only  cytidine  deaminase  known  to  use  

RNA  as  a  substrate  (60).    The  other  type  of  editing  event  is  the  deamination  of  

adenosine  to  inosine  (A  to  I),  which  is  recognized  as  a  guanosine  (G)  by  ribosomal  

translational  machinery.    A  to  I  editing  is  far  more  widespread  and  is  carried  out  by  

ADAR  (Adenosine  Deaminase  Acting  on  RNA)  proteins  (54,  55).      

  ADARs  are  evolutionarily  conserved  proteins.    They  contain  a  catalytic  

deaminase  domain  and  at  least  one  dsRNA  binding  domain.    In  mammals  there  are  

three  ADARs  (ADAR1,  ADAR2,  and  ADAR3),  while  in  insects  there  is  only  one,  

dADAR,  which  is  most  similar  to  the  mammalian  ADAR2  (54,  55).    ADAR  editing  can  

either  be  promiscuous  or  specific.    In  the  promiscuous  case,  long  stretches  of  

perfectly  matched  dsRNA  can  be  edited  at  as  many  as  50%  of  adenosine  sites.    In  

specific  editing,  ADAR  acts  on  imperfectly  matched  stretches  of  short  dsRNA,  editing  

only  a  few  sites.    The  latter  type  of  editing  is  seen  more  often  in  the  coding  regions  of  

neuronal  transcripts  (55).      

  In  Drosophila,  more  than  50  specific  editing  sites  have  been  found  in  

transcripts  relevant  to  neuronal  function.    These  sites  are  part  of  the  more  than  900  

Page 28: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  22  

A  to  I  editing  sites  that  have  been  identified  in  annotated  exons,  in  addition  to  more  

than  700  within  introns  (61,  62).    A  number  of  C  to  U  conversions  have  also  been  

discovered  (63).    The  sites  within  neuronal  transcripts  include  sites  in  ligand-­‐  and  

voltage-­‐gated  ion  channels,  as  well  as  proteins  involved  in  synaptic  vesicle  docking  

and  release.    These  editing  events  are  believed  to  impact  the  electrophysiological  

properties  of  neurons.    For  instance,  the  Shaker  potassium  channel  is  edited  within  a  

channel-­‐lining  transmembrane  helix.    The  edited  location  with  the  pore  likely  

impacts  the  ability  of  the  inactivation  gate  to  interact  effectively  with  the  channel,  

resulting  in  a  K+  channel  that  cannot  be  inactivated  (64).    Editing  sites  in  other  

channels  may  affect  ion  permeability  and  neurotransmitter  affinity  as  well  (55).  

  While  editing  appears  to  most  specifically  impact  neural  substrates,  the  

affects  across  neuronal  populations  may  be  differential.    When  considering  four  A  to  

I  editing  sites  in  the  Shaker  gene,  researchers  found  that  the  combinations  of  how  

these  sites  were  edited  was  different  across  Drosophila  heads,  thorax,  eyes,  antenna,  

and  wings  (65).    Additionally,  it  has  been  reported  that  expression  of  dADAR  is  

variable  across  neurons  in  the  brain  and  that  the  efficiency  of  synaptogamin-­‐1  (syt-­‐

1)  editing  at  two  different  sites  is  varied  across  neuronal  populations.    For  example,  

one  particular  syt-­‐1  editing  site  had  an  editing  level  of    ~30%  (percent  of  transcripts  

with  an  I  instead  of  A)  in  PDF-­‐expressing  neurons,  and  a  ~80%  level  in  GMR-­‐

expressing  neurons  (58).  

  Given  the  circadian  phenotypes  of  hypomorphic  dADAR  mutant  flies,  and  the  

differential  dADAR  expression  and  editing  levels  across  neurons  in  the  brain,  we  

sought  to  analyze  editing  in  two  neuronal  populations  across  two  circadian  time-­‐

Page 29: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  23  

points  using  RNA-­‐seq.    We  sequenced  amplified  RNA  from  PDF-­‐expressing  and  

dopaminergic  neurons,  and  compared  these  sequences  to  genomic  DNA.    Though  we  

were  unable  to  identify  any  novel  editing  sites  (not  present  in  head  data)  specific  to  

these  cell  populations  due  to  low  genome  coverage  in  the  RNA-­‐seq  samples,  we  

were  able  to  identify  sites  that  potentially  cycle  in  a  circadian  manner  and  display  

differential  editing  levels  between  populations.    Moreover,  we  found  different  and  

novel  editing  sites  between  the  two  fly  lines  (strains  used  in  cell  collection),  

indicating  that  there  is  an  advantage  to  having  an  I  at  those  particular  sites  and  that  

some  strains  accomplish  this  through  hard  coding  in  the  genome,  while  others  use  

RNA  editing  to  achieve  the  advantageous  nucleotide.  

 

   

Page 30: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  24  

2.2  RESULTS  

  We  sorted  PDF-­‐cells  (Fig.  2.2)  from  a  PDF-­‐Gal4>UAS-­‐mcD8GFP  fly  line  at  two  

time-­‐points,  ZT2  and  ZT14.    RNA  from  these  cells  was  then  extracted  and  dT-­‐

amplified  as  described  in  Chapter  One.    Libraries  were  made  from  the  amplified  RNA  

using  the  Illumina  RNA  TruSeq  Kit  v2.    Using  a  previously  published  editing  analysis  

pipeline  (62),  this  sequencing  data  was  aligned  to  a  reference  genome  using  the  

software  program,  TopHat,  and  then  compared  to  the  gDNA  of  a  similar  fly  strain  to  

identify  A  to  I  editing  sites  (Fig.  2.1).    Sites  where  the  RNA  and  gDNA  differed  were  

filtered  against  known  splice  junctions  and  checked  for  read  quality.    The  quality  

filter  requires  that  an  edited  site  occur  within  the  middle  two  quadrants  of  a  50  bp  

sequencing  read  at  least  once.    This  protects  against  the  possibility  of  false-­‐positives  

due  to  sequencing  error,  which  tends  to  be  greater  at  the  ends  of  sequencing  reads.    

From  this  analysis,  324  potential  A  to  I  editing  sites  were  identified.    However,  

because  we  did  not  have  gDNA  sequencing  data  available  for  the  exact  fly  strain  

from  which  PDF-­‐cells  were  sorted,  we  filtered  the  324  potential  sites  against  a  

database  of  annotated  SNPs.    After  filtering  for  known  SNPs  in  the  literature,  there  

were  30  potential  editing  sites  remaining.    To  more  accurately  gauge  the  level  of  

editing  at  these  edited  sites,  and  verify  that  they  were  indeed  bona  fide  editing  

events  and  not  SNPs,  we  made  23  PCR  primers  spanning  a  region  containing  the  

potential  sites.    Of  these  23  sites,  18  had  previously  been  identified  as  edited  in  

heads  (62).    Additionally  we  made  PCR  primers  across  8  of  the  annotated  SNP  sites  

to  confirm  if  they  were  SNPs  or  editing  sites  in  our  fly  strains.  

Page 31: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  25  

  Using  RNA  collected  from  two  time-­‐points  of  PDF-­‐cells,  as  well  as  

dopaminergic  cells  collected  from  a  TH-­‐Gal4>UAS-­‐eGFP  fly  line,  we  made  cDNA  

from  dT-­‐amplified  RNA  (cDNA#2  from  amplification  described  in  Chapter  One).      

This  cDNA,  along  with  gDNA  collected  from  each  relevant  strain,  was  used  in  PCR  

reactions  for  the  31  sites.    The  amplicons  from  each  cell  sample  (PDF  ZT2,  PDF  

ZT14,  TH  ZT2,  TH  ZT14)  and  gDNA  (PDF-­‐Gal4>UAS-­‐mcD8GFP,  TH-­‐Gal4>UAS-­‐eGFP)  

were  made  into  libraries  and  sequenced.    The  sequencing  data  was  aligned  to  the  

genome  using  TopHat  and  then  analyzed  for  specific  sites  using  in-­‐house  scripts  

(see  Materials  and  Methods).    To  be  considered  for  quantification,  a  potential  editing  

site  in  a  sample  must  have  been  covered  by  at  least  9  reads.    Most  sites  were  

covered  by  at  least  100  or  more  reads.    However,  of  the  31  PCR  reactions  each  

performed  in  samples  TH  ZT2  and  TH  ZT14,  3  did  not  produce  sufficient  reads  to  be  

included  in  the  analysis.    Additionally,  to  be  considered  for  cycling  analysis,  both  

time-­‐points  from  a  cell  line  were  required  to  have  adequate  coverage.    For  sites  that  

did  not  have  sufficient  coverage  in  a  particular  sample,  the  quantification  of  editing  

is  considered  null  and  left  blank  in  figures  and  tables.    For  gDNA  amplicons,  the  

reads  over  the  31  sites  of  interest  were  quantified  and  a  base  call  was  made  for  each  

site.    If  the  proportion  of  a  nucleotide  base  at  a  particular  site  was  >99%,  the  

identity  of  that  site  was  determined  to  be  that  base.    If  no  one  base  at  a  site  of  

interest  was  represented  in  the  gDNA  >99%,  then  the  site  was  considered  a  SNP.      

  Overall,  of  the  31  potential  sites  for  which  PCR  verification  was  done,  18  had  

been  previously  characterized  in  fly  heads  (62).    This  head  data  was  analyzed  from  

two  replicates  of  six  time-­‐points.    Because  cycling  editing  was  not  found  in  heads,  

Page 32: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  26  

the  samples  were  pooled  across  time.    There  was  sufficient  data  to  characterize  all  

18  of  these  sites  in  PDF-­‐cells,  and  15  of  the  sites  in  TH-­‐cells.    A  site  was  considered  

edited  if  it  was  coded  as  an  A  in  the  genome  and  showed  levels  of  I  >5%  in  the  RNA.    

Surprisingly,  one  of  these  18  sites,  Frq1  18064159  (genome  coordinate  position),  

was  not  found  to  be  edited  in  either  cell  group,  though  it  was  previously  identified  

as  being  edited  77%  of  the  time  in  heads.    Of  the  remaining  sites  that  were  edited  in  

at  least  one  cell  group,  the  editing  levels  were  quite  varied  across  cell  types  (Fig.  2.3  

and  supplementary  Table1).    Considering  differences  in  editing  levels,  there  were  6  

sites  with  at  least  a  1.75  fold  difference  in  editing  level  between  PDF-­‐cells  and  heads  

(Fig.  2.3,  green  bracket),  9  sites  when  comparing  TH-­‐cells  and  heads  (Fig.  2.3,  blue  

bracket),  and  5  sites  when  comparing  PDF-­‐  and  TH-­‐  cells  (Fig.  2.3,  red  bracket).    

Additionally,  one  site,  nAcRalpha-­‐34E  14089236,  was  only  edited  in  PDF-­‐cells  

(editing  level  41%)  and  not  TH-­‐cells  (1%).  

  Of  the  remaining  sites,  5  were  potentially  novel  editing  sites  and  8  were  

annotated  SNPs.    In  PDF-­‐cells,  all  5  of  the  potential  novel  sites  and  8  annotated  SNP  

sites  turned  out  to  be  encoded  as  G  or  A/G  SNPs  in  the  genome.    Therefore,  these  are  

not  edited  sites  in  PDF-­‐cells.    In  TH-­‐cells,  the  5  potentially  novel  sites  were  either  

unedited  or  encoded  as  guanines/SNPs  in  the  genome.    However,  in  TH-­‐cells,  3  of  

the  8  annotated  SNP  sites  were  actually  encoded  as  A  in  the  genome  and  were  highly  

edited  to  I  in  the  RNA  (Fig.  2.4).    The  3  sites  have  not  been  previously  described  as  

edited  (61,  62).    In  the  PDF-­‐cell  data  set,  these  3  sites  were  hard-­‐coded  in  the  

genome  as  guanines,  suggesting  there  may  be  some  evolutionary  advantage  to  

having  a  G/I  at  these  sites.  

Page 33: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  27  

  Because  other  editing  analyses  have  shown  that  editing  is  abundant  in  the  

nervous  system,  we  decided  to  investigate  the  functions  of  our  edited  genes  to  see  if  

they  were  involved  in  processes  specific  to  neurons.    We  analyzed  the  ontology  of  

the  14  edited  genes,  encompassing  the  20  editing  sites  investigated,  using  the  online  

Functional  Annotation  Tool  from  the  DAVID  Bioinformatics  Resource.    As  expected,  

the  majority  of  genes  were  involved  in  functions  specific  to  the  nervous  system,  such  

as  ion  channel  activity  and  synaptic  transmission  (Fig.  2.5).    Additionally,  there  were  

3  genes  involved  in  cytoskeleton  organization,  and  2  genes  involved  in  the  

regulation  of  gene  expression.  

  We  were  not  only  interested  in  identifying  cell  specific  editing  sites  and  

changes,  but  also  site  that  might  be  edited  under  circadian  regulation.    To  identify  

these  sites  we  looked  for  cycling  editing  levels  between  ZT2  and  ZT14  in  the  PCR  

data.    To  qualify  as  cycling,  there  must  have  been  sufficient  data  (>9  reads)  at  both  

time-­‐points,  and  the  fold  change  between  time-­‐points  must  have  been  at  least  1.75.    

Using  these  thresholds,  4  sites  were  found  to  be  cycling  specifically  in  PDF-­‐cells  (Fig.  

2.6a),  10  in  TH-­‐cells  (Fig.  2.6b),  and  2  in  both  cell  sets  (Fig.  2.6c).    Of  the  total  of  6  

cycling  sites  in  PDF-­‐cells,  5  had  peak  editing  at  ZT2.    For  TH-­‐cells,  9  of  the  12  cycling  

sites  were  most  edited  at  ZT14.    The  2  sites  that  cycled  in  both  sets  of  cells,  cycled  in  

opposite  phase.    The  presence  of  cycling  at  these  sites  indicates  that  the  circadian  

system  might  regulate  editing  in  some  fashion.    However,  additional  experiments  

across  more  time-­‐points  should  be  done  to  verify  cycling  and  rule  out  the  possibility  

that  the  cycling  is  due  to  daily  environmental  cues.  

Page 34: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  28  

  Finally,  we  analyzed  the  enrichment  in  expression  for  our  edited  genes,  

wanting  to  further  elucidate  how  the  two  cell  populations  regulate  these  genes  and  

their  mRNA  transcripts.    Differential  gene  expression  is  one  way  for  cell  populations  

to  regulate  the  activity  of  gene  products  and  could  be  used  in  concert  with  RNA-­‐

editing  to  achieve  very  specific  effects.    Using  RNA-­‐seq  data  from  the  two  cell  types  

and  from  heads  (RNA  extracted  and  dT-­‐amplified  as  was  done  for  cells),  the  gene  

enrichment  levels  for  the  14  genes,  encompassing  the  20  edited  sites,  were  

determined  using  Cufflinks  (supplementary  Table  1).    Enrichment  levels  were  

determined  by  pooling  the  samples  across  time  (PDF-­‐cells:  2  replicates  of  ZT2  and  

ZT14.  TH-­‐cells:  ZT2,  and  two  replicates  of  ZT14.    Heads:  1  replicate  of  ZT2  and  

ZT14),  and  dividing  the  gene  signal  from  cells  by  the  signal  from  heads.  None  of  the  

genes  were  specifically  enriched  in  PDF-­‐cells,  aside  from  Brd8,  which  had  nearly  80-­‐

fold  enrichment.    In  fact,  only  7  of  the  genes  had  expression  levels  >5  FPKM  

(Fragments  Per  Kilobase  transcript  per  Million  mapped  reads)  in  PDF-­‐cells.    Brd8  

was  also  enriched  in  TH-­‐cells  at  a  level  of  13-­‐fold.    In  TH-­‐cells,  a  total  of  8  genes  

were  enriched  2-­‐fold  or  higher  compared  to  whole  heads.    Of  these  8,  nAcRalpha-­‐

34E,  a  nicotinic  acetylcholine  receptor  subunit,  was  enriched  25-­‐fold.  Interestingly,  

this  is  the  same  gene  for  which  PDF-­‐  and  TH-­‐  cells  had  significant  differences  in  

editing  levels  at  3  of  the  5  sites  characterized  by  PCR.      At  those  3  sites  in  nAcRalpha-­‐

34E,  there  was  almost  no  editing  in  TH-­‐cells.    This  suggests  that  there  is  not  a  

correlation  between  high  expression  and  high  levels  of  editing.    The  examination  of  

nAcRalpha-­‐34E  would  actually  suggest  the  inverse  relationship.    One  explanation  for  

this  could  be  that  highly  edited  transcripts  are  more  likely  to  be  targeted  for  

Page 35: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  29  

degradation.    Or,  it  could  be  that  PDF-­‐cells  utilize  RNA-­‐editing  to  create  a  more  

responsive  receptor  as  a  means  to  make  up  for  low  expression.      

 

 

   

Page 36: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  30  

2.3  DISCUSSION  

  Previous  studies  have  identified  numerous  editing  sites  within  Drosophila  

(61,  62).    However,  the  nature  of  editing  in  specific  cell  types  has  never  been  

extensively  studied.    While  earlier  research  has  indicated  that  there  are  tissue-­‐

specific  differences  in  editing  levels  for  some  sites  (58,  65),  a  large-­‐scale  analysis  of  

numerous  sites  has  not  been  completed.    Therefore,  we  sought  to  analyze  editing  

and  identify  novel  sites  in  two  cell  populations,  PDF-­‐  and  TH-­‐cells,  using  RNA-­‐seq  

and  subsequent  PCR  verification.    Additionally,  because  ADAR  mutants  have  an  

altered  circadian  phenotype  (58),  we  analyzed  edited  sites  for  cycling.    Experiments  

using  whole  fly  heads,  did  not  identify  cycling  editing,  but  tissue  heterogeneity  could  

be  masking  circadian  cycling  in  discrete  neuronal  subtypes  (62).    Altogether  we  

used  site-­‐specific  PCR  to  investigate  20  editing  sites  in  PDF-­‐  and  TH-­‐cells.    While  we  

were  unable  to  identify  any  novel  sites  specific  to  the  cell  types,  we  found  3  sites  

that  were  novel  and  specific  to  the  strain  from  which  TH-­‐cells  were  collected.  In  

addition,  we  found  differential  editing  levels  across  the  cell  populations  and  cycling  

over  time  for  some  sites.  

  Many  of  the  edited  sites  showed  differential  levels  of  editing  across  PDF-­‐  and  

TH-­‐cells,  as  well  as  heads.    It  is  possible  that  this  is  due  to  differences  in  expression  

of  ADAR  in  these  cells.    It  was  previously  found  that  levels  of  ADAR  are  varied  across  

the  brain  (58).    Expression  of  ADAR  is  ~10-­‐fold  higher  in  TH-­‐cells  versus  PDF-­‐cells  

according  to  RNA-­‐seq  data.    However,  this  increased  expression  in  TH-­‐cells  did  not  

result  in  increased  editing  across  sites.    In  fact,  many  sites  were  edited  at  lower  

Page 37: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  31  

levels  in  TH-­‐cells,  suggesting  that  varying  levels  of  ADAR  in  the  two  cell  types  is  not  

sufficient  to  explain  the  editing  differences.      

  The  varied  levels  of  editing  are  not  surprising  considering  that  these  cells  

serve  different  functions  within  the  brain.    PDF-­‐cells  (sLNvs  and  lLNvs)  are  part  of  

the  circadian  system,  contributing  to  the  morning  peak  in  activity  rhythms  and  

mediating  responses  to  light  cues  (41,  42,  44,  45).      TH-­‐cells  are  involved  in  arousal,  

sleep,  memory,  and  may  be  indirectly  involved  in  the  circadian  system  (48-­‐50).    One  

can  imagine  that  these  cell  populations  gain  their  functional  properties  through  the  

differential  regulation  of  gene  and  protein  dynamics.    This  can  be  accomplished  by  

expressing  particular  genes,  changing  expression  with  regard  to  time  of  day,  and/or  

differentially  altering  gene  transcripts  through  alternative  splicing  and  RNA-­‐editing.      

  In  particular,  nAcRalpha-­‐34E,  a  nicotinic-­‐acetylocholine  receptor  subunit,  

was  edited  differently  between  cell  types  at  3  of  the  5  sites  investigated.    At  these  3  

sites,  editing  levels  were  higher  in  PDF-­‐cells.    One  site,  nAcRalpha-­‐34E  14089236  

was  not  edited  above  threshold  levels  in  TH-­‐cells.    Additionally,  the  expression  

levels  of  this  gene  are  different  across  the  cell  types.    nAcRalpha-­‐34E  is  hardly  

expressed  in  PDF-­‐cells,  while  in  TH-­‐cells,  it  is  expressed  at  low  levels,  but  has  a  25-­‐

fold  enrichment  over  gene  signal  from  heads.    These  expression  and  editing  

differences  suggest  that  this  particular  receptor  has  varied  properties  between  

these  cell  populations.  

  nAcRalpha-­‐34E,  also  known  as  Dalpha5,    is  part  of  the  nicotinic  acetylcholine  

receptor  (nAChR)  family.  Acetylcholine  is  the  primary  excitatory  neurotransmitter  

within  the  fly  CNS  and  nAChRs  are  responsible  for  mediating  this  activity  (66).    

Page 38: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  32  

nAChRs  are  ligand-­‐gated  cation  channels  that  are  assembled  from  5  subunits  (Fig.  

2.7),  which  can  be  either  alpha  or  beta.    These  subunits  all  have  an  extracellular  

ligand-­‐binding  domain,  4  transmembrane  helices  (M1-­‐M4),  and  an  intracellular  loop  

between  M3  and  M4  (66,  67).    The  M2  from  each  subunit  lines  the  channel  pore,  

while  M1  and  M4  are  located  near  subunit  interfaces,  and  M3  adjacent  to  the  cell  

membrane.    The  intracellular  loop  is  believed  to  be  involved  in  receptor  assembly  

and  contains  several  phosphorylation  sites  that  are  important  for  receptor  

regulation  (66).      

  Within  nAcRalpha-­‐34E,  10  editing  sites  have  been  identified.    Of  the  5  sites  

we  investigated,  2  were  located  within  M3  and  the  remaining  were  in  M4  (Fig.  2.8).    

Altogether,  3  of  the  edited  sites,  1  in  M3  and  2  in  M4,  result  in  amino  acid  changes.    

The  two  sites  resulting  in  amino  acid  changes  in  M4  (Thr-­‐>Ala,  Ile-­‐>Val)  were  edited  

at  comparable  levels  in  both  cell  types,  while  the  site  in  M3  (Ile-­‐>Val)  was  18-­‐fold  

more  edited  in  PDF-­‐cells.    Considering  that  M4  is  located  near  the  interface  between  

subunits,  editing  in  this  segment  could  impact  subunit  assembly.    It  could  also  

influence  the  formation  of  secondary  structure.    Additionally,  M4  has  been  

implicated  in  channel  gating  (68).    As  for  the  M3  site  that  results  in  an  amino  acid  

change,  it  may  impact  secondary  structure  as  well.      Substitution  mutations  in  

Torpedo  californica  nAChR  M3  have  also  been  shown  to  increase  the  level  of  current  

response  of  the  channel  (69).    In  light  of  this,  it  could  be  possible  that  to  make  up  for  

low  expression  of  this  gene,  PDF-­‐cells  utilize  the  editing  site  in  M3  to  increase  the  

total  responsiveness  of  the  receptor.      

Page 39: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  33  

  Because  PDF-­‐  and  TH-­‐cells  are  tied  to  the  circadian  system  and  ADAR  

deficient  flies  show  alterations  in  circadian  behavior  (58),  we  analyzed  the  levels  of  

editing  in  the  two  cells  types  across  time  at  ZT2  and  ZT14.    Previous  work  analyzing  

editing  in  heads  across  6  timepoints  did  not  identify  any  sites  that  cycled  (62).      

However,  it  is  possible  that  the  tissue  heterogeneity  of  the  head  masked  cycling  that  

occurs  in  neuronal  populations  where  circadian  time  is  relevant.    In  our  data,  a  

number  of  sites  were  found  to  cycle  in  either  cell  type  and  2  sites  cycled  in  both  

populations.    Though  there  was  cycling  in  editing  at  these  sites,  none  of  the  genes  

within  which  the  sites  reside  cycle  in  expression  in  either  cell  type,  aside  from  sk,  

which  cycled  in  PDF  cells  (15-­‐fold  higher  at  ZT14).  In  the  absence  of  cycling  gene  

expression,  cycling  editing  could  provide  the  means  to  achieve  temporal  regulation  

over  protein  dynamics.    Interestingly,  the  editing  site  in  sk,  sk  5290552,  was  found  

to  have  cycling  editing  levels  in  TH-­‐cells  (24-­‐fold  higher  at  ZT14).    The  editing  at  this  

site  occurs  in  an  exon  and  results  a  Tyr-­‐>Cys  change  in  amino  acid.      This  amino  acid  

change  could  be  relevant  to  the  temporal  function  of  the  SK  cation  channel.    It  

appears  that  TH-­‐cells  regulate  this  SK  functionality  with  cycling  editing,  while  PDF-­‐

cells  accomplish  the  same  task  by  editing  this  transcript  at  constant  levels  and  

instead  changing  the  expression  level  of  the  gene.    Considering  the  two  cycling  sites  

found  in  both  populations,  the  editing  levels  cycled  in  opposite  phase  in  PDF-­‐  and  

TH-­‐cells.    This  difference  of  phase  could  be  due  to  differences  in  temporal  function  

and  activity  of  these  two  cell  types.    

  It  is  not  surprising  that  editing  would  cycle  in  PDF-­‐cells,  which  express  all  of  

the  core  clock  proteins,  are  essential  for  proper  circadian  motor  rhythms,  and  have  

Page 40: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  34  

previously  been  shown  to  have  numerous  genes  that  cycle  in  expression  (28).    

However,  it  is  not  immediately  clear  how  TH-­‐cells,  which  are  not  considered  a  part  

of  the  ~150  clock  neurons,  achieve  cycling  gene  expression  or  cycling  editing.    

According  to  our  RNA-­‐seq  data,  TH-­‐cells  do  express  some  clock  genes.    TH-­‐cells  

express  cyc  and  pdp1  at  low  levels,  and  show  cycling  levels  of  tim,  per,  and  vri  

expression.    Though  TH-­‐cells  do  not  show  clk  expression  at  detectable  levels,  it  may  

still  be  present  in  TH-­‐cells.    It  has  been  shown  that  clk  may  indirectly  regulate  

dopamine  levels  and  control  the  cycling  expression  of  TH  (49).    Even  in  the  absence  

of  clk,  it  is  possible  that  cycling  tim  and  per  are  enough  to  achieve  cycling  expression  

of  other  genes,  and  that  the  clock  in  dopaminergic  cells  is  maintained  through  

mechanisms  other  than  the  classical  circadian  transcriptional  feedback  loop.    For  

instance,  it  was  shown  that  glial  cells  expressing  cycling  per,  and  known  to  mediate  

circadian  motor  rhythms  through  Ebony,  were  anatomically  close  to  dopaminergic  

neurons.    It  was  proposed  that  these  glia  might  regulate  dopaminergic  signalling  in  a  

circadian  fashion  through  circuit  mechanisms  (70).    Thus,  it  seems  possible  that  TH-­‐

cells  could  achieve  full  clock  functionality  through  cycling  tim  and  per,  as  well  as  

input  from  other  clock  circuitry.    However,  it  is  not  certain  that  the  rhythmic  editing  

in  either  of  the  cell  types  we  investigated  is  a  result  of  circadian  regulation.    It  could  

be  due  to  environmental  cues,  like  light,  that  occur  cyclically  over  24-­‐hours.    Further  

experiments  involving  additional  time-­‐points  and  the  use  of  clock  mutants  will  need  

to  be  done  to  identify  the  source  of  cycling  at  these  edited  sites.  

  In  addition  to  the  cycling  and  editing  level  differences  that  we  discovered  in  

the  PDF-­‐  and  TH-­‐cell  data,  we  also  found  3  novel  editing  sites.    These  3  sites  were  

Page 41: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  35  

located  in  the  nct,  Pkc98E,  and  Brd8  gene  transcripts.    The  nct  and  Brd8  sites  are  

within  exons  and  result  in  Thr-­‐>Ala  amino  acid  changes,  while  the  Pkc98E  site  is  

within  the  3'-­‐UTR.    The  sites  represent  strain  differences  between  the  flies  used  for  

PDF-­‐  and  TH-­‐cell  collection  because  the  gDNA  nucleotides  encoding  these  sites  were  

guanines  in  the  PDF-­‐Gal4>UAS-­‐mcD8GFP  fly  line  and  adenines  in  the  TH-­‐Gal4>UAS-­‐

eGFP  line.    The  fact  that  these  sites  were  encoded  as  G  in  one  fly  strain,  and  edited  

from  A  to  I    (which  is  translated  as  G)  in  another  fly  indicate  that  there  is  some  

evolutionary  advantage  to  having  a  G,  and/or  the  resulting  amino  acid,  at  these  sites.    

The  evolutionary  pressure  for  a  site  to  be  either  hard  coded  or  edited  has  also  been  

identified  for  editing  sites  in  other  organisms.    For  example,  in  the  GABAA  receptor  

subunit  alpha3  in  mouse  brain,  an  editing  site  resulting  in  a  Ile-­‐>Met  amino  acid  

change  was  found  to  be  hard-­‐coded  as  a  methione  in  frogs  and  pufferfish  (71).        

  For  the  nct  and  Brd8  sites  found  in  the  TH-­‐cell  data,  the  editing  may  modify  

protein  function  because  they  are  nonsynonymous  substitutions  that  change  a  polar  

amino  acid  to  a  hydrophobic  one.    The  Brd8  site  in  particular  might  be  important  for  

neuron  function  as  indicated  by  the  80-­‐  and  13-­‐fold  enrichment  over  head  signal  

found  for  PDF-­‐  and  TH-­‐cells,  respectively.    Brd8  function  remains  unknown,  but  is  

suspected  to  be  involved  in  the  negative  regulation  of  gene  expression  and  contains  

a  bromodomain  within  its  protein  structure  (FlyBase:  FBgn0039654).    

Bromodomains  are  found  in  many  DNA-­‐binding  proteins  and  may  mediate  

transcriptional  activity  and  protein-­‐protein  interactions  (72).    The  edited  site  lies  

outside  the  bromodomain  (Fig.  2.9)  near  the  C-­‐terminal  of  the  protein.    Thus,  it  is  

difficult  to  say  what  functional  consequence  it  could  have.      

Page 42: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  36  

  Overall,  we  determined  the  editing  levels  of  20  sites  within  the  mRNA  of  PDF-­‐  

and  TH-­‐cells.    Many  of  these  sites  showed  differential  levels  of  editing  and  cycling  

within  the  specific  cell  populations.    This  suggests  that  editing  is  a  method  by  which  

tissues  specify  and  regulate  their  functions  to  achieve  their  biological  purposes  

within  living  systems.    Additionally,  the  identification  of  sites  that  potentially  cycle  

indicates  that  the  circadian  system  may  employ  RNA-­‐editing  to  further  modify  and  

maintain  biological  rhythms.    Finally,  we  identified  3  novel  editing  sites  that  were  

encoded  differently  across  fly  strains.    These  sites  indicate  that  biology  can  often  

achieve  the  same  task  in  multiple  ways,  hard-­‐coding  the  identity  of  proteins  in  the  

genome  or  modifying  them  at  the  mRNA  level.  

 

   

Page 43: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  37  

2.4  FIGURES  

 

 

RNA$seq(and(gDNA$seq(Data(• collec3on(of(50(bp(sequences(

Map(Sequences(• align(sequences(to(known(genes(

Compare(gDNA(to(RNA(• look(for(nucleo3de(differences(

Filter(Splice(Sites(• discard(intronic(sites(that(are(w/i(10(bp(of(splice(junc3on(

Check(Read(Quality(• Out(of(all(50(bp(sequences(that(cover(a(poten3al(site,(at(least(one(edited(read(of(that(site(must(have(occurred(in(the(middle(of(a(50(bp(sequence(

Fig$2.1(Bioinforma3c(Pipeline(for(Edi3ng(Analysis.$

A"

B"

Fig"2.2"PDF$Expressing.Neurons...A$B).PDF$expressing.neurons.in.adult.brain.in.blue...Arrows.point.to.projec>ons.(A).and.cell.bodies.(B)...Images.courtesy.of.R..Veggeberg,.Rosbash.Lab.."

Page 44: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  38  

 

 

Fig$2.3$Edi$ng'Levels'in'Cells'of'Previously'Iden$fied'Sites.''Edi$ng'levels''were'determined'by'using'site<specific'PCR'and'are'reported'as'the'propor$on'of'sequencing'reads'that'were'inosines.''Sites'within'the'red'bracket'showed'at'least'a'1.75'fold'difference'in'edi$ng'level'between'PDF<'and'TH<cells.''Blue'bracket,'sites'that'were'at'least'1.75'fold'different'between'TH<cells'and'heads'(nascent'or'mature'mRNA).''Green'bracket,'sites'that'were'at'least'1.75'fold'different'between'PDF<cells'and'heads.''Edi$ng'levels'in'heads'was'published'in'Rodriguez'et'al.'Mol$Cell.'2012.$

0.00'

0.10'

0.20'

0.30'

0.40'

0.50'

0.60'

0.70'

0.80'

0.90'

1.00'

nAcRalpha<34E'chr2L'14083516'

nAcRalpha<34E'chr2L'14083517'

nAcRalpha<34E'chr2L'14089236'

pan'chr4'120807'

SK'chrX'5290552'

shi'chrX'15791327'

Msp<300'chr2L'5164694'

stj'chr2R'9697052'

CG42540'chr3L'4590709'

pan'chr4'120661'

Ca<alpha1D'chr2L'16174194'

Syn'chr3R'6021148'

Ca<alpha1D'chr2L'16174153'

nAcRalpha<34E'chr2L'14089204'

nAcRalpha<34E'chr2L'14089246'

nAcRbeta<64B'chr3L'4429963'

slo'chr3R'20501385'

%A$to$I$Ed

i/ng$

Edi/ng$Sites$in$Cells$

PDF<Cells'

TH<Cells''

Heads'

0.95%0.98%

0.80%

0.02% 0.01% 0.01%0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

nct%chr3R%20679633% Pkc98E%chr3R%24872309% Brd8%chr3R%25051833%

%A#to#I#Ed

i*ng#

Edited#Site#

Strain#Specific#Edi*ng#Sites#

TH:Cell%ZT2%

TH:Cell%ZT14%

Fig#2.4#Strain%Specific%EdiDng.%%These%three%sites%were%edited%A%to%I%in%the%strain%from%which%TH:cells%were%collected.#

Page 45: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  39  

 

 

Ontology(of(Edited(Genes(•  Ion(Channel(Ac6vity(

–  Ca8Alpha1D((voltage8gated(Ca2+(channel)((–  nAcRalpha834E((ligand8gated(ca6on(channel)((–  nAcRbeta864B((ligand8gated(ca6on(channel)((–  slo((voltage8gated/Ca8ac6vated(K+(channel)((–  SK((Ca8ac6vated(ca6on(channel)(–  stj((voltage8gated(Ca2+(channel)(

•  Synap6c(Transmission(–  Syn((neurotransmiNer(transport)(–  shi((synap6c(vesicle(endocytosis)(

•  Cytoskeleton(Organiza6on(–  CG42540((structural(component)(–  shi((regula6on(of(microtubules)(–  Msp8300((ac6n(binding)(

•  Regula6on(of(Gene(Expression(–  Brd8((nega6ve(regula6on)(–  pan((transcrip6on(ac6vator/repressor)(

•  Protein(Phosphoryla6on(–  Pkc98E((Ca8dependent(kinase)(

•  Signal(Transduc6on(–  nct((Notch(signaling(pathway)(

Fig$2.5$Edited(Gene(Ontology.((Gene(ontology(was(analyzed(for(edited(genes(using(the(Func6onal(Annota6on(Tool(from(DAVID(Bioinforma6cs(Resources(6.7,(NIAID/NIH.$

0.28%

1.00%

0.93%

0.43%0.54%

0.02% 0.15%

0.14%

0.01%

0.23%

0.00%

0.19%

0.00%0.10%0.20%0.30%0.40%0.50%0.60%0.70%0.80%0.90%1.00%

nAcRalpha534E%chr2L%

14089236%

Ca5alpha1D%chr2L%

16174194%

Syn%chr3R%6021148%

shi%chrX%15791327%

%A#to#I#Ed

i*ng#

Cycling#Edi*ng#in#PDF4Cells#

PDF5Cell%ZT2%

PDF5Cell%ZT14%

TH5Cell%ZT2%

TH5Cell%ZT14%

0.87%

0.88%

0.28%

0.87%

0.18%

0.58%

0.36%

0.88%

0.88%

0.30%

0.80%

0.12%

0.96%

0.45%

0.01%

0.00% 0.0

7%

0.48%

0.95% 0.9

8%

0.80%

0.03% 0.0

8%

0.00%

0.16%

0.10%

0.77%

0.94%

0.02%

0.01%

0.01%

0.48%

0.78%

0.24%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

nAcRalpha534E%chr2L%

nAcRalpha534E%chr2L%

stj%chr2R%9697052%

slo%chr3R%20501385%

nct%chr3R%20679633%

Pkc98E%chr3R%24872309%

Brd8%chr3R%25051833%

pan%chr4%120661%

pan%chr4%120807%

SK%chrX%5290552%

%A#to#I#Ed

i*ng#

Cycling#Edi*ng#in#TH4Cells#PDF5Cell%ZT2%

PDF5Cell%ZT14%

TH5Cell%ZT2%

TH5Cell%ZT14%

0.25%

0.22%

0.00%

0.09%

0.02%

0.06%

0.23%0.25%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

Msp5300%chr2L%5164694%

CG42540%chr3L%4590709%

%A#to#I#Ed

i*ng#

Cycling#Edi*ng#in#Both#PDF4#and#TH4Cells#

PDF5Cell%ZT2%

PDF5Cell%ZT14%

TH5Cell%ZT2%

TH5Cell%ZT14%

A#

B#

C#

Fig#2.6%Cycling%EdiPng%Levels%in%Cells.%%A)%EdiPng%sites%that%showed%cycling%between%ZT2%and%ZT14%in%only%PDF%cells.%%B)%Sites%that%cycled%in%only%TH5cells.%%C)%Sites%that%cycled%in%both%cell%types.%%Note:%Sites%were%considered%cycling%if%the%fold%change%between%Pme5points%was%at%least%1.75%fold.#

Page 46: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  40  

 

 

L"

L"

L"

L"

L"

2 4

1 3

A)#

M

1"

M

2"

M

3"

M

4"

Extracellular"

Intracellular"

NH2" COOH"

B)#

Fig#2.7#!Schema:c"of"Insect"nAChR.""A)"Bird’s"eye"view"of"assembled"receptor"with"5"subunits.""Transmembrane"regions,"M1OM4,"

and"ligand"binding"domains"are"indicated.""B)"Subunit"domain"structure:"NOterminal"extracellular"ligandObinding"domain,"4"

transmembrane"domains,"and"one"intracellular"loop.""Note:"Figure"adapted"from"Dupuis"et"al."Neuroscience*and*Biobehavioral*Reviews.*2012."#

!

1351 451

1441 481

1531 511

1621 541

1711 571

1801 601

1891 631

1981 661

2071 691

2161 721

2251 751

2341 781

TGC GAG ATG AAG TTC GGC AGT TGG ACC TAC GAC GGA TTC CAG CTG GAT TTA CAA TTA CAA GAT GAA ACT GGC GGT GAT ATC AGC AGT TAC C E M K F G S W T Y D G F Q L D L Q L Q D E T G G D I S S Y GTG CTC AAC GGC GAG TGG GAA CTA CTG GGT GTG CCC GGC AAA CGT AAC GAA ATC TAT TAC AAC TGC TGC CCG GAA CCC TAT ATA GAC ATC V L N G E W E L L G V P G K R N E I Y Y N C C P E P Y I D I ACC TTC GCC ATC ATC ATC CGC CGA CGA ACA CTG TAC TAT TTC TTC AAC CTG ATC ATA CCT TGT GTA CTG ATT GCC TCC ATG GCC TTG CTC T F A I I I R R R T L Y Y F F N L I I P C V L I A S M A L L GGA TTC ACT CTG CCG CCA GAT TCG GGT GAA AAA TTA TCA CTG GGT GTT ACC ATC TTG CTC TCG CTG ACC GTG TTT CTG AAT ATG GTT GCC G F T L P P D S G E K L S L G V T I L L S L T V F L N M V A GAG ACA ATG CCG GCT ACT TCC GAT GCG GTG CCA TTG CTG GGT ACA TAT TTC AAT TGC ATA ATG TTT ATG GTA GCT TCA TCC GTT GTG TCA E T M P A T S D A V P L L G T Y F N C I M F M V A S S V V S ACG ATT TTA ATA TTA AAT TAT CAT CAT CGA AAT GCT GAT ACG CAC GAA ATG TCC GAA TGG ATA CGC ATC GTG TTT TTG TGC TGG CTG CCA T I L I L N Y H H R N A D T H E M S E W I R I V F L C W L P TGG ATA TTG CGA ATG AGT CGA CCA GGA CGA CCG CTG ATC CTG GAG TTC CCG ACC ACG CCC TGT TCG GAC ACA TCC TCC GAG CGG AAG CAC W I L R M S R P G R P L I L E F P T T P C S D T S S E R K H CAG ATA CTC TCC GAC GTT GAG CTG AAA GAG CGC TCG TCG AAA TCG CTG CTG GCC AAC GTA CTA GAC ATC GAT GAT GAC TTC CGG CAC AAT Q I L S D V E L K E R S S K S L L A N V L D I D D D F R H N TGT CGC CCC ATG ACG CCC GGC GGA ACA CTG CCA CAC AAC CCG GCT TTC TAT CGC ACG GTT TAT GGA CAA GGC GAC GAT GGC AGC ATT GGG C R P M T P G G T L P H N P A F Y R T V Y G Q G D D G S I G CCA ATT GGC AGC ACC CGA ATG CCG GAT GCG GTC ACC CAT CAT ACG TGC ATC AAA TCA TCA ACT GAA TAT GAA TTA GGT TTA ATC TTA AAG P I G S T R M P D A V T H H T C I K S S T E Y E L G L I L K GAA ATT CGC TTT ATA ACT GAT CAG CTA CGT AAA GAT GAC GAG TGC AAT GAC ATT GCC AAT GAT TGG AAA TTT GCA GCT ATG GTC GTT GAC E I R F I T D Q L R K D D E C N D I A N D W K F A A M V V D AGA CTG TGC CTT ATC ATA TTC ACA ATG TTC ACA ATA TTA GCC ACA ATA GCT GTA CTA CTA TCA GCA CCA CAT ATT ATT GTC TCG TAG R L C L I I F T M F T I L A T I A V L L S A P H I I V S *

Fig$2.8$Edi$ng'In'nAcRalpha034E.''The'coding'and'protein'sequence'is'shown'for'residues'4510808.''Edi$ng'sites'in'the'coding'sequence'are'highlighted'in'yellow'and'the'changed'adenosine'is'marked'in'red.''If'the'edit'resulted'in'an'amino'acid'change,'the'amino'acid'is'colored'gray'in'the'protein'sequence.''Blue'indicates'an'extracellular'domain.''Purple'corresponds'to'the'transmembrane'domains'(M10M4).''Green'indicates'a'intracellular'domain.''Coding'sequence'informa$on'was'obtained'from'the'NCBI''and'aligned'to'the'protein'transla$on'using'the'translator'tool'a'fr33.net'(Pawlowski,'N.).''Protein'domain'informa$on'was'iden$fied'using'the'TMHMM'Predic$on'Server'from'the'CBS,'Technical'University'of'Denmark.''$

Page 47: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  41  

 

Fig$2.9$Edi$ng'in'Brd8.''Coding'and'protein'sequence'are'shown'for'residues'661;874.''Edi$ng'site'are'highlighted'in'yellow'in'the'coding'sequence'with'the'changed'nucleo$de'in'red.''The'bromodomain'is'indicated'in'purple'in'the'protein'sequence.'Coding'sequence'informa$on'was'obtained'from'the'NCBI''and'aligned'to'the'protein'transla$on'using'the'translator'tool'a'fr33.net'(Pawlowski,'N.).'Protein'sequence'domains'were'iden$fied'using'InterPro'from'the'the'European'Bioinforma$cs'Ins$tute.$

Page 48: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  42  

         

CONCLUSIONS        

  We  set  out  to  optimize  methods  for  creating  RNA-­‐seq  libraries  from  small  

populations  of  cells,  so  as  to  be  able  to  better  characterize  the  neurons  involved  in  

the  maintenance  of  circadian  rhythms  in  Drosophila.    Using  dT-­‐amplification  we  

were  able  to  create  3'-­‐biased  libraries  from  cells  and  use  the  sequencing  data  to  

analyze  RNA-­‐editing  in  two  populations  of  cells,  PDF-­‐  and  TH-­‐cells.    In  this  manner  

we  were  able  to  identify  20  editing  sites,  17  previously  found  in  heads  and  3  that  

were  novel.    Additionally,  we  found  that  many  of  the  sites  were  edited  at  varying  

levels  and  cycled  in  the  two  cell  populations.  This  suggests  that  tissue-­‐specific  

regulation  of  editing  does  occur,  and  that  some  of  this  regulation  may  be  mediated  

by  the  circadian  system.  

  Our  data  was  limited,  though,  by  the  3'-­‐bias  of  our  libraries.    Due  to  this  bias,  

we  were  only  able  to  identify  a  limited  number  of  editing  sites  because  of  low  

genome  coverage.    Moreover,  the  bias  confounds  analyses  of  gene  enrichment  and  

isoform  expression  because  the  current  methods  used  to  quantify  sequencing  data  

normalize  gene  signal  to  the  size  of  the  gene.    Thus,  long  genes  will  possibly  be  

underrepresented  because  the  limited  signal  coming  from  the  3'-­‐end  in  the  biased  

libraries  will  be  divided  by  a  larger  gene  size.      

  To  reduce  the  3'-­‐bias  that  results  from  dT-­‐amplification,  we  tried  methods  

that  used  a  mix  of  both  random-­‐  and  dT-­‐primers.    Initial  experiments  using  this  

Page 49: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  43  

method  were  unsuccessful  in  cells.    However,  lab  members  continued  to  experiment  

with  different  amplification  conditions  and  library  preparations,  and  were  just  

recently  successful  in  creating  unbiased  libraries  from  cells  that  mapped  well  to  the  

genome.    We  used  this  working  method  to  sequence  RNA  from  six  time-­‐points  of  

PDF-­‐cells  and  are  in  the  process  of  analyzing  these  data.    With  these  data,  we  hope  

to  better  elucidate  cycling  gene  and  isoform  expression,  as  well  as  identify  tissue-­‐

specific  editing  events.  

  Future  work  will  apply  these  amplification  and  RNA-­‐seq  methods  to  

additional  cell  populations.    Recently,  we  were  able  to  successfully  purify  

evening  cells  (LNds)  from  fly  brains  and  create  RNA-­‐seq  libraries  at  one  

time-­‐point.    The  expression  profile  of  these  cells  has  never  been  

characterized.    Therefore,  RNA-­‐seq  data  could  be  very  useful  in  illuminating  

how  these  cells  functions  in  the  circadian  circuit,  e.g.  elucidate  neuropeptides  

and  receptors  used  in  signaling,  and  identify  novel  circadian  genes.  

 

Page 50: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  44  

         

APPENDIX        

A.1  SUPPLEMENTARY  TABLES  

 

 

   

symbol' Chr' Coordinate'

PDF'GFP'Strain'gDNA'

TH'GFP'Strain'gDNA'

Pooled'PDF;Cell'Edi=ng'

Pooled'TH;Cell'Edi=ng'

Nascent'Edi=ng''in'Heads'

Edi=ng''in'Heads'

PDF;Cell'Gene'

Enrichment'

TH;Cell'Gene'

Enrichment'Msp$300' chr2L' 5164694' A' A' 0.13' 0.12' 0.29' 0.62' 0.67'

nAcRalpha$34E' chr2L' 14083516' A' A' 0.87' 0.08' 0.84' 0.73' 0.00' 25.88'nAcRalpha$34E' chr2L' 14083517' A' A' 0.88' 0.05' 0.84' 0.81' 0.00' 25.88'nAcRalpha$34E' chr2L' 14089204' A' A' 0.65' 0.96' 0.83' 0.88' 0.00' 25.88'nAcRalpha$34E' chr2L' 14089236' A' A' 0.41' 0.01' 0.46' 0.00' 25.88'nAcRalpha$34E' chr2L' 14089246' A' A' 0.92' 0.91' 0.84' 1.00' 0.00' 25.88'

Ca$alpha1D' chr2L' 16174153' A' A' 0.83' 0.58' 0.75' 1.00' 0.12' 2.87'Ca$alpha1D' chr2L' 16174194' A' A' 0.51' 0.95' 1.00' 0.12' 2.87'

stj' chr2R' 9697052' A' A' 0.29' 0.42' 0.68' 0.84' 0.09' 2.12'nAcRbeta$64B' chr3L' 4429963' A' A' 0.96' 0.81' 0.90' 0.14' 3.95'

CG42540' chr3L' 4590709' A' A' 0.15' 0.15' 0.44' 0.06' 2.63'Syn' chr3R' 6021148' A' A' 0.54' 0.95' 0.94' 0.04' 2.38'slo' chr3R' 20501385' A' A' 0.83' 0.71' 0.83' 0.71' 0.21' 0.98'nct' chr3R' 20679633' G' A' 0.48' 0.07' 1.54'

Pkc98E' chr3R' 24872309' G' A' 0.50' 0.36' 1.83'Brd8' chr3R' 25051833' G' A' 0.40' 79.35' 12.64'pan' chr4' 120661' A' A' 0.15' 0.25' 0.45' 0.05' 1.48'pan' chr4' 120807' A' A' 0.77' 0.43' 0.76' 1.00' 0.05' 1.48'SK' chrX' 5290552' A' A' 0.41' 0.12' 0.32' 0.38' 0.32' 1.56'shi' chrX' 15791327' A' A' 0.28' 0.21' 0.39' 0.40' 0.25' 3.07'

Table'1'EdiLng'Sites'Across'Cell'Types.''EdiLng'sites'and'levels'were'validated'using'site$specific'PCR.'Enrichment'levels'were'determined'using'RNA$seq'data'from'both'cell'types'and'whole'heads.''Enrichment'was'calculated'by'dividing'the'gene'signal'from'cells'by'the'signal'from'heads.''Data'from'heads'was'previously'published'in'Rodriguez'et'al.'Mol$Cell.'2012.'

Page 51: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  45  

A.2  METHODS  AND  MATERIALS  

   •  FLY  STRAINS       The  following  GFP-­‐expressing  lines  were  used  for  cell  collections.    1)  yw,  

UAS-­‐mcD8GFP;  Pdf-­‐Gal4.  2)  w;  UAS-­‐eGFP;  Elav-­‐Gal4.  3)  w-­‐;  Th-­‐Gal4/UAS-­‐eGFP.  

   •  CELL  SORTING       Flies  expressing  GFP  in  the  cells  of  interest  were  entrained  to  a  24-­‐hour  

light/dark  cycle  in  incubators  at  22-­‐25  degrees  Celsius  for  3-­‐4  days.    At  ZT2  and  

ZT14,  flies  were  collected  for  cell  sorting.    Cell  sorting  was  modified  from  previous  

methods  (28,  29).    Briefly,  brains  were  dissected  in  a  cold  saline  solution  and  then  

transferred  to  a  1.5  ml  tube  of  cell  medium  on  ice.    For  PDF-­‐cell,  ELAV-­‐cell,  and  TH-­‐

cell  collections,  ~50-­‐60,  10-­‐15,  and  20-­‐30  brains  were  dissected,  respectively.    The  

brains  were  then  spun  down  and  washed  once  with  saline.    Papain  was  added  to  

each  sample  and  the  brains  were  dissociated  for  25-­‐30  minutes  at  room  

temperature.    Approximately  3  volumes  of  cold  cell  medium  was  added  to  stop  the  

dissociation.    The  samples  were  then  spun  down  and  washed  once  with  cell  

medium.    After  resuspending  in  300  ul  of  medium,  the  brains  with  triturated  with  

flame-­‐rounded  1  ml  pipette  tips.    The  resulting  cell  suspension  was  then  plated  on  

sylgard  plates  and  allowed  to  settle  for  20  minutes.    GFP-­‐positive  cells  were  then  

sorted  a  total  of  3  rounds  (transferring  to  new  plates)  using  a  fluorescent  

microscope.    Cells  were  then  lysed  with  either  XB  lysis  buffer  (Arcturus  PicoPure  Kit  

Page 52: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  46  

#0204)  at  42  degrees,  or  with  DynaBead  lysis/binding  buffer  (DynaBead  mRNA  

Direct  MicroKit,  Ambion  61021).    The  cell  lysates  were  stored  at  -­‐80  degrees.  

 

•  RNA  EXTRACTION  AND  AMPLIFICATION  FROM  CELLS  

  RNA  from  cell  lysates  was  extracted  with  either  the  Arcturus  PicoPure  Kit  

(whole  RNA)  or  DynaBead  mRNA  MicroKit  (oligo-­‐dT  selection).    Extractions  were  

performed  according  to  recommended  kit  protocols.    RNA  amplification  was  then  

carried  out  according  to  methods  modified  from  (28,  29).    dT-­‐T7  primers  were  

added  to  isolated  RNA  and  the  samples  were  evaporated  to  a  volume  of  2  ul.    The  

first-­‐strand  synthesis  of  cDNA#1  was  then  carried  out  using  reverse  transcriptase,  

Superscript  III  (invitrogen).    Second  strand  synthesis  using  DNA  polymerase  then  

followed.    The  double-­‐stranded  cDNA#1  was  then  ethanol  precipitated  at  -­‐80  

degrees  for  at  least  3  hours.    cDNA#1  was  pelleted,  washed,  and  resuspended  in  4  ul  

of  water  and  immediately  used  in  the  first-­‐round  IVT  reaction  (carried  out  

according  to  Ambion  MEGAscript  Kit  protocol).    The  IVT  reaction  was  incubated  at  

37  degrees  for  16-­‐20  hours.    The  resulting  cRNA  was  isolated  using  Qiagen's  

RNAeasy  minElute  Kit.    The  14  ul  of  eluted  cRNA  was  then  used  in  a  second  round  of  

cDNA  synthesis  (cDNA#2).    Briefly,  random  primer  was  added  to  the  cRNA  and  the  

samples  were  evaporated  to  5  ul.    The  samples  were  then  reverse  transcribed  to  

cDNA  using  Superscript  III  for  first-­‐strand  synthesis,  and  DNA  polymerase  for  

second-­‐strand  synthesis.  cDNA#2  was  ethanol  precipitated  as  before,  and  then  used  

in  a  second  round  of  IVT  (cRNA#2).    cRNA#2  was  used  to  make  RNA-­‐seq  libraries.  

 

Page 53: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  47  

•  CREATION  OF  RNA-­‐SEQ  LIBRARIES  

  RNA-­‐seq  libraries  from  cells  were  created  using  cRNA#2  from  the  

amplification  protocol.    Libraries  were  created  according  to  standard  protocols  for  

the  Illumina  RNA  TruSeq  Kit  v2,  entering  the  protocol  at  the  fragmentation  stage.    

 

•  RNA  EXTRACTION  FROM  FLY  HEADS  

  Whole  RNA  from  the  yw,  UAS-­‐mcD8GFP;  Pdf-­‐Gal4  strain  was  collected  at  ZT2  

and  ZT14  from  heads  using  Trizol  reagent  from  Invitrogen  and  the  manufacturer's  

recommended  protocol.    The  whole  RNA  was  then  diluted  to  levels  comparable  to  

those  of  extracted  cells  and  amplified  according  the  protocol  described  above.    

Libraries  were  then  made  from  the  amplified  head  RNA.  

 

•  GENOMIC  DNA  EXTRACTION  AND  LIBRARY  CREATION  

  The  gDNA  from  the  Pdf-­‐Gal4>UAS-­‐mcD8GFP  and  Th-­‐Gal4>UAS-­‐eGFP  fly  lines  

was  extracted  according  to  the  Qiagen  DNeasy  Blood  and  Tissue  Kit.    The  gDNA  was  

then  sheared  by  sonication  using  the  Diagenode  Biorupter.    Shearing  was  done  at  

the  medium  setting  for  40  rounds  of  30  second  on/off  cycles.    Libraries  were  then  

made  from  the  sheared  gDNA.    Library  preparation  was  done  according  standard  

Illumina  DNA  TruSeq  protocols.  

 

•  QUANTITATIVE  PCR  

Page 54: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  48  

  Q-­‐PCR  was  performed  to  check  the  levels  of  amplification  products,  cDNA#1  

and  cDNA#2,  from  cells.    PCR  was  carried  out  using  Syber  Master  Mix  (Qiagen),  

using  protocols  described  previously  (27).  

 

•  SITE-­‐SPECIFIC  PCR  

  PCR  reactions  for  the  31  RNA-­‐editing  sites  of  interest  were  carried  out  using  

the  gDNA  from  the  PDF-­‐  and  TH-­‐cell  lines,  as  well  as  cDNA#2  from  both  time-­‐points  

of  each  cell  type.    Reactions  were  done  using  Platinum  Taq  Polymerase  Hi  Fidelity  

(Invitrogen)  according  to  manufacturer's  recommended  protocol.    The  reactions  for  

each  sample  template  were  pooled  and  cleaned  using  Qiagen's  PCR  minElute  Kit.    

The  amplicons  were  then  made  into  sequencing  libraries  according  to  Illumina's  

DNA  TruSeq  Kit.    

 

•  LIBRARY  AND  EDITING  DATA  ANALYSIS  

  Sequencing  was  done  using  Illumina's  Genome  Analyzer.    The  RNA-­‐

sequencing  reads  and  PCR  amplicons  were  mapped  to  the  Drosophila  genome  using  

TopHat  and  a  gene  annotation  file.    The  following  options  were  used  with  TopHat:  -­‐

m  1  -­‐F  0  -­‐p  6  -­‐g  1  -­‐-­‐microexon-­‐search  -­‐-­‐no-­‐closure-­‐search  -­‐G  -­‐-­‐solexa-­‐quals  -­‐I  50000.    

After  mapping  the  expression  signals  were  quantified  usinng  Cufflinks  and  the  

following  options:  -­‐G  -­‐b  -­‐-­‐max-­‐bundle-­‐frags  10000000.    Additionally,  matrix  and  

visualization  files  which  quantify  the  number  and  types  of  reads  for  each  base  in  the  

genome  were  made  using  previously  published  methods  (62).    For  the  gDNA  

Page 55: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  49  

libraries,  mapping  was  carried  out  with  Bowtie2  using  the  options:  -­‐-­‐solexa-­‐quals  -­‐-­‐

sensitive  -­‐x.      

  Editing  analysis  of  RNA-­‐seq  data  was  done  using  previously  published  

methods  (62).    Analysis  of  the  PCR  amplicon  sequencing  for  the  31  sites  of  interest  

was  done  by  making  matrix  files  and  then  using  the  unix  GREP  command  to  pull  out  

the  base  reads  covering  the  coordinate  position  of  each  site.      

 

Page 56: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  50  

         

REFERENCES          1.   Allada  R  &  Chung  BY  (2010)  Circadian  organization  of  behavior  and  

physiology  in  Drosophila.  Annual  review  of  physiology  72:605-­‐624.  2.   Mohawk  JA,  Green  CB,  &  Takahashi  JS  (2012)  Central  and  peripheral  

circadian  clocks  in  mammals.  Annual  review  of  neuroscience  35:445-­‐462.  3.   Karatsoreos  IN  (2012)  Effects  of  circadian  disruption  on  mental  and  physical  

health.  Current  neurology  and  neuroscience  reports  12(2):218-­‐225.  4.   Menet  JS  &  Rosbash  M  (2011)  When  brain  clocks  lose  track  of  time:  cause  or  

consequence  of  neuropsychiatric  disorders.  Current  opinion  in  neurobiology  21(6):849-­‐857.  

5.   Allada  R,  White  NE,  So  WV,  Hall  JC,  &  Rosbash  M  (1998)  A  mutant  Drosophila  homolog  of  mammalian  Clock  disrupts  circadian  rhythms  and  transcription  of  period  and  timeless.  Cell  93(5):791-­‐804.  

6.   Rutila  JE,  et  al.  (1998)  CYCLE  is  a  second  bHLH-­‐PAS  clock  protein  essential  for  circadian  rhythmicity  and  transcription  of  Drosophila  period  and  timeless.  Cell  93(5):805-­‐814.  

7.   Konopka  RJ  &  Benzer  S  (1971)  Clock  mutants  of  Drosophila  melanogaster.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  68(9):2112-­‐2116.  

8.   Reddy  P,  et  al.  (1984)  Molecular  analysis  of  the  period  locus  in  Drosophila  melanogaster  and  identification  of  a  transcript  involved  in  biological  rhythms.  Cell  38(3):701-­‐710.  

9.   Zehring  WA,  et  al.  (1984)  P-­‐element  transformation  with  period  locus  DNA  restores  rhythmicity  to  mutant,  arrhythmic  Drosophila  melanogaster.  Cell  39(2  Pt  1):369-­‐376.  

10.   Sehgal  A,  Price  JL,  Man  B,  &  Young  MW  (1994)  Loss  of  circadian  behavioral  rhythms  and  per  RNA  oscillations  in  the  Drosophila  mutant  timeless.  Science  263(5153):1603-­‐1606.  

11.   Darlington  TK,  et  al.  (1998)  Closing  the  circadian  loop:  CLOCK-­‐induced  transcription  of  its  own  inhibitors  per  and  tim.  Science  280(5369):1599-­‐1603.  

12.   Lee  C,  Bae  K,  &  Edery  I  (1999)  PER  and  TIM  inhibit  the  DNA  binding  activity  of  a  Drosophila  CLOCK-­‐CYC/dBMAL1  heterodimer  without  disrupting  formation  of  the  heterodimer:  a  basis  for  circadian  transcription.  Molecular  and  cellular  biology  19(8):5316-­‐5325.  

Page 57: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  51  

13.   Gekakis  N,  et  al.  (1995)  Isolation  of  timeless  by  PER  protein  interaction:  defective  interaction  between  timeless  protein  and  long-­‐period  mutant  PERL.  Science  270(5237):811-­‐815.  

14.   Chiu  JC,  Vanselow  JT,  Kramer  A,  &  Edery  I  (2008)  The  phospho-­‐occupancy  of  an  atypical  SLIMB-­‐binding  site  on  PERIOD  that  is  phosphorylated  by  DOUBLETIME  controls  the  pace  of  the  clock.  Genes  &  development  22(13):1758-­‐1772.  

15.   Emery  P,  So  WV,  Kaneko  M,  Hall  JC,  &  Rosbash  M  (1998)  CRY,  a  Drosophila  clock  and  light-­‐regulated  cryptochrome,  is  a  major  contributor  to  circadian  rhythm  resetting  and  photosensitivity.  Cell  95(5):669-­‐679.  

16.   Zeng  H,  Qian  Z,  Myers  MP,  &  Rosbash  M  (1996)  A  light-­‐entrainment  mechanism  for  the  Drosophila  circadian  clock.  Nature  380(6570):129-­‐135.  

17.   Koh  K,  Zheng  X,  &  Sehgal  A  (2006)  JETLAG  resets  the  Drosophila  circadian  clock  by  promoting  light-­‐induced  degradation  of  TIMELESS.  Science  312(5781):1809-­‐1812.  

18.   Kim  EY,  Ko  HW,  Yu  W,  Hardin  PE,  &  Edery  I  (2007)  A  DOUBLETIME  kinase  binding  domain  on  the  Drosophila  PERIOD  protein  is  essential  for  its  hyperphosphorylation,  transcriptional  repression,  and  circadian  clock  function.  Molecular  and  cellular  biology  27(13):5014-­‐5028.  

19.   Kivimae  S,  Saez  L,  &  Young  MW  (2008)  Activating  PER  repressor  through  a  DBT-­‐directed  phosphorylation  switch.  PLoS  biology  6(7):e183.  

20.   Sathyanarayanan  S,  Zheng  X,  Xiao  R,  &  Sehgal  A  (2004)  Posttranslational  regulation  of  Drosophila  PERIOD  protein  by  protein  phosphatase  2A.  Cell  116(4):603-­‐615.  

21.   Martinek  S,  Inonog  S,  Manoukian  AS,  &  Young  MW  (2001)  A  role  for  the  segment  polarity  gene  shaggy/GSK-­‐3  in  the  Drosophila  circadian  clock.  Cell  105(6):769-­‐779.  

22.   Yu  W,  Zheng  H,  Houl  JH,  Dauwalder  B,  &  Hardin  PE  (2006)  PER-­‐dependent  rhythms  in  CLK  phosphorylation  and  E-­‐box  binding  regulate  circadian  transcription.  Genes  &  development  20(6):723-­‐733.  

23.   Cyran  SA,  et  al.  (2003)  vrille,  Pdp1,  and  dClock  form  a  second  feedback  loop  in  the  Drosophila  circadian  clock.  Cell  112(3):329-­‐341.  

24.   Claridge-­‐Chang  A,  et  al.  (2001)  Circadian  regulation  of  gene  expression  systems  in  the  Drosophila  head.  Neuron  32(4):657-­‐671.  

25.   Keegan  KP,  Pradhan  S,  Wang  JP,  &  Allada  R  (2007)  Meta-­‐analysis  of  Drosophila  circadian  microarray  studies  identifies  a  novel  set  of  rhythmically  expressed  genes.  PLoS  computational  biology  3(11):e208.  

26.   McDonald  MJ  &  Rosbash  M  (2001)  Microarray  analysis  and  organization  of  circadian  gene  expression  in  Drosophila.  Cell  107(5):567-­‐578.  

27.   Abruzzi  KC,  et  al.  (2011)  Drosophila  CLOCK  target  gene  characterization:  implications  for  circadian  tissue-­‐specific  gene  expression.  Genes  &  development  25(22):2374-­‐2386.  

28.   Kula-­‐Eversole  E,  et  al.  (2010)  Surprising  gene  expression  patterns  within  and  between  PDF-­‐containing  circadian  neurons  in  Drosophila.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  107(30):13497-­‐13502.  

Page 58: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  52  

29.   Nagoshi  E,  et  al.  (2010)  Dissecting  differential  gene  expression  within  the  circadian  neuronal  circuit  of  Drosophila.  Nature  neuroscience  13(1):60-­‐68.  

30.   Kaneko  M  &  Hall  JC  (2000)  Neuroanatomy  of  cells  expressing  clock  genes  in  Drosophila:  transgenic  manipulation  of  the  period  and  timeless  genes  to  mark  the  perikarya  of  circadian  pacemaker  neurons  and  their  projections.  The  Journal  of  comparative  neurology  422(1):66-­‐94.  

31.   Ewer  J,  Frisch  B,  Hamblen-­‐Coyle  MJ,  Rosbash  M,  &  Hall  JC  (1992)  Expression  of  the  period  clock  gene  within  different  cell  types  in  the  brain  of  Drosophila  adults  and  mosaic  analysis  of  these  cells'  influence  on  circadian  behavioral  rhythms.  The  Journal  of  neuroscience  :  the  official  journal  of  the  Society  for  Neuroscience  12(9):3321-­‐3349.  

32.   Zerr  DM,  Hall  JC,  Rosbash  M,  &  Siwicki  KK  (1990)  Circadian  fluctuations  of  period  protein  immunoreactivity  in  the  CNS  and  the  visual  system  of  Drosophila.  The  Journal  of  neuroscience  :  the  official  journal  of  the  Society  for  Neuroscience  10(8):2749-­‐2762.  

33.   Helfrich-­‐Forster  C  (1995)  The  period  clock  gene  is  expressed  in  central  nervous  system  neurons  which  also  produce  a  neuropeptide  that  reveals  the  projections  of  circadian  pacemaker  cells  within  the  brain  of  Drosophila  melanogaster.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  92(2):612-­‐616.  

34.   Lear  BC,  et  al.  (2005)  A  G  protein-­‐coupled  receptor,  groom-­‐of-­‐PDF,  is  required  for  PDF  neuron  action  in  circadian  behavior.  Neuron  48(2):221-­‐227.  

35.   Shafer  OT,  Helfrich-­‐Forster  C,  Renn  SC,  &  Taghert  PH  (2006)  Reevaluation  of  Drosophila  melanogaster's  neuronal  circadian  pacemakers  reveals  new  neuronal  classes.  The  Journal  of  comparative  neurology  498(2):180-­‐193.  

36.   Murad  A,  Emery-­‐Le  M,  &  Emery  P  (2007)  A  subset  of  dorsal  neurons  modulates  circadian  behavior  and  light  responses  in  Drosophila.  Neuron  53(5):689-­‐701.  

37.   Zhang  L,  et  al.  (2010)  DN1(p)  circadian  neurons  coordinate  acute  light  and  PDF  inputs  to  produce  robust  daily  behavior  in  Drosophila.  Current  biology  :  CB  20(7):591-­‐599.  

38.   Hamasaka  Y,  et  al.  (2007)  Glutamate  and  its  metabotropic  receptor  in  Drosophila  clock  neuron  circuits.  The  Journal  of  comparative  neurology  505(1):32-­‐45.  

39.   Yoshii  T,  Rieger  D,  &  Helfrich-­‐Forster  C  (2012)  Two  clocks  in  the  brain:  an  update  of  the  morning  and  evening  oscillator  model  in  Drosophila.  Progress  in  brain  research  199:59-­‐82.  

40.   Daan  Pa  (1976)  A  functional  analysis  of  circadian  pacemakers  in  nocturnal  rodents.  V.  Pacemaker  structure:  A  clock  for  all  seasons.  The  Journal  of  Comparative  Physiology  A  106:22.  

41.   Grima  B,  Chelot  E,  Xia  R,  &  Rouyer  F  (2004)  Morning  and  evening  peaks  of  activity  rely  on  different  clock  neurons  of  the  Drosophila  brain.  Nature  431(7010):869-­‐873.  

42.   Stoleru  D,  Peng  Y,  Agosto  J,  &  Rosbash  M  (2004)  Coupled  oscillators  control  morning  and  evening  locomotor  behaviour  of  Drosophila.  Nature  431(7010):862-­‐868.  

Page 59: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  53  

43.   Nitabach  MN  &  Taghert  PH  (2008)  Organization  of  the  Drosophila  circadian  control  circuit.  Current  biology  :  CB  18(2):R84-­‐93.  

44.   Helfrich-­‐Forster  C  (2002)  The  circadian  system  of  Drosophila  melanogaster  and  its  light  input  pathways.  Zoology  105(4):297-­‐312.  

45.   Sheeba  V,  et  al.  (2008)  Large  ventral  lateral  neurons  modulate  arousal  and  sleep  in  Drosophila.  Current  biology  :  CB  18(20):1537-­‐1545.  

46.   Miyasako  Y,  Umezaki  Y,  &  Tomioka  K  (2007)  Separate  sets  of  cerebral  clock  neurons  are  responsible  for  light  and  temperature  entrainment  of  Drosophila  circadian  locomotor  rhythms.  Journal  of  biological  rhythms  22(2):115-­‐126.  

47.   Boothroyd  CE,  Wijnen  H,  Naef  F,  Saez  L,  &  Young  MW  (2007)  Integration  of  light  and  temperature  in  the  regulation  of  circadian  gene  expression  in  Drosophila.  PLoS  genetics  3(4):e54.  

48.   Van  Swinderen  B  &  Andretic  R  (2011)  Dopamine  in  Drosophila:  setting  arousal  thresholds  in  a  miniature  brain.  Proceedings.  Biological  sciences  /  The  Royal  Society  278(1707):906-­‐913.  

49.   Kumar  S,  Chen  D,  &  Sehgal  A  (2012)  Dopamine  acts  through  Cryptochrome  to  promote  acute  arousal  in  Drosophila.  Genes  &  development  26(11):1224-­‐1234.  

50.   Hirsh  J,  et  al.  (2010)  Roles  of  dopamine  in  circadian  rhythmicity  and  extreme  light  sensitivity  of  circadian  entrainment.  Current  biology  :  CB  20(3):209-­‐214.  

51.   Wang  Z,  Gerstein  M,  &  Snyder  M  (2009)  RNA-­‐Seq:  a  revolutionary  tool  for  transcriptomics.  Nature  reviews.  Genetics  10(1):57-­‐63.  

52.   Tariq  MA,  Kim  HJ,  Jejelowo  O,  &  Pourmand  N  (2011)  Whole-­‐transcriptome  RNAseq  analysis  from  minute  amount  of  total  RNA.  Nucleic  acids  research  39(18):e120.  

53.   Armour  CD,  et  al.  (2009)  Digital  transcriptome  profiling  using  selective  hexamer  priming  for  cDNA  synthesis.  Nature  methods  6(9):647-­‐649.  

54.   Nishikura  K  (2010)  Functions  and  regulation  of  RNA  editing  by  ADAR  deaminases.  Annual  review  of  biochemistry  79:321-­‐349.  

55.   Jepson  JE  &  Reenan  RA  (2008)  RNA  editing  in  regulating  gene  expression  in  the  brain.  Biochimica  et  biophysica  acta  1779(8):459-­‐470.  

56.   Knoop  V  (2011)  When  you  can't  trust  the  DNA:  RNA  editing  changes  transcript  sequences.  Cellular  and  molecular  life  sciences  :  CMLS  68(4):567-­‐586.  

57.   Benne  R,  et  al.  (1986)  Major  transcript  of  the  frameshifted  coxII  gene  from  trypanosome  mitochondria  contains  four  nucleotides  that  are  not  encoded  in  the  DNA.  Cell  46(6):819-­‐826.  

58.   Jepson  JE,  et  al.  (2011)  Engineered  alterations  in  RNA  editing  modulate  complex  behavior  in  Drosophila:  regulatory  diversity  of  adenosine  deaminase  acting  on  RNA  (ADAR)  targets.  The  Journal  of  biological  chemistry  286(10):8325-­‐8337.  

59.   Powell  LM,  et  al.  (1987)  A  novel  form  of  tissue-­‐specific  RNA  processing  produces  apolipoprotein-­‐B48  in  intestine.  Cell  50(6):831-­‐840.  

60.   Smith  HC,  Bennett  RP,  Kizilyer  A,  McDougall  WM,  &  Prohaska  KM  (2012)  Functions  and  regulation  of  the  APOBEC  family  of  proteins.  Seminars  in  cell  &  developmental  biology  23(3):258-­‐268.  

Page 60: Next%GenerationSequencing,ElucidatesRNA%Editing, Drosophila*

  54  

61.   Graveley  BR,  et  al.  (2011)  The  developmental  transcriptome  of  Drosophila  melanogaster.  Nature  471(7339):473-­‐479.  

62.   Rodriguez  J,  Menet  JS,  &  Rosbash  M  (2012)  Nascent-­‐seq  indicates  widespread  cotranscriptional  RNA  editing  in  Drosophila.  Molecular  cell  47(1):27-­‐37.  

63.   Fukui  T  &  Itoh  M  (2010)  RNA  editing  in  P  transposable  element  read-­‐through  transcripts  in  Drosophila  melanogaster.  Genetica  138(11-­‐12):1119-­‐1126.  

64.   Hoopengardner  B,  Bhalla  T,  Staber  C,  &  Reenan  R  (2003)  Nervous  system  targets  of  RNA  editing  identified  by  comparative  genomics.  Science  301(5634):832-­‐836.  

65.   Ingleby  L,  Maloney  R,  Jepson  J,  Horn  R,  &  Reenan  R  (2009)  Regulated  RNA  Editing  and  Functional  Epistasis  in  Shaker  Potassium  Channels.  J  Gen  Physiol  133(1):17-­‐27.  

66.   Dupuis  J,  Louis  T,  Gauthier  M,  &  Raymond  V  (2012)  Insights  from  honeybee  (Apis  mellifera)  and  fly  (Drosophila  melanogaster)  nicotinic  acetylcholine  receptors:  from  genes  to  behavioral  functions.  Neuroscience  and  biobehavioral  reviews  36(6):1553-­‐1564.  

67.   Sattelle  DB,  et  al.  (2005)  Edit,  cut  and  paste  in  the  nicotinic  acetylcholine  receptor  gene  family  of  Drosophila  melanogaster.  BioEssays  :  news  and  reviews  in  molecular,  cellular  and  developmental  biology  27(4):366-­‐376.  

68.   Lasalde  JA,  et  al.  (1996)  Tryptophan  substitutions  at  the  lipid-­‐exposed  transmembrane  segment  M4  of  Torpedo  californica  acetylcholine  receptor  govern  channel  gating.  Biochemistry  35(45):14139-­‐14148.  

69.   Cruz-­‐Martin  A,  Mercado  JL,  Rojas  LV,  McNamee  MG,  &  Lasalde-­‐Dominicci  JA  (2001)  Tryptophan  substitutions  at  lipid-­‐exposed  positions  of  the  gamma  M3  transmembrane  domain  increase  the  macroscopic  ionic  current  response  of  the  Torpedo  californica  nicotinic  acetylcholine  receptor.  The  Journal  of  membrane  biology  183(1):61-­‐70.  

70.   Suh  J  &  Jackson  FR  (2007)  Drosophila  ebony  activity  is  required  in  glia  for  the  circadian  regulation  of  locomotor  activity.  Neuron  55(3):435-­‐447.  

71.   Ohlson  J,  Pedersen  JS,  Haussler  D,  &  Ohman  M  (2007)  Editing  modifies  the  GABA(A)  receptor  subunit  alpha3.  Rna  13(5):698-­‐703.  

72.   Jeanmougin  F,  Wurtz  JM,  Le  Douarin  B,  Chambon  P,  &  Losson  R  (1997)  The  bromodomain  revisited.  Trends  in  biochemical  sciences  22(5):151-­‐153.