new new measurements with the bege detector · 2008. 11. 24. · 2 bege: promising new detector for...

45
New measurements with New measurements with the the BEGe BEGe detector detector Marik Marik Barnab Barnab é é Heider Heider Du Du š š an an Budj Budj áš áš Oleg Chkvorets Oleg Chkvorets Stefan Stefan Sch Sch ö ö nert nert Nikita Nikita Xanbekov* Xanbekov* MPI f MPI f ü ü r Kernphysik r Kernphysik Heidelberg Heidelberg * also: ITEP * also: ITEP Moscow Moscow M M AX AX - - P P LANCK LANCK - - I I NSTITUT NSTITUT F F Ü Ü R R K K ERNPHYSIK ERNPHYSIK

Upload: others

Post on 20-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • New measurements withNew measurements withthe the BEGeBEGe detectordetector

    MarikMarik BarnabBarnabéé HeiderHeider •• DuDuššanan BudjBudjášáš •• Oleg ChkvoretsOleg ChkvoretsStefan Stefan SchSchöönert nert •• Nikita Nikita Xanbekov*Xanbekov*

    MPI fMPI füür Kernphysik r Kernphysik •• HeidelbergHeidelberg* also: ITEP * also: ITEP •• MoscowMoscow

    MMAXAX--PPLANCKLANCK--IINSTITUTNSTITUTFFÜÜR R KKERNPHYSIKERNPHYSIK

  • 2

    BEGeBEGe: promising new detector for : promising new detector for 0νββ0νββ searchsearchMPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    studied at MPIK since April, motivaded by Majorana p-pcvery good PSA perfomance, minimal amount of signal contacts (potential background), excelent energy resolution, o(kg) mass⇒ ideal for ultra-low background experiments

    p+ contact

    p-type germanium

    n+contact

    φ 81 mm

    32 m

    m 878 gFWHM

    0.49 keV

    241Am FWHM1.6 keV

    60Co

    coun

    ts

    DEP90.9%

    1.62 MeV12.5%

  • 3

    Questions remaining after June GERDA meeting:Questions remaining after June GERDA meeting:

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    do we have signal losses due to "inconventional" field distribution in the BEGe crystal?

    how reliable is our pulse-shape analysis?

    does DEP represent the 0νββ events well enough?

    Work performed since then:Work performed since then:

    characterisation of charge collection losses

    single Compton-scattering measurements to obtain pure samples of electron-induced events

    comparison of SCS events at DEP and Qββ energies

  • 4

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCollimator scanningCollimator scanning

  • 5

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCollimator scanning: side scanCollimator scanning: side scan

    collimated 59.5 keV

    γ-ray beam

    d

    Gain variation: ≤ 0.055%

    Majorana PPC detector:Gain variation: ≤ 0.15%

    P.S. Barbeau, J.I. Collar and O. TenchJCAP 0709:009,2007

    collimated 241Am scan

    59.3

    59.35

    59.4

    59.45

    59.5

    59.55

    59.6

    0 5 10 15 20 25 30 35distance from the top of crystal, d [mm]

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    FWH

    M [k

    eV]

    peak positionFWHM

    peak

    pos

    ition

    [keV

    ]

  • 0

    0.5

    1

    1.5

    2

    2.5

    0 5 10 15 20 25 30 35 40 45position d [mm] (0 mm = top of housing)

    coun

    t rat

    e [c

    ps]

    Monte Carlo

    241Am scan

    detector extent

    6

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCollimator scanning : side scanCollimator scanning : side scan

    d

  • 7

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCollimator scanning: top scanCollimator scanning: top scan

    59.4

    59.42

    59.44

    59.46

    59.48

    59.5

    59.52

    59.54

    -50 -40 -30 -20 -10 0 10 20 30 40 50distance from center [mm]

    peak

    pos

    ition

    [keV

    ]

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    FWH

    M [k

    eV]

    peak position

    FWHM

    d

    3

    3.5

    4

    4.5

    5

    -50 -40 -30 -20 -10 0 10 20 30 40 50distance from center, d [mm]

    coun

    t rat

    e [c

    ps]

    241Am scanMonte Carlodetector extent

  • 8

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCharge collection losses: peak tailsCharge collection losses: peak tails

    Energy [keV]

    norm

    alis

    ed c

    ount

    rate

    uncollimated 241Am sourcecollimated beam near bottom edge

  • 9

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCharge collection losses: peak tailsCharge collection losses: peak tails

    Energy [keV]

    coun

    ts /

    0.5

    keV

    60Co source

  • 0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    dead  layer thic knes s  [mm]

    ⎝‐line ratio

    10

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCharge collection losses: dead layerCharge collection losses: dead layer

    inte

    nsity

    -cor

    rect

    ed γ-

    line

    ratio

    : ε 5

    9/

    (ε99

    + ε 1

    03)

    241Am source

    0.42 mm dead layer(Canberra specification: 0.5 mm)

    simulated data points

    measured ratio

  • 0.31

    0.315

    0.32

    0.325

    0.33

    0.335

    0.34

    0.345

    148 150 152 154 156 158 160

    ac tive volume [cm 3]

    1332

    .5 keV

     line efficien

    cy [%]

    11

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCharge collection losses: active volumeCharge collection losses: active volume

    60Co source

    157 cm3 active volume

    simulated data points

    measured efficiency

    active mass: 836 g (95 % of total mass of 878 g)corresponds to 0.44 mm dead layer(assuming uniform around the crystal)

  • 12

    Summary of charge collectionSummary of charge collectionMPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    no inhomogeneity of charge collection

    no incomplete charge collection at all

    BEGe dead layer as thin as in any good quality p-type detector

    active mass is 95 % of the total mass⇒ only the Li-drifted n+ contact inactive

  • ComptonCompton--scattering coincidence measurementsscattering coincidence measurementsMPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    13

  • 14

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCoincident recordingCoincident recording

    Struck SIS 3301 flash-ADC

    14-bit, 100 MHz

    pulse recording, digital shaping (τshaping = 10 μs)

    1.6 μs coincidence

    window

    software gate

    Amplified raw signal

    Canberra2002CSL

    MPIKno shaping

    TFACanberra2111

    Time-filtered signal (10 ns differentiation and

    10 ns integration time)

    Amplified raw signal

    Preamp

    no shapingMPIK

    228Th source(no collimator)

    Pb/Cu shield solid angle:~ 10°

    25 c

    m -

    80 c

    m

    23.6 cm

  • Energy BEGe [channels]

    Ener

    gy D

    ario

    [cha

    nnel

    s]

    ~69° scattering (E ≈ 2 MeV)

    15

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

  • Energy BEGe [channels]

    Ener

    gy D

    ario

    [cha

    nnel

    s]

    ~43° scattering (E ≈ 1.5 MeV)

    DEP

    SEP

    Etotal = 2.6 MeV2.6 MeV

    1.46 MeV

    511 keV

    16

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    2.6 MeV

  • true coincidencerandom coincidence

    (same window, asynchronous time offset)

    Energy BEGe [channels]

    Rate

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCoincident backgroundsCoincident backgrounds

    1.6 μs coincidence window

    Etotal = 2614.5 keV ± 6 keV

    40° scattering

    17

  • 50° scattering 228Th70° scattering 228Th

    random coincidencebackground without source

    Energy BEGe [channels]

    Rate

    [cpd

    / 0.

    14 k

    eV]

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCoincident backgroundsCoincident backgrounds

    1.6 μs coincidence window

    Etotal = 2614.5 keV ± 6 keV

    18

  • Energy BEGe [channels]

    Ener

    gy D

    ario

    [cha

    nnel

    s]

    860 KeV

    possible true coincident backgrounds from 208Tl:

    cascades with 2.6 MeV line

    19

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    583 KeV

  • 20

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCoincident backgroundsCoincident backgrounds

    Energy [keV]

    coun

    ts /

    keV

    Etotal = EDario + EBEGe spectrum

    Compton scattering

    events

    cascade and random events

    scattering with energy loss outside

    detectors, etc.

  • 21

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCompton scattering eventsCompton scattering events

    Energy in BEGe [keV]

    coun

    ts /

    0.5

    keV

    (unn

    orm

    alise

    d)

    70° scattering40° scattering

    1.6 μs coincidence window

    Etotal = 2614.5 keV ± 6 keV

  • 22

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCompton scattering eventsCompton scattering events

    equivalent scattering angle α [°]

    coun

    ts /

    0.5

    keV

    (unn

    orm

    alise

    d)

    70° scattering40° scattering

    ~43° ± 7°

    ~69° ± 8° 1.6 μs coincidence window

    Etotal = 2614.5 keV ± 6 keV

    ⎟⎠⎞

    ⎜⎝⎛ +

    −−

    =52614

    51152614

    5111..

    cosE

    arα

  • 23

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCompton scattering eventsCompton scattering events

    Energy in BEGe [keV]

    70° scattering40° scattering

    1.6 μs coincidence window

    Etotal = 2614.5 keV ± 6 keV

    SCS around Qββ

    SCS around DEP energy

    coun

    ts /

    0.5

    keV

    (unn

    orm

    alise

    d)

  • 24

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Pulse shape analysisPulse shape analysis

    typical electron event typical gamma-ray event

    char

    ge p

    ulse

    curre

    nt p

    ulse

    after differentiation:

    raw preamplifier output:

    Time [10 ns]

    Time [10 ns] Time [10 ns]

    Time [10 ns]

  • 25

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Single compton scattering~43° ± 7°

    1.35 - 1.7 MeV

    Current pulse amplitude [arbitrary units]

  • Current pulse amplitude [arbitrary units]26

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    MCS around 2.3 MeV

  • Current pulse amplitude [arbitrary units]27

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    SCS around 1.4 MeV

    SCS around 1.55 MeV

  • Current pulse amplitude [arbitrary units]28

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    SCS around 1.59 MeV

    DEP (coincidence with 511 keV line in Dario)

  • 29

    Summary of PSASummary of PSAMPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    electron and gamma-induced events can be distinguished with the help of current-pulse amplitude

    DEP and SCS data with different volume distribution have similar distribution of the current-pulse amplitude

    SCS measurements can be used to calibrate cut parameters at different energies

    cut function stability needs to be investigated

  • 30

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    OutlookOutlook

    Understand how to generalise our pulse shape discrimination to 0νββ events and expected background events:

    measurements with different spatial distributions of electron events to experimentally check how the efficiency of pulse-shape discrimination varies?

    pulse-shape simulation of the BEGe detector?

  • 31

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Backup slidesBackup slides

  • 0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300pulse arrival difference [10 ns]

    coun

    ts

    pulse arrival time difference [10 ns]32

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCoincident recordingCoincident recording

  • 33

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášCoincident dataCoincident data

  • Energy BEGe [channels]

    Diff

    eren

    tiate

    d si

    gnal

    am

    plitu

    de

    50° scattering

  • CurrentCurrent--maximum distributionmaximum distributionMPIK HeidelbergMPIK HeidelbergMPIK Heidelberg

    35

    DuDuDušššan Budjan Budjan Budjášášáš

    SEPDEP γ 1.62 MeVγ 2.61 MeV

    Energy [keV]

    Cur

    rent

    -ma

    ximum

    / e

    nerg

    yC

    ount

    s

  • CurrentCurrent--maximum discriminationmaximum discriminationMPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    36

    • cut-profile determination from SSE dominated regions:

    DEP

    γ-line 1.62 MeV

    Compton near DEP

    SEP

    SSE dominated

    SSE dominated

    MSE dominated

    MSE dominated

    Current-maximum / energy

    cut at3 st. dev. fit with gaussian

    distribution function

    Current-maximum / energy

    Current-maximum / energy

    Current-maximum / energy

  • CurrentCurrent--maximum discriminationmaximum discriminationMPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Energy [channels]

    Cur

    rent

    -ma

    ximum

    / e

    nerg

    y

    SEP

    DEPγ 1.62 MeV

    γ 2.61 MeV

    37

    Compton continuum

    Cut function interpolated from cut-values at several points

  • 38

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášTable of results (June 08)Table of results (June 08)

    E [keV] reduction ± bck. red. ± suppresion ±351.9 38.74% 0.33% 46.68% 1.29% 2.58 0.24609.3 22.20% 0.18% 35.80% 1.81% 4.51 0.41

    1120.3 13.29% 0.20% 35.91% 1.23% 7.52 0.931764.5 13.29% 0.13% 25.91% 1.51% 7.52 0.741847.4 12.88% 0.39% 43.92% 1.65% 7.76 1.352118.6 14.75% 0.42% 33.27% 1.51% 6.78 1.142204.2 15.28% 0.21% 28.86% 1.99% 6.54 0.772447.9 14.55% 0.21% 18.25% 2.27% 6.87 0.83

    1173.2 11.96% 0.05% 12.97% 0.59% 8.36 0.551332.5 11.45% 0.05% 7.76% 0.80% 8.74 0.582505.7 0.49% 0.01% 0.57% 0.15% 205.74 26.48

    510.77 27.64% 0.25% 41.84% 1.23% 3.62 0.34583.19 24.41% 0.06% 39.43% 1.63% 4.10 0.20860.56 17.14% 0.15% 50.19% 1.14% 5.84 0.541592.5 91.01% 0.62% 58.30% 1.34% 1.10 0.091620.5 13.20% 0.45% 56.42% 0.90% 7.57 1.402103.5 9.10% 0.29% 46.86% 0.61% 10.99 1.942614.5 13.19% 0.06% 8.97% 3.51% 7.58 0.49

    60Co

    226Ra

    228Th

  • 39

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    DEP from 70° run

    DEP from 40° run

    Setup modified between the two runs!

  • 40

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan BudjášášášSingle Compton scatteringSingle Compton scattering

    DEP noncoincident, source on top vs DEP coincident, source on side

  • 41

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    DEP vs SEP

  • 1.E+02

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    40 50 60 70 80 90 100 110

    Energy [keV]

    Cou

    nts

    42

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Dead layer determinationDead layer determinationTwo methods considered:1. using absolute countrate in low-energy γ-lines (133Ba: 81 keV, 241Am: 59.5 keV) 2. using ratio of γ-line countrates → must use γ-lines with low energy

    because the size of inner borehole was not known beforehand ⇒ 241Am: 59.5 keV, 99 keV, 103 keV

    measured 241Am spectrum

    calculated with the sum of the two γ-lines

  • 43

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Dead layer determinationDead layer determination

    Example of front dead-layer determination using ratio of 241Am γ-lines:MC simulations performed with different dead-layer thickness valuesexponential dependancy of line ratio derived from MC datainterpolated the dependancy to the measured γ-line ratio

    1.E+02

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    40 50 60 70 80 90 100 110

    Energy [keV]

    Cou

    nts

    Dead layer determination from 241Am γ-lines ratio

    0.2%

    0.3%

    0.4%

    0.5%

    0.6%

    0.7%

    0.8%

    0.9%

    0.5 1 1.5 2 2.5Dead layer thickness [mm]

    Effic

    ienc

    y ra

    tio

    2 /

    1

    measured ratio / interpolated thicknessMC dataExponential fit of MC data

  • Dead layer thicknesses obtained by all methods

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    0 25 50 75 100 125 150 175 200

    Distance [mm]

    Dea

    d la

    yer [

    mm

    ]

    59keV81keV99keV&103keV241Am relative133Ba relative

    44

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    Dead layer determinationDead layer determinationSimilar interpolation also with single-line / absolute-countrate method.

    Only the result obtained from 241Am with the ratio method was used: does not depend on activity of the sourcedoes depend only little on source distance and other factors (dead time...)does not depend on the unknown borehole-dimensions

    ⇒ fewer uncertainties

    in function of the distance from detector

  • 45

    MPIK HeidelbergMPIK HeidelbergMPIK HeidelbergDuDuDušššan Budjan Budjan Budjášášáš

    New measurements with�the BEGe detectorQuestions remaining after June GERDA meeting:Summary of charge collectionSummary of PSA