net energy analysis of solar fuel devicegcep.stanford.edu/pdfs/events/workshops/pei zhai gcep... ·...

42
Net Energy Analysis of Solar Fuel Device Presented by Pei Zhai The work was supported by LBNL and JCAP GCEP workshop, Stanford 03/31/15

Upload: others

Post on 16-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Net Energy Analysis of Solar Fuel Device

Presented by Pei Zhai

The work was supported by LBNL and JCAP

GCEP workshop, Stanford 03/31/15

Page 2: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

• Free sunshine • How to harness it directly? – many ways-- water heater, photovoltaics,

bio-fuel

Page 3: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

A relatively new technology— Solar Fuel Device

Other names: Artificial photosynthesis, Artificial leaf, Solar water splitting, and

Photo-electro-chemical (PEC) device

Page 4: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Principles

Simply speaking, one device combining two steps:

1) converting sunlight to electric energy (electron-hole)

2) converting electric energy to hydrogen (reduction of H+ by electrons)

4h+ + 2H2O 4H+ + O2(g) photoanode

4e- + 4H+ 2H2(g) photocathode

Page 5: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Research centers worldwide

Institutes, universities and industries involved

• U.S.A.– MIT ($9.5 million),Caltech, Berkeley ($116 million) Joint Center of Artificial Photosynthesis (JCAP) (2010 DOE energy hub)

• Europe– EU (€ 4 million), Netherlands (€25 million),UK

• Asia—Japan (14 billion), Korea, Singapore

Page 6: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Why Net Energy Analysis (NEA)?

• Renewable energy technologies: purpose is to harness free energy

• Net energy = energy out - energy in

• Bottomline requirement: Net energy is positive

• Energy in :

direct (fabrication) and indirect (embodied in materials)

Primary energy requirement to produce PEC device

Energy content of hydrogen

Input Output

Net energy = Output - Input

PEC

Page 7: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Contributions and limitations of NEA

Context– renewable energy technologies

• Fundamental requirement for renewable energy technologies

• Good ‘Entry Point’ into life cycle thinking

• Should not mask the other impact assessments (land use, toxicity release)

• Could be one of many metrics to help decision-making

Page 8: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Conceptual structure of PEC device (solar fuel)

Page 9: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Photo-anode micro-wire

Membrane

Photo-cathode micro-wire

Chamber

Glass cover

Photo-anode

Membrane

Photo-cathode

Pipes and other components (not included)

Note: figures are not in real scale

Catalyst

Catalyst

Page 10: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Defining system boundary and functional units

Page 11: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 12: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Life Cycle Assessment of emerging technologies --Challenges and opportunities

• Opportunities– • Help scientists to have a big picture of their research • Point out some energy intensive components which they may

not have realized • Minimize the negative environmental impacts even at very early

stage of R&D • Challenges– • Few available data or literatures • Dynamics and uncertainties (material and experimental

procedures always change, making assumptions of future) • Interpretation of the results (never single point, always a range)

Page 13: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Assumptions for Lower, Medium and Higher cases

Category Component Lower case Medium case Higher case

Material choices

Photocathode Si Si Si

Photoanode WO3 WO3 GaAs

Catalysts for photocathode

Co Pt Pt

Catalysts for photoanode

No catalyst No catalyst Pt

Encapsulation PVC PVC Polycarbonate

Thickness of chamber

3 mm 5 mm 7 mm

Thickness of membrane

30 um 50 um 70 um

Fabrication Thermodynamic efficiency

70% 50% 30%

Page 14: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Details of calculation (medium case)

• Embodied energy in materials

• Primary energy use in fabrication

Page 15: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 16: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials Thickness (nm)

Mass (g/m2)

Energy

intensity (MJ/g)

Embodied

energy (MJ/m2)

Si 2000A 4.7 0.2 5.2

WO3 20B 0.1 1.1 0.02

Pt 1.5 0.03 279 9.0

A: It is an equivalent thickness converting from Si wire array which has 2.8 µm of diameter, 50 µm of length and 7 µm of lattice spacing. B: It is an equivalent thickness converting from WO3 wire array which has 70 nm of diameter, 4 µm of length and 0.5 µm of lattice spacing.

Photo-electrodes and catalysts

Photo-electrodes (Si, WO3); catalyst (Pt)

Page 17: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 18: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Membrane

• Nafion®-- Perfluoro-sulfonic acid (PFSA)

• Very few data from any database or literature review

• PE (polyethylene) as a proxy

• The cost of PSFA is 19 times of PE, we assume the energy intensity of PSFA is 19 times of PE

• Primary energy of PFSA is estimates as 139 MJ/m²

Page 19: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 20: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Chamber and glass cover

• Using the most common plastic and glass which are PVC and coated flat glass

• Data for primary energy in materials are from a LCA database -- Ecoinvent 2.2

• Total primary energy is 534 MJ/m²

Page 21: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 22: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Photo-cathode--Si wire array growth

• Main step: vapor-liquid-solid (VLS) growth

• Growth environment: 1000 °C

Figure : p-Si wire array from (Boettcher S.W., et.al. 2011)

Page 23: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Photo-anode--WO3 wire array growth

• Main step: vapor-liquid-solid (VLS) growth

• Growth environment: 1000 °C

Figure : WO3 wire array from (Cao B., et.al. 2009)

Page 24: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Catalysts – Pt depostion

• Electron-beam deposition requires high vacuum environment (8e-04 Pa)

Source: McKone, J. R. et al. (2011).

Page 25: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Energy use for Electrodes micro-wire array growth

Thermo-dynamic models

Heating: Eh= mass * specific heat * (T-T0)

Vacuum pumping: Ev= P0 *V * Ln (P/P0)

Page 26: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 27: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Membrane fabrication

• Main process is heating at 140 °C

Source: Spurgeon, J. M. et al. (2011)

Page 28: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Materials

Fabrication

Photoelectrodes

Catalysts

Photoelectrode fabrication

Encapsulation material

PEC device LCA boundary

LCA method

Scope: materials and fabrication processes

Functional units: MJ per m2 PEC

MJ per kg Hydrogen

Goal: Net primary Energy

Membrane

Other processes

Catalyst deposition

Membrane fabrication

Other materials

Page 29: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

For other ancillary processes, data are adjusted from PV industry

• Environmental control 200 MJ/m²

• Water pumping 31 MJ/m²

• Miscellaneous chemicals 15 MJ/m²

Page 30: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Break-down results of primary energy requirement

Page 31: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

(medium case, error bars showing lower and higher cases)

0

200

400

600

800

1000

1200M

J/m

2

Materials Fabrication

Page 32: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Functional unit is important for LCA study

Now the results of ‘energy in’ are in MJ/m² –>

Because the ‘energy out’ MJ/kg in hydrogen –>

in order to calculate Net energy

• Need to convert MJ/m² to MJ/kg,

• That brings more uncertainty

• Because need to know performance parameters: efficiency and longevity of PEC

• It is in early-stage, we could only assume a range.

Page 33: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Equation-- Primary energy requirement in MJ to produce 1 kg of hydrogen

Determined by Solar-to-Hydrogen STH efficiency

MJ/kg

MJ/m2

Longevity (years)

Page 34: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Results-- MJ to produce 1 kg of hydrogen

Lower left part of the figure below the black line has negative net energy, (e.g. if efficiency is 3% and longevity is 8 years, net energy is zero)

Page 35: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Scenarios of future achievement

Different STH efficiency and longevity combination would lead to different net energy

STH Efficiency

Longevity (year)

Primary energy requirement MJ

Energy content MJ of 1 kg H2

Net energy MJ of 1 kg of H2

3% 5 194 120 (-)74

3% 8 120 120 0

5% 10 58 120 62

10% 10 29 120 91

10% 30 10 120 110

Page 36: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Uncertainties could affect results

1. STH efficiency and longevity

2. thermodynamic models efficiency

3. material choice, chamber layer thickness

Which uncertainties have higher effect?

Page 37: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Base point -- 29 MJ/kg (medium case, 10% efficiency and 10 years)

Page 38: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Discussions

• The most energy intensive process is the fabrication of photo-electrodes

• Now, the method requires very high temperature 1000 °C • In future, it is possible to adopt other methods like chemical-etching.

• Chamber material costs 20% energy • Point to the direction of designing with less chamber material

• Electrodes and catalyst materials cost < 1% • From energy analysis perspective, no worries

• The key parameters to determine the net energy balance device

STH efficiency, longevity and fabrication thermal-efficiency • This study points out the bottom-line requirement (positive net

energy)

Page 39: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Publication and acknowledgement

• Publication: Net primary energy balance of a solar-driven photoelectrochemical water-splitting device, Energy and Environmental Science, 2013 (For all the citations used in this presentation, please refer to this publication)

• Co-authors: Sophia Haussener, Joel Ager, Roger Sathre, Karl Walczak, Jeffery Greenblatt, Thomas McKone

• Funding agency: DOE—LBNL and JCAP

Page 40: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Following up works by my colleagues at LBNL

Page 41: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

More information

• Tomorrow 1:15pm, Jeff Greenblatt will talk more about large-scale application and early technology appraisal

• Joint Center of Artificial Photosynthesis

http://solarfuelshub.org/

• Lawrence Berkeley National Lab

– CarbonCycle 2.0 Initiative

http://carboncycle2.lbl.gov/

Page 42: Net Energy Analysis of Solar Fuel Devicegcep.stanford.edu/pdfs/events/workshops/Pei Zhai GCEP... · 2015-04-24 · 4h+ ++ 2H 2 O 4H + O 2 (g) photoanode 4e-+ 4H+ 2H 2 ... Life Cycle

Thank you and would like to take any comment or suggestion

Pei Zhai [email protected]