nanowiresensor

19
1 PI: Christian Schönenberger Department of Physics and Swiss Nanoscience Insitute @ University of Basel Nanowire Sensor Integrateable Si Nanowire Sensor Platform for Ionand Biosensing 2 More than Moore scalable sensing chip

Upload: dalgetty

Post on 26-May-2015

490 views

Category:

Technology


0 download

DESCRIPTION

There is nowadays a growing need for sensing devices offering rapid and portable analytical functionality in real-time as well as massively parallel capabilities with very high sensitivity at the molecular level. Such devices are essential to facilitate research and foster advances in fields such as drug discovery, proteomics, medical diagnostics, systems biology or environmental monitoring.In this context, an ideal solution is an ion-sensitive field-effect transistor sensor platform based on silicon nanowires to be integrated in a CMOS architecture. Indeed, in addition to the expected high sensitivity and superior signal quality, such nanowire sensors could be mass manufactured at reasonable costs, and readily integrated into electronic diagnostic devices to facilitate bed-site diagnostics and personalized medicine. Moreover, their small size makes them ideal candidates for future implanted sensing devices. While promising biosensing experiments based on silicon nanowire field-effect transistors have been reported, real-life applications still require improved control, together with a detailed understanding of the basic sensing mechanisms. For instance, it is crucial to optimize the geometry of the wire, a still rather unexplored aspect up to now, as well as its surface functionalization or its selectivity to the targeted analytes.This project seeks to develop a modular, scalable and integrateable sensor platform for the electronic detection of analytes in solution. The idea is to integrate silicon nanowire field-effect transistors as a sensor array and combine them with state-of-the-art microfabricated interface electronics as well as with microfluidic channels for liquid handling. Such sensors have the potential to be mass manufactured at reasonable costs, allowing their integration as the active sensor part in electronic point-of-care diagnostic devices to facilitate, for instance, bed-side diagnostics and personalized medicine. Another important field is systems biology, where many substances need to be quantitatively detected in parallel at very low concentrations: in these situations, the platform being developed fulfills the requirements ideally and will have a strong impact and provide new insights, e.g. into the metabolic processes of cells, organisms or organs.

TRANSCRIPT

Page 1: NanowireSensor

1

PI: Christian SchönenbergerDepartment of Physics andSwiss Nanoscience Insitute @ University of Basel

Nanowire SensorIntegrateable Si Nanowire SensorPlatform for  Ion‐ and Biosensing

2

More than Moore scalable sensing chip

Page 2: NanowireSensor

3

Bio- / chemical Sensor

mechanically a) mass change (QCM)

b) strain (cantilever)

optically a) labelled (DNA chip)

b) refractive index

c) Plasmonics

electrically a) impedance spectroscopy

b) CV spectroscopy

c) potentiometric (e.g. zeta potential)

how can this information be read ?

a device that can detect molecules in a with some specificity

4

Potentiometric Sensing

P. Bergveld / Sensors and Actuators B 88 1–20 (2003)

IS-FET

Page 3: NanowireSensor

5

Ion Sensitive FET (IS-FET)

source drain

channel conductance (i.e. threshold) depends on gate charge

(gate potential)

(sou

rce-

drai

n cu

rren

t)

-

-

-

-- -

-

e.g. heparime binding on protamie

SHIFT

p-channel, threshold regime

6

Electronic Biochip Concept

C. Lieber et al.not one ... .... .... but many

Bergveld and others

Page 4: NanowireSensor

7

Projectfabrication technology(PSI, Basel, EPFL)

microfluidics(ETHZ, Basel)

simulationelectrical characterizationand biochemical validation

(all)

on-chip and systemintegration

(D‐BSSE, EPFL)

surface functionalization

(FHNW, ETHZBasel‐Pharma)

8

NW fabrication

Al contact annealing

Si wet etching in TMAH

Cr mask contact masks

SiO2 plasma etching in CHF3

HSQ resist

ion implantation

Si handle wafer

> 30 nm

SiO2

buried SiO2 (BOX) 350 nm

Si~ 10 – 25 nm

40 – 85 nm

p-type (100) SOI

300 nm

70 nm

Page 5: NanowireSensor

9

NW fabrication

accumulation inversion(non‐implanted, Al‐contacts)

10

NW fabricationNovel fabricatedGAA (gate all around) SiNWs

SS = 62 mV/decIon/Ioff = 105-106

S.Rigante, M.Najmzadeh and A. M. Ionescu, EPFL

Page 6: NanowireSensor

11

NW fabrication

�‰operation���: enhancement��mode�‰insulator��Layer�: HfO2, tins =��5��nm,���‰poly�rSi��Gates�: wg��=��25��nm,��hg��=��50��nm

�‰fin��Body���: hSi=��100��nm,��wSi��=��50nm�‰doping���: Na��=��5×1016

A partially double-gated fin field effect transistor (DG-FinFET) is the electronic sensing architecture.

S.Rigante, M.Najmzadeh and A. M. Ionescu, EPFL

_ __ __

__

12

Isolation

10�Pm

Si NW

sealing layer

liquid channel

SiO2 surface��leaks

Al2O3 no��leakage

HfO2 in��progress

Page 7: NanowireSensor

15

Results: Nernst limit

vs liquid gate

vs back gate

corrected

±Vlg−shift = ±pHB

µ2.3kT

q

¶· α

±Vbg−shift = ±Vlg−shift

µCdl,ox

Cbg

O. Knopfmacher et al. Nano Lett. 10, 2268 (2010)

16

Results: Noise Measurements

FFT

C. Beenakker and C. Schönenberger, Physics Today, Vol. 56, issue 5, page 37-42 (2003)

Tarasov et al. , APL, 98, 012114, (2011)

Page 8: NanowireSensor

17

Results: Noise Measurements

threshold noise:

Tarasov et al. , APL, 98, 012114, (2011)

400 ppm of pH

18

R1=NH2, Cl, CH3

bare alumina: 45‐55 mV/pH

a) APTES: 26 mV/pH

b) CPTO+APTES: 17 mV/pH

c) after UV ozone:  32 mV/pH

Functionalized surface

d) alkane with R=CH3:  0 mV/pH

Page 9: NanowireSensor

19

BiosensingAffinity Determination of Receptor-Ligand Interaction (lectin-sugar interaction)

ligand + cargo

ASGP-R

GalNAc immobilized onsilicon nanowire

HN

O

HN

O

HN

O

O

O

O

O

O

O

O

O

O O

O

O

OH

OH

OH

OH

OH

OH

OH

OH

OHAcHN

AcHN

AcHN

2

2

2

SiNW Si

Si

Si

with binding site HL-1 CRD

B. Ernst et al.

Human Asialoglycoprotein-Receptor (hASGP-R)and the ligand GalNAc (N-acetyl-galactosamine)

ASGP-R is a glycoproteins that binds to Gal terminal

ASGP-R plays an important role in the endocytosis in liver cells

adapted from the thesis of Claudia Riva, Uni Basel 2007

20

Biosensingglycoconjugate Gal

1

2

3

4

56

R =GluNAc (glucose)

GalNA (galactose)

QCM test experiment: Change in frequency for the GalNAc ligand (yellow) and negative control having the GluNAc ligand (grey)

add ASGP receptor

freq

uen

cy change  (Hz)         

time (min)

Page 10: NanowireSensor

21

Biosensingstrongly lectin binding glycoconjugate

R =

add ASGP receptor

NW

inactive structureChanges in the frequency of an oscillation quartz crystal upon binding of the asialoglycoprotein to the glycoconjugate

Lectin, 20 �Pg/ml

freq

uenc

y��cha

nge��

��(Hz)�

������

������

�����

22

Biosensing

strongly lectin binding glycoconjugate

add ASGP receptor

inactive glycoconjugate structure

Page 11: NanowireSensor

25

Advanced Nanowire Chip and Flow Cell

• 4 electrodes per nanowire region• Integrated platinum counter electrodes• Integrated silver reference electrodes

• SU‐8 for isolation• Openings to each nanowire region channel

CE / Ag‐ref

26

Advanced Nanowire Chip and Flow Cell

Page 12: NanowireSensor

27

Advanced Nanowire Chip and Flow Cell

28

Combined metall & Si device

redish = Au on top

diameter: ~40nmheight: Au ~5nm

Si-nanowire

Page 13: NanowireSensor

29

Upscaling

quarter of 8``SOI‐wafer (supplier Soitec)

5 6 13 14 17

151274

3 8 16

1092

(1)

100

mm

100 mm

8/1 8/2

8/38/4

20 mm

20 m

m

for implantation:20 x 20 mm2 chips are required=> containing four devices

number of 20x20mm2

chip

number of device

16 x 4 devices with 48 FETs each= 3‘072 FETs (written at once with e-beam)

30

Upscaling

Page 14: NanowireSensor

31

Upscaling

32

Upscaling & Integration

Page 15: NanowireSensor

33

Integration

• 16 nanowires can be interfaced in parallel• Voltage across each nanowire is kept constant, and the current flowing through is measured• The measured current is then digitized• Two different analog‐to‐digital converter architectures are used (12 bits resolution)• Current range: 1 nA to 5 μA

34

ReadoutThe nanowire drain‐source voltage is clamped.

Differential measurement using a reference and a sensing nanowire.

compact and power‐efficient implementation.

Shepherd, L. et al., ``A novel voltage-clamped CMOS ISFET sensor Interface”, ISCAS 2007

sigma‐delta converter

Page 16: NanowireSensor

354 mm

3.4 m

m

Voltag

e buffers

I to F

converters

Sigma‐Deltamodulators

Contacts for integrated gold nanowires

Deposited by PSI in a CMOS 

post‐processing procedure

Fabricated in 0.35μm CMOS technologyPAD

S

CMOS interface: first prototype chip

36

Summary demonstrated reproducible and hysteresis‐free field‐effect behavior in NW‐FETs

demonstrated leakage‐free liquid‐gate operation

demonstrated pH sensing with nanowires 

surface functionalization for (a) passivated nanowires (b) glycoprotein‐binding nanowires

Signal and signal‐to‐noise: noise measurements and modelling of sensitivity

systematic evaluation of physical parameters, e.g. width, length, doping, ion concentration, length of molecules etc. onoing

system concepts

Page 17: NanowireSensor

37

Thanks to....

Michel Calame

Uni Baselphysics

Oren Knopfmacher

Wangyang FuAlexey Tarasov

Christian Schönenberger

Beat Ernst Arjan Odedra

EPFL

Adrian Ionescu Sara Rigante Kristine Bedner

Bernd Dielacher

Janos Vörös

Jolanta KurzUwe Pieles

Andreas Hierlemann

Paolo Livi

Mohammad Najmzadeh

Robert MacKenzie

Yihui Chen

BirgitPäivänranta

VitaliyGuzenko

ChristianDavid

ETHZ

Uni Baselpharma

Jens Gobrecht

PSI

D-BSSE

FHNW

Matthias Sreiff

Sensirion

Mathias Wipf