nanotechnology overview final

87
Nanotechnolog y An overview Manoranjan Ghosh

Upload: manoranjan-ghosh

Post on 08-Feb-2015

3.412 views

Category:

Education


0 download

DESCRIPTION

Overview of Nanotechnology with emphasis on Optical Properties of Nanomaterials. Highly recommended for basic understanding of Nanotechnology.

TRANSCRIPT

Page 1: Nanotechnology overview final

NanotechnologyAn overview

Manoranjan Ghosh

Page 2: Nanotechnology overview final

What Is All the Fuss About Nanotechnology?

Any given search engine will produce 1.6 million hits

Nanotechnology is on the way to becoming the FIRST trillion dollar market

Nanotechnology influences almostevery facet of every day life.

Page 3: Nanotechnology overview final

Richard Feynman: 1959– “There's Plenty of Room at the Bottom,"

He predicted - a process to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on.

At this scale, gravity would become less important, surface tension and Van der Waals attraction would become more important, etc.

The term "nanotechnology" was defined by Tokyo Science University Professor Norio Ta in 1974s: "'Nano-technology' mainly consists of the processing, separation, consolidation, and deformation of materials by one atom or by one molecule." 1980: Dr. K. Eric Drexler – First book Engines of Creation: The Coming Era of Nanotechnology (1986) and Nanosystems: Molecular Machinery, Manufacturing, and Computation.

Nanotechnology started with the birth of cluster science, scanning tunneling microscope (STM) and fullerenes in 1985 and carbon nanotubes a few years later.

History

Buckminsterfullerene C60, the simplest of the carbon structures are a major subject of research falling under the nanotechnology umbrella.

Page 4: Nanotechnology overview final

Road Map

• Introduction

• Novel Properties of Nanomaterials

• Preparation of Nanomaterials

• Characterization tools

• Applications

Page 5: Nanotechnology overview final

Small Things

A fish egg is 2 mm

Most human cells are 7 - 30 µm

Size of a average molecule, cluster of atoms

atom nucleus 0.1 pm

Size of a proton

Size of a quark

3.280 ft

1,000 meters

150x106 km(Earth to Sun Distance)

9.46x1012 km

3.26 light years

A million parsecs

Big Things

Centimeter(10-2 m)

Millimeter (10-3 m)

Micrometer(10-6 m)

Nanometer(10-9 m)

Picometer(10-12 m)

Femtometer(10-15 m)

Attometer(10-18 m)

Meter

Killometer

Astro-nomical Unit

Light-year

Parsec

Megaparsec

Page 6: Nanotechnology overview final

Planets to Scale: Jupiter is 142,796 km in diameter

Outer Solar System: Pluto’s orbit is 12 billion km in diameter.

Milky Way Galaxy: Diameter = 150,000 light Years

A. micrometer µm (or micron)- Cells B. Nanometer - Molecule

Small Things

Big Things

Page 7: Nanotechnology overview final

What is Nano?• Size range 10-9 meter or 1/10000 times of hair

diameter.

• Field of nanoscience is the study of matter at the atomic (cluster of atoms) scale.

• Nanomaterials -- offer different chemical and physical properties than bulk materials, and have the potential to form the basis of new technologies.

• Understanding these properties may allow researchers to design materials with properties tailored to specific needs such as strong, lightweight materials, new lubricants and more efficient solar energy cells. By building structures one atom at a time, the materials may have enhanced mechanical, optical, electrical or catalytic properties.

Natural end of space and time at 10-43 sec. and 10-35 m (Planck length).

Page 8: Nanotechnology overview final

ZnO quantum dots

Page 9: Nanotechnology overview final

Why should one work on Nanoscience?

1. It is exciting when properties changes with size – ideal for basic as well application oriented research.

2. There are lots of open space for experimentalist as well as the theoretician with sound computational knowledge

3. Really an interfacial subject. Synthesis involves the chemistry – properties measurement deals with physics and application covers a wide range including bio.

Three major applications:

i) Miniaturization of technology ii) Change in the properties with size can be utilized iii) Size is a parameter

Page 10: Nanotechnology overview final
Page 11: Nanotechnology overview final
Page 12: Nanotechnology overview final

Novel properties of Nanomaterials

Page 13: Nanotechnology overview final
Page 14: Nanotechnology overview final
Page 15: Nanotechnology overview final
Page 16: Nanotechnology overview final
Page 17: Nanotechnology overview final
Page 18: Nanotechnology overview final
Page 19: Nanotechnology overview final

Quantum Dots – Basic properties

J . Ma t e r . C h em., 2 0 0 4 , 1 4 , 6 6 1 – 6 6 8

Page 20: Nanotechnology overview final

Quantum dots' electron energy levels are discrete rather than continuous.So the addition or subtraction of just a few atoms to the quantum dot has the effect of altering the boundaries of the bandgap.

Quantum Dots - A tunable range of energies

Quantum confinement describes the increase in energy which occurs when the motion of a particle is restricted in one or more dimensions by a potential well. A quantum dot is a well that confines in all three dimensions such as a small sphere, a quantum wire confines in two dimensions, and a quantum well confines in one dimension.

2

22

8mL

nhEn 3D potential well

Page 21: Nanotechnology overview final
Page 22: Nanotechnology overview final
Page 23: Nanotechnology overview final
Page 24: Nanotechnology overview final
Page 25: Nanotechnology overview final
Page 26: Nanotechnology overview final
Page 27: Nanotechnology overview final
Page 28: Nanotechnology overview final

Optical properties of ZnO nanostructuresLuminescence is an optical phenomenon mostly found in cold bodies, in which the molecular absorption of a photon triggers the emission of another photon with a longer wavelength.

Generally ZnO nanocrystals show two line patterns viz. sharp excitonic emission in the Ultra Violet region and broad defect related emission in the visible region.

Page 29: Nanotechnology overview final
Page 30: Nanotechnology overview final

Quantum confinement effect

rr

r

V

S 1

344

3

2

Emission energy as well as intensity ratio of which depends upon the surface to volume ratio of the nancrystals.

Page 31: Nanotechnology overview final

S. G. P63mcIonic radii = 0.60 Å

Band gap engineering of ZnO nanostructures by alloying with Mg and Cd

Wurtzite ZnO

Undoped ZnO Mg doped ZnO Cd doped ZnO

Rock salt MgO and CdO

S.G. Fm3mIonic radii = 0.57 Å (Mg) and 0.72Å (Cd)

Page 32: Nanotechnology overview final

Band gap engineering of ZnO nanostructures by alloying with Mg and Cd

Page 33: Nanotechnology overview final

Applications

Page 34: Nanotechnology overview final

ApplicationsChange in the physical properties when the feature sizes are shrunk can be utilized.

Nanoparticles for example take advantage of their dramatically increased surface area to volume ratio.

Their optical properties, e.g. fluorescence, become a function of the particle diameter.

When brought into a bulk material, nanoparticles can strongly influence the mechanical properties of the material, like stiffness or elasticity. For example, traditional polymers can be reinforced by nanoparticles resulting in novel materials which can be used as lightweight replacements for metals.

Such nanotechnologically enhanced materials will enable a weight reduction accompanied by an increase in stability and an improved functionality.

Page 35: Nanotechnology overview final

MedicineFunctionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications.

DiagnosticsBiological tests measuring the presence or activity of selected substances become quicker, more sensitive and more flexible when certain nanoscale particles are put to work as tags or labels. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.

Drug deliveryThe overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. They could hold small drug molecules transporting them to the desired location.

Page 36: Nanotechnology overview final

Chemistry and environment

Nanotechnology can be applied in Chemical catalysis and filtration techniques. In this sense, chemistry is indeed a basic nanoscience. The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties.

Catalysis

Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. Useful in Fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals. Platinum nanoparticles are now being considered in the next generation of automotive catalytic converters.

Filtration

A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected. By the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids.

Page 37: Nanotechnology overview final

EnergyEnergy storage, conversion, manufacturing improvements by reducing materials and process rates.

Reduction of energy consumptionA reduction of energy consumption can be reached by better insulation systems.Nanotechnological approaches like light-emitting diodes (LEDs) could lead to a strong reduction of energy consumption for illumination.

Increasing the efficiency of energy productionToday's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.

The use of more environmentally friendly energy systemsAn example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen, which is ideally produced by renewable energies.

Page 38: Nanotechnology overview final

Memory StorageElectronic memory designs in the past have largely relied on the formation of transistors.

Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.

Novel semiconductor devicesAn example of such novel devices is based on spintronics. The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called magnetoresistance. This effect can be significantly amplified (GMR - Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible.

Page 39: Nanotechnology overview final

Displays

The production of displays with low energy consumption could be accomplished using carbon nanotubes (CNT). Carbon nanotubes are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED).

Quantum computers

Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer will have quantum bit memory space termed qubit for several computations at the same time.

Aerospace

Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance.

Page 40: Nanotechnology overview final

Optics

The first sunglasses using protective and antireflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano-optics could allow for an increase in precision of pupil repair and other types of laser eye surgery.

Textiles

The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer.

Cosmetics

One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide and zinc oxide offer several advantages.

Page 41: Nanotechnology overview final
Page 42: Nanotechnology overview final
Page 43: Nanotechnology overview final

Development of ZnO based nanostructured materials for solar

energy conversionThere have been intensive efforts in the development of technologies for

production of electrical energy from perpetual solar energy and fuels other than fossil fuels for the following reasons.

i) deposits of fossil fuels are limitedii) ii) the use of fossil fuels is responsible for climate change iii) ii) the price of the fossil fuels is increasing, iv) iv) there is a need for a fuel generated from abundantly available material, v)

the fuel need to be environmentally safe.

Efficient harnessing of solar energy by inexpensive methods is one of the most important challenges in modern day research.

The most promising amongst the alternative approaches have been i) photo-electrochemical cell (PEC) for hydrogen generation from water using solar energy [6,7] and ii) the TiO2 nanoparticle-based dye sensitized solar cells [DSSC] with efficiencies exceeding 10% [1–3].

Page 44: Nanotechnology overview final

Dye sensitized solar cell (DSSC): The solar cell will consists of two conducting glass electrodes in a sandwich configuration, with a redox electrolyte separating the two [figure 1 (a)]. On one of these electrodes, a few micron-thick layers of ZnO/Zn1-xCdxO alloy nanostructures will be deposited from a colloidal preparation of monodispersed particles. The dye molecules will be coated by simply immersing the coated electrode (after appropriate heat treatment) in a dye solution of interest. The dye-coated electrode will be then put together with another conducting glass electrode and the intervening space will be filled with an organic electrolyte. A small amount of Pt (5-10 µg/cm2) is needed to the counter-electrode to catalyze the cathodic reduction of tri-iodide to iodide. After making provisions for electrical contact with the two electrodes, the assembly will be sealed.

Page 45: Nanotechnology overview final

Due to their large surface areas, nanostructured materials can be efficiently used in technologies such as PEC for hydrogen production [8, 9] and DSSC [10-12]. Morphologies and orientation of the nanostructures have great influence on the transport properties and therefore can play a key role in the performance of these devices [9, 12, 13, and 17]. It is thus important to find the appropriate nanostructures to achieve the best characteristics for device performance.

In the simplest terms, the principle of photo-electrochemical water decomposition is based on the conversion of light energy into electricity within a cell involving two electrodes, immersed in an aqueous electrolyte, of which at least one is made of a semiconductor exposed to light and able to absorb the light. This electricity is then used for water electrolysis. We are planning to fabricate a photo-electrochemical cell for the photo-electrolysis of water [figure 1(b)]. The major components are a photo-anode (made of an oxide material) and cathode (made of Pt) immersed in an aqueous solution of a salt (electrolyte). The process results in oxygen and hydrogen evolution at the photo-anode and cathode, respectively. The related charge transport involves the migration of hydrogen ions in the electrolyte and the transport of electrons in the external circuit.

Page 46: Nanotechnology overview final

Photoresponse in film of ZnO nanostructures

Page 47: Nanotechnology overview final

Response to the 345 nm light on (a) nanostructured ZnO film of thickness ~2.5 μm sandwiched between ITO and conducting Al layer and (b) without ZnO film in between ITO and PEO/LiClO4 layer. Reference of bias is on ITO layer. Device is positively biased when the positive terminal of the source is connected to the top electrodes (Al or PEO/LiClO4) and the ITO is connected to the negative terminal.

Page 48: Nanotechnology overview final

I-V curves of the ITO-ZnO-PEO/LiClO4 device for different intensity of UV illumination (345 nm) as indicated on the graph. Reference of bias is on the ITO layer. Device is positively biased when the positive terminal of the source is connected to the PEO/LiClO4 and the ITO is connected to the negative terminal.

Page 49: Nanotechnology overview final

Optical modulator

AC voltage response of the visible luminescence intensity as a function of time collected at 544 nm exactly follows the amplitude and the polarity of the applied voltage. Nearly 100% modulation of the visible luminescence is achieved. Reference of bias is on ITO layer. The enhancement in the visible luminescence is observed when the negative terminal of the source is connected to the PEO/LiClO4.

Photoluminescence spectra of the device

Page 50: Nanotechnology overview final

Synthesis and Characterization

Page 51: Nanotechnology overview final

Synthesis Method

The nanofabrication processes can be divided into two well definedapproaches:

1) ‘top-down’ and2) ‘bottom-up’.

The ‘top-down’ approach uses traditional methods to guide the synthesisof nanoscale materials. The paradigm proper of its definition generallydictates that in the ‘top-down’ approach it all begins from a bulk pieceof material, which is then gradually or step-by-step removed to formobjects in the nanometer-size regime. Well known techniques such asphoto lithography and electron beam lithography, anodization, ion- andplasma-etching, that will be later described, all belong to this type ofapproach. The top-down approach for nanofabrication is the one firstsuggested by Feynman in his famous American Physical Societylecture in 1959.

Page 52: Nanotechnology overview final

High energy ball milling, a top-down approach for nanoparticle synthesis, has been used for the generation of magnetic, catalytic and structural nanoparticles.

The technique, which is already a commercial technology, has been considered dirty because of contamination problems from ball-milling processes.

However, the availability of tungsten carbide components and the use of inert atmosphere and/or high vacuum processes have reduced impurities to acceptable levels for many industrial applications.

Common drawbacks include the low surface area, the highly polydisperse size distributions, and the partially amorphous state of the as-prepared powders.

Page 53: Nanotechnology overview final

The ‘bottom-up’ approach on the other hand takes the idea of 'top down'approach and flips it right over. In this case, instead of starting withlarge materials and chipping it away to reveal small bits of it, it allbegins from atoms and molecules that get rearranged and assembledto larger nanostructures.

It is the new paradigm for synthesis in the nanotechnology world as the ‘bottom-up’ approach allows a creation of diverse types of nanomaterials, and it is likely to revolutionize the way we make materials.

It requires a thorough understanding of the short range forces of attraction such as Van der Waals forces, electrostatic forces, and a variety of interatomic or intermolecular forces.

Page 54: Nanotechnology overview final

Typical BOTTOM UP APPROACHES for Nanostructure

Some examples of such a synthesis route starting from atoms and molecules aremethods like:1) chemical or electrochemical reactions for precipitation of nanostructures,2) self-assembly of nanoparticles or monomer/polymer molecules,3) sol-gel processing,4) laser pyrolysis,5) chemical vapor deposition, physical vapor deposition,6) plasma or flame spraying synthesis,7) atomic or molecular condensation,8) Sputtering and thermal evaporation,9) bio-assisted synthesis of nanomaterials.

Page 55: Nanotechnology overview final

CHEMICAL PRECIPITATION

One of the basic ‘bottom-up’ techniques is chemical precipitation by which nanoparticles of metals, alloys, oxides, etc. are prepared in aqueous or organic solutions.

PLUS: Cheap, can produce large quantities (i.e. coagulation or heterocoagulation of colloidal crystals from aqueous solutions)

MINUS: The draw back of this straight-forward synthesis is related to the random distribution of particle size which is normally undesirable in nanoengineering applications.

Page 56: Nanotechnology overview final
Page 57: Nanotechnology overview final
Page 58: Nanotechnology overview final
Page 59: Nanotechnology overview final
Page 60: Nanotechnology overview final
Page 61: Nanotechnology overview final

SPUTTERING AND THERMAL EVAPORATION

Preparing nanostructures from a supersaturated vapor was one of the earliest methods used to prepare nanoparticles.

PLUSES: it is very versatile, easy to perform and to analyze the particles, produces high quantity, high purity materials, naturally produces films and coatings.

MINUSES: costly, it is difficult to produce as large a variety of materials as compared to the one feasible by chemical means

APPARATUS: consists of a vapor source inside a vacuum chamber containing and inert gas (usually Ar or He). The vapor source can be an evaporation boat or a sputtering target. Supersaturation is achieved by resistive heating, radio-frequency, heating, sputtering, electron beam heating, laser/plasma heating, or ion sputtering above the vapor source and nanoparticles are formed.

Page 62: Nanotechnology overview final
Page 63: Nanotechnology overview final

Imaging Techniques

Page 64: Nanotechnology overview final

The wavelength of light is a bit shorter than one µm . A ray of light can only resolve objects that are larger than its wave length. The human eye can recognize two objects if they are not closer than 0.1 mm at a normal viewing distance of 25 cm.

Transmission Electron Microscope (TEM) at 60,000 volts has a resolving power of about 0.0025 nm.

How can we see

them?

Page 65: Nanotechnology overview final

Electron Microscopy

What are electron microscopes? Electron Microscopes are scientific instruments that use a beam

of highly energetic electrons to examine objects on a very fine scale which yield the following information:

1. Topography : The surface features of an object (hardness, reflectivity...etc.)2. Morphology: The shape and size of the particles(ductility, strength,

reactivity...etc.)3. Composition: The elements and compounds that the object is composed of and

the relative amounts of them.4. Crystallographic Information: How the atoms are arranged in the object.

Page 66: Nanotechnology overview final

The Philips CM200 transmission electron microscope

Accelerating voltages is 200 kV

Can achieve resolution up to 2 Angstroms.

Transmission Electron Microscopy and Electron Diffraction

Page 67: Nanotechnology overview final

Transmission Electron Microscopy

• In a conventional transmission electron microscope, a thin specimen is irradiated with an electron beam of uniform current density.

• Electrons are emitted from the electron gun and illuminate the specimen through a two or three stage condenser lens system.

• Objective lens provides the formation of either image or diffraction pattern of the specimen.

• The electron intensity distribution behind the specimen is magnified with a three or four stage lens system and viewed on a fluorescent screen. The image can be recorded by direct exposure of a photographic emulsion or an image plate or digitally by a CCD camera.

Page 68: Nanotechnology overview final

TEM is analogous to a Slide Projector

Page 69: Nanotechnology overview final
Page 70: Nanotechnology overview final

1. The acceleration voltage of up to date routine instruments is 120 to 200 kV.

2. Medium-voltage instruments work at 200-500 kV to provide a better transmission and resolution, and in high voltage electron microscopy (HVEM) the acceleration voltage is in the range 500 kV to 3 MV.

3. Acceleration voltage determines the velocity, wavelength and hence the resolution (ability to distinguish the neighbouring microstructural features) of the microscope

4. The image of the specimen in conventional microscopy, , is formed selectively allowing only the transmitted beam (Bright Field Imaging) or one of the diffracted beams (Dark Field Imaging) down to the microscope column by means of an aperture.

5. The origin of the image contrast is the variation of intensities of transmitted and diffracted beams due to the differences in diffraction conditions depending on the microstructural features on the electron path.

Page 71: Nanotechnology overview final

ZnO quantum dots

Page 72: Nanotechnology overview final

BRIGHT FIELD IMAGING ALLOWING TRNSMITTED BEAM

Page 73: Nanotechnology overview final

DARK FIELD IMAGING ALLOWING DIFFRACTED BEAM

Page 74: Nanotechnology overview final

SPECIMEN INTERACTION IN ELECTRON MICROSCOPY

REACTIONS ON THE TOP SIDE ARE UTILIZED FOR EXAMINING

THICK OR BULK SPECIMENS (SEM)

RECTIONS ON THE BOTTOM SIDE ARE EXAMINED

IN THIN OR FOIL SPECIMEN(TEM)

VARIOUS REACTIONS CAN OCCUR WHEN ENERGETIC

ELECTRONS STRIKE THE SAMPLE

SPECIMEN INTERACTION VOLUME FOR VARIOUS

REACTIONS

Page 75: Nanotechnology overview final

COMPARISION OF LIGHT AND ELECTRON MICROSCOPE

Optical glass lens, Small depth ofField, lower magnification, do notRequire vacuum, Low price.

Magnetic lens, Large depth of field, Higher magnification and better

Resolution, Operates in HIGH vacuum, Price tag.

LIGHT MICROSCOPE

ELECTRON MICROSCOPE

Page 76: Nanotechnology overview final

THIN SPECIMEN INTERACTIONSREACTIONPRODUCT SOURCE UTILIZATON

UNSCATTEREDELECTRONS

INCIDENT ELECTRONS TRANS-MITTED(NO DEFLECTON FROMTHE ORIGINALPATH) THROUGH THE SPECIMEN WITHOUT ANY INTERACTION

UNSCATTERED ELECTRON INTENSITY IS INVERSELY PROPORTIONAL TO THE SPECIMEN THICKNESS. THICKER PORTION OF THE SPECIMEN WILL APPEAR DARKER AND CONVERSE IS ALSO TRUE.

ELASTICALLY SCATTERED ELECTRONS

INCIDENT ELECTRONS SCATTERED(DEFLECTED FROM THE ORIGINAL PATH) BY THE ATOMS IN THE SPECIMEN IN AN ELASTIC FASHION (NO LOSS OF ENERGY)

FOLLOW BRAGG’S LAW. SIMILAR ANGLE SCATTERING OF THE ELECTRONS FROM THEPLANE OF SAME ATOMIC SPACING FORM PATTERN OF SPOTS WHICH YIELDS INFOR-MATION ABOUT THE ORIENTATION, ATOMICARRANGEMENTS AND PHASES PRESENT.

INELASTICALLYSCATTEREDELECTRONS

ELECTRONS INTERACT WITH THE SPECIMEN ATOM IN AN INELASTIC FASHION (BY LOOSING ENERGY DURING INTERACTION)

UTILIZED IN TWO WAYS:1. KIKUCHI BANDS: BANDS OF ALTER-NATING DARK AND BRIGHT LINES RELATEDTO THE ATOMIC SPACING OF THE SPECIMEN.2. ELECTRON ENERGY LOSS SPECTROSCOPY: LOSS OF ENERGY ARE UNIQUE TO EACH BONDING STATE OF EACH ELEMENT.

Page 77: Nanotechnology overview final

DIFFRACTION

• Electrons of 0.072 Angstrom wavelength at 100 kV excitation transmitted through about 0.1 micrometer thin foil specimen are diffracted

according to Bragg's Law, forming a diffraction pattern (consisting of a transmitted and diffracted beam spots).

• Although diffraction phenomena is a complex interactions of charged electrons with the periodic potential field of the lattice, Bragg's Law or Laue Conditions are sufficient approximations for usual practical applications.

• A diffraction pattern is, in the simplest sense, a Fourier transform of the periodic crystal lattice, giving us information on the periodicities in the lattice, and hence the atomic positions. 

Page 78: Nanotechnology overview final

Some fancy Diffraction Patterns

Page 79: Nanotechnology overview final

ATOMIC FORCE MICROSCOPE

Page 80: Nanotechnology overview final

Overview of Atomic Force MicroscopyOverview of Atomic Force Microscopy - - General Principle of SPM

A feedback system tocontrol vertical position of the tip

A tip as a probe

Means of sensing Vertical position of the tip

Sample

A coarse positioning system to bring the sample close to the proximity of the tip

A Computer system, which drives the piezoelectric scanner, collects data from the tip, and converts in to an image

X-Y

Z

Piezoelectric scanner

Page 81: Nanotechnology overview final

Different Modes of Different Modes of AFMAFM

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Fo

rce f

(r) inter atomic distance(r)

Intermittent Intermittent ContactContact

Attractive Force

Non-ContactNon-Contact

ContacContactt Repulsive Force

Basic AFM Modes are

• Contact Mode

• Intermittent contact Mode

• Non-contact Mode

6 12( )

a bf r

r r

Leonard-Jones Potential

M1 M2

rr

Page 82: Nanotechnology overview final

Working Principle Of An AFM

Page 83: Nanotechnology overview final

Laser (solid state)

Tip and cantilever

Scanner and positioner

Quadrant photo detector

Optical Deflection System

Page 84: Nanotechnology overview final

U 1 2 kz2 ,F U z kz , 2U z2 k

The total force gradient is the sum of the sample force gradient and the cantilever’s spring constant.

FORCE DISTANCE CURVE

Page 85: Nanotechnology overview final

Comparison of Contact and non-contact modeComparison of Contact and non-contact mode

(a)

(b)

Non-Contactmode

Contactmode

Topography Topography MeasurementMeasurement

Different Modes of Different Modes of AFMAFM

Page 86: Nanotechnology overview final

Mode Advantages Disadvantages

Contact mode Highest lateral resolution

Potentially destructive

Noncontact mode AC

Nondestructive , high force

resolution (~ )

Poor spatial resolution

Tapping mode High lateral and force resolution

Apparent height is less.

Summary - Different Modes Summary - Different Modes of AFMof AFM

Page 87: Nanotechnology overview final

Does Nanotechnology Address Teaching Standards?

Nanotechnology Idea Standard it can address The idea of “Nano” – being small Structure of Atoms

Nanomaterials have a high surface area

(nanosensors for toxins)

Structure and properties of matter, Personal and Community Health

Synthesis of nanomaterials and support chemistry (space propulsion)

Chemical Reactions

Shape Memory Alloys Motion and Forces, Abilities of technological design, Understanding about science and technology

Nanocrystalline Solar Cells Conservation of Energy and increase in disorder (entropy), Interactions of energy and matter, Natural Resources

Nanocoatings resistive to bacteria and pollution

Personal and Community Health, Population Growth, Environmental Quality, Natural and human-induced hazards