nano/micro in meweb.mit.edu/2.008/www/lectures/2.008-2005-mems-1.pdf · nano/micro in me my office:...

28
2.008-spring-2005 S.G. Kim 1 2.008 Design & Manufacturing II Spring 2005 Sang-Gook Kim MEMS/Nano I 2.008-spring-2005 S.G. Kim 2 Nano/Micro in ME My Office: 1-310, [email protected] , MEMS/Nanomanufacturing Small is not small enough?

Upload: others

Post on 18-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 1

2.008 Design & Manufacturing II

Spring 2005Sang-Gook Kim

MEMS/Nano I

2.008-spring-2005 S.G. Kim 2

Nano/Micro in MEMy Office: 1-310, [email protected], MEMS/Nanomanufacturing

Small is not small enough?

Page 2: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 3

Nano/Micro in MEFluidics, heat transfer and energy conversion at the micro- and nanoscaleBio-micro-electromechanical systems (bio-MEMS)Optical-micro-electromechanical systems (optical-MEMS)Engineered nanomaterialsNano-Manufacturing

Course 2A (Nanotrack)Micro/Nano Group in MEhttp://web.mit.edu/nanomicro/Index.html

2.008-spring-2005 S.G. Kim 4

Moore’s Law

Year of introduction Transistors

4004 1971 2,250

8008 1972 2,500

8080 1974 5,000

8086 1978 29,000

286 1982 120,000

386™ 1985 275,000

486™ DX 1989 1,180,000

Pentium® 1993 3,100,000

Pentium II 1997 7,500,000

Pentium III 1999 24,000,000

Pentium 4 2000 42,000,000

The number of transistors per chip doubles every 18 months.

– Moore’s Law

Page 3: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 5

Why shrink things?

Use less materials, energy, powerFaster response, better sensitivity, simpler, better accuracy reliabilityPerformance/$Minimally invasive..

2.008-spring-2005 S.G. Kim 6

Why shrink things?

Shock and impactScale and form factorLoad carrying capability

Spider silk v.s. steel

Page 4: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 7

Frog, Water Strider, Gecko

2.008-spring-2005 S.G. Kim 8

Learn from the nature, but never try to mimic the nature.

Biomimetic researches. K. Autumn, www.lclark.edu

Page 5: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

DNA~2-1/2 nm diameter

Things Natural Things Manmade

MicroElectroMechanical devices10 -100 µm wide

Red blood cellsPollen grain

Fly ash~ 10-20 µm

Atoms of siliconspacing ~tenths of nm

Head of a pin1-2 mm

Quantum corral of 48 iron atoms on copper surfacepositioned one at a time with an STM tip

Corral diameter 14 nm

Human hair~ 10-50 µm wide

Red blood cellswith white cell

~ 2-5 µm

Ant~ 5 mm

The Scale of Things -- Nanometers and More

Dust mite

200 µm

ATP synthase

~10 nm diameter Nanotube electrode

Carbon nanotube~2 nm diameter

Nanotube transistor

O O

O

OO

O OO O OO OO

O

S

O

S

O

S

O

S

O

S

O

S

O

S

O

S

PO

O

21st Century Challenge

Combine nanoscale building blocks to make novel functional devices, e.g., a photosynthetic reaction center with integral semiconductor storage

Th

e M

icro

wo

rld

0.1 nm

1 nanometer (nm)

0.01 µm10 nm

0.1 µm100 nm

1 micrometer (µm)

0.01 mm10 µm

0.1 mm100 µm

1 millimeter (mm)

1 cm10 mm

10-2 m

10-3 m

10-4 m

10-5 m

10-6 m

10-7 m

10-8 m

10-9 m

10-10 m

Visi

ble

Th

e N

ano

wo

rld

1,000 nanometers =

Infr

ared

Ultr

avio

let

Mic

row

ave

Soft

x-ra

y

1,000,000 nanometers =

Zone plate x-ray “lens”Outermost ring spacing

~35 nm

Office of Basic Energy SciencesOffice of Science, U.S. DOE

Version 03-05-02

DOE 2001

2.008-spring-2005 S.G. Kim 10

Micro to Nano20th Century - Microelectronics and Information Technology

Semiconductors, computers, and telecommunication

21st Century - Limits of Microsystems Technology--- Nanotechnology

Moore’s lawHard disc drive

John Bardeen, Walter Brattain, and William Shockleyat Bell Laboratories, “First Transistor”

Page 6: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 11

Limit of Optical LithographyW = k λ/NA (Rayleigh Eqn.) In 1975, 405 nm (Hg H-line) at an NA of 0.32, a line width of 10 µm deep-UV (248-nm), 193 nm, 157nm

Table 1: Wavelength "Generations"Intel Road Map

Year Node Lithography1981 2000nm i/g-line Steppers1984 1500nm i/g-line Steppers1987 1000nm i/g-line Steppers1990 800nm i/g-line Steppers1993 500nm i/g-line Steppers1995 350nm i-line -> DUV1997 250nm DUV1999 180nm DUV2001 130nm DUV2003 90nm 193nm2005 65nm 193nm -> 157nm2007 45nm 157nm -> EUV2009 32nm and below EUV

193 nm immersionlithography

NanoimprintingSoft LithographyDip Pen LithographySPM-based patterning

2.008-spring-2005 S.G. Kim 12

Immersion Lithography

substratephotoresist

UV Lightmask

Exposure

Developing

Air, n=1

Water, n=1.47

W = k λ/NA (Rayleigh Eqn.)

NA= n sin α

193nm, sin a ~0.93, k1~0.25

W in Air? Immersion?

Page 7: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 13

Aerial density, hard disk

Superparamagnetic Effect“a point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation, effectively erasing the recorded data. “

2.008-spring-2005 S.G. Kim 14

MEMS (Microelectromechanical Systems)

Intergrated systems of sensing, actuation, communication, control, power, and computingTiny,Cheaper,Less power, material..New functions!!! (chemical, bio, µ-fluidic, optical, …)

Page 8: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 15

MEMSMEMS MEMSTechnologiesOptical MEMSRF MEMSRF MEMSData StorageBio. MEMSPower MEMSMEMS for ConsumerElectronicsMEMS In Space

MEMS for Nano.

Courtesy: Sandia national laboratory

MaterialsProcessesSystems

http://www.memsnet.org/mems/what-is.html

2.008-spring-2005 S.G. Kim 16

History of MEMS

Y.C.Tai, Caltech

Page 9: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 17

Tiny ProductsAirbag sensors: Mechanical vs. MEMSDLP (Digital Micromirror Array)DNA chipOptical MEMS

2.008-spring-2005 S.G. Kim 18

Tiny ProductsAirbag sensors: Mechanical vs. MEMS

Page 10: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 19

Tiny ProductsDLP (Digital Micromirror Array)

DLP106 micromirrors, each 16µm2, ±10° tilt

(Hornbeck, Texas Instruments DMD, 1990)

TM

2.008-spring-2005 S.G. Kim 20

Segway

-Tilt-Rotation

Page 11: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 21

Vibrating Gyroscope

By Charles Stark Draper LaboratoryBy Charles Stark Draper Laboratory

x

z

y

CoriolisAcceleration

2.008-spring-2005 S.G. Kim 22

substrate

magnetic layer

EM coil

conductive substrate

conductive layer

insulator

substrate

patterned resistive layer

ForceForce

Force

ApplyCurrent

ApplyVoltage

Actuation of MEMS devices

Electrostatic actuation

Thermal Actuation

Electromagnetic force

ApplyCurrent

substrate

patterned resistive layer Force

Piezoelectric Actuation

ApplyCurrent

Page 12: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 23

Electrostatic Comb Drive/sensing

Paralle Plate CapacitorCapacitance=Q/V=ε A/dε Dielectric permittivity of air

Electrostatic Force = ½ ε (A/d2).V2

Pull-in point: 2/3 d

d

K

2.008-spring-2005 S.G. Kim 24

Comb Drive

C= ε A/d = 2n ε l h/d∆C = 2n ε ∆l h/dElectrostatic force

Fel = ½ dC/dx V2 = n ε h/d V2

∆l

d

V

x

l

Page 13: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 25

Suspension mode failures

x

y

x

2.008-spring-2005 S.G. Kim 26

Comb Drive Designs

DC Bias

AC Signal(180° phase shift)

AC Signal

Grating beamsFlexuresElectrostatic comb-drives

linear

rotational

Page 14: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 27

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2.008-spring-2005 S.G. Kim 28

Swing Analyzer withTri-axial accelerometer

Page 15: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 29

Begin with a bonded SOI wafer. Grow and etch a thin thermal oxide layer to act as a mask for the silicon etch.

Etch the silicon device layer to exposethe buried oxide layer.

Etch the buried oxide layer in buffered HF to release free-standing structures.

Si device layer, 20 µm thick

buried oxide layer

Si handle wafer

oxide mask layer

silicon

Thermal oxide

SOI (Silicon on insulator)

2.008-spring-2005 S.G. Kim 30

Microfabrication process flow

Single-mask process

IC compatible

Negligible residual stress

Thermal budget

Page 16: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 31

Process Flow

Deposition Lithography Etch

Wafers DevicesPhoto resist coatingPattern transferPhoto resist removal

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

2.008-spring-2005 S.G. Kim 32

Micromachining processes•Bulk micromachining

•Surface micromachining

•Bonding

•LIGA

• x-ray lithography, electrodeposition and molding

Page 17: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 33

LIGA (lithographie galvanoformung abformtechnik)

x-rays

Mask

PMMA

Wafer

• X-ray on PMMA, electroplating metal and molding polymer• High aspect ratio >100:1, up to 1000 µm

Ni Molded Polymer

2.008-spring-2005 S.G. Kim 34

LIGA parts

Sandia National Laboratory

Page 18: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 35

BondingSilicon Direct Bonding (Silicon Fusion Bonding)Anodic Bonding(Electrostatic Bonding, Field Assisted Thermal Bonding)Intermediate Layer Bonding

MIT Microturbine Project

2.008-spring-2005 S.G. Kim 36

Bulk, Surface, DRIEBulk micromachining involves removal of the silicon wafer itself

Typically wet etchedInexpensive equipmentsIC compatibility is not good.

Surface micromachining leaves the wafer untouched, but adds/removes additional thin film layers above the wafer surface.

Typically dry etchedExpensive equipmentsIC compatibility, conditionally.

Polysilicon

“Anti-stiction” bumpp-Si

Page 19: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 37

Bulk machiningSquare nozzlePumping ink?

Piezoelectric ink jet

2.008-spring-2005 S.G. Kim 38

Ink jet printer – A quasi-MEMS case

Thermal jet by HPSuperheat ink 250oCPeak pressure 1.4 MPa

Refills in 50µs

Page 20: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 39

Thermal ink jet

2.008-spring-2005 S.G. Kim 40

Pressure sensor

Page 21: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 41

Surface MicromachiningDeposit sacrificial layer Pattern anchors

Deposit/pattern structural layer Etch sacrificial layer

Si

PSGBy HF

PolybyXeF2

2.008-spring-2005 S.G. Kim 42

Surface micromachining

Structure sacrificial etchantPolysilicon Silicon dioxide HFSiNx PSG HFSilicon dioxide polysilicon XeF2SiNx polysilicon XeF2Aluminum photoresist oxygen plasma

Page 22: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 43

Residual stress gradients

More tensile on top

Less tensile on top

Just right!

2.008-spring-2005 S.G. Kim 44

VGA640 X 480307,200 pixels

50 µm

Human Hair

XGA1024 X 768

786,432 pixels

Micromirror Arrays

Page 23: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 45

MaterialsMetals

Al, Au, ITO, W, Ni, Ti, TiNi,…Insulators

SiO2 - thermally grown above 800oC or vapor deposited (CVD), sputtered. Large intrinsic stress

SixNy – insulator, barrier for ion diffusion, high E, stress controllable

Polymers: PR, SU-8, PDMS

Glass, quartzSilicon

stronger than steel, lighter than aluminumsingle crystal, polycrystalline, or amorphous

2.008-spring-2005 S.G. Kim 46

Silicon

Atomic mass average: 28.0855Boiling point: 2628KCoefficient of linear thermal expansion: 4.2. 10-6/°CDensity: 2.33g/ccYoung’s modulus: 47 GPaHardness scale: Mohs’ 6.5Melting point: 1683K Specific heat: 0.71 J/gK

Electronic grade silicon99.99999999% purity

Page 24: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 47

MaterialsSingle crystal silicon

Anisotropic crystalSemiconductor, great heat conductor

Polycrystalline silicon – polysiliconMostly isotropic materialSemiconductor

SemiconductorElectrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1%)N-type and P-type dopants both give linear conduction.

Two different types of dopingElectrons (negative, N-type) --phosphorusHoles (positive, P-type) --boron

2.008-spring-2005 S.G. Kim 48

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method.

1” to 12” diameterhttp://www.msil.ab.psiweb.com/english/msilhist4-e.html

Page 25: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 49

2.008-spring-2005 S.G. Kim 50

Miller indices

[100]

[010]

[001]

ab

c

[abc]

•[abc] in a cubic crystal is just a directional vector

•(abc) is any plane perpendicular to the [abc] vector

•(…)/[…] indicate a specific plane/direction

•{…}/<…> indicate equivalent set of planes/directions

Page 26: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 51

Crystallographic planes

[100]

[010]

[001]

(100)

{100}(001)

(010)

2.008-spring-2005 S.G. Kim 52

Crystallographic planes

[100]

[010]

[001]

(110)(111)

(001)

54.74o

Page 27: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 53

Wafers of different cuts

(111) (100) (110) (111)

(100) (111)

Bulk Si

54.74o

2.008-spring-2005 S.G. Kim 54

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to <110> direction is placed in an anisotropic etchant.

A square <110> oriented mask feature results in a pyramidal pit.

Page 28: Nano/Micro in MEweb.mit.edu/2.008/www/lectures/2.008-2005-MEMS-1.pdf · Nano/Micro in ME My Office: 1-310, sangkim@mit.edu, MEMS/Nanomanufacturing ... Nano-Manufacturing ... Surface

2.008-spring-2005 S.G. Kim 55

Pressure sensor