nanometer cmos: an analog challenge! · 2006. 5. 2. · 1 nanometer cmos: an analog challenge! ieee...

30
Nanometer CMOS: an analog challenge! IEEE Distinguished Lectures Fort Collins May 11, 2006: Marcel Pelgrom Philips Research Laboratories Prof. Holstlaan 4 (HTC-5) 5656 AE Eindhoven, The Netherlands [email protected] 1 km 2 = 4 months of production= 70.000.000.000 $

Upload: others

Post on 27-Jan-2021

16 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Nanometer CMOS: an analog challenge!

    IEEE Distinguished LecturesFort Collins May 11, 2006:

    Marcel Pelgrom

    Philips Research LaboratoriesProf. Holstlaan 4 (HTC-5)

    5656 AE Eindhoven, The [email protected]

    1 km21 km2 = 4 months of production=

    70.000.000.000 $

  • 2

    Wafer Size History

    675mm/2021?450mm/2012300mm/2001200mm/1990 -

    Small dimensions on large wafers

    25 nm

    15nm

    65 nm

    45 nm

    90 nm

    32 nm

    22 nm

    IC industry: Quo vadis?

    Intel

  • 3

    Moore’ law: Cost per IC function

    1

    10

    100p

    rice p

    er

    IC 100 k

    1 M

    10 M

    0.7 0.5 0.35 0.25 0.18 0.12μm 90 65 45nm

    Reference point: 30 mm2 in CMOS12,Dataquest: monitor of wafer price per unit area 1998-2005Dataquest mask cost: 1998-2010

    Moore’ law: Cost per IC function

    Economy dictates large series of products:

    memories,

    processors,

    multi-system ICs, with a multitude of functions

    1

    10

    100

    pri

    ce p

    er

    IC 100 k

    1 M

    10 M

    0.7 0.5 0.35 0.25 0.18 0.12μm 90 65 45nm

  • 4

    0

    1

    2

    3

    4

    5

    1989 1992 1995 1998 2000 2002 2004 2007 2010 2015Year of production (ITRS)

    Volt

    0.7 0.5 0.35 0.25 0.18 0.12 90 65 45 32

    More on a chip: the power crisis

    Power= activity x frequency x capacitance x voltage2

    Power crisis:

    Need to reduce power supply voltage limited by:

    -sub-threshold leakage(can be avoided by switching functional blocks)

    - variability

    0

    1

    2

    3

    4

    5

    1989 1992 1995 1998 2000 2002 2004 2007 2010 2015Year of production (ITRS)

    Volt

  • 5

    Outline

    • Introduction

    • Variability

    • Measuring for signal integrity

    • Outlook

    Variability:

    Deterministic effects, but difficult to predict and control:- NBTI- Lithographical deviations- Signal integrity- Stress (by wiring or STI)- Temperature gradient- Substrate noise

    Stochastic (random) processes:- Component mismatch- Jitter

  • 6

    Courtesy: Boris Ljevar (Philips)

    Variability:90 nm CMOSFrequencydistribution offree-runningoscillators16x7 per reticule

    reticule

    Centerdonut

    boundaryRandom deviations

    Litho: printability for different pitches

    • Deep sub-micron means: working on sub-half wavelength features

    • Features cannot be printed in forbidden pitch zones!

    00.20.40.60.8

    11.21.41.6

    100 150 200 250 300 nmPitchP

    rintin

    g qu

    ality

    (Cpk

    )

    NA=1.05NA=1.2

    forbidden zone at NA = 1.05forbidden zone at NA = 1.2

  • 7

    Trend: fixed-pitch layout

    Missing wire and short-circuit fault

    • Sub half-wavelength feature printing requires uniformity in layout design

    Limits to accuracy

    Basic limit to accuracy are the limitsto reproduce exact copies.

  • 8

    p-type substrate

    S D

    n+

    n+

    gate

    TVT

    T

    V%312001200V

    ≈∝σ

    Δ

    Accuracy in 0.25 μm CMOS

    Granularity on molecular level is reached:0.25/0.25 transistor = 1200 doping atoms

    p-type substrate

    S D

    n+

    n+

    gate

    Granularity on molecular level is reached:0.1/0.065 transistor = 60-80 doping atomsin depletion region

    p-type substrate

    S Dn+ n+

    gate

    p-type substrate

    S Dn+ n+

    gate

    TVT

    T

    V%118080V

    ≈∝σ

    Δ

    Atoms don’t scale in 65 nm CMOS

    Intel

  • 9

    σΔVTVin Vref

    010203040506070

    Δ VT [mV]-4.0 -2.0 0.0 2.0 4.0

    Count m σ

    CMOS matching

    W,L

    mVinWL

    AVTVT =σΔ

    Input

    mVinVVV 2T1TT −=Δ

    The mean variation is a matter of good engineering,The standard deviation is inverse prop to the square root of area.

    1TV 2TV

    CMOS matching

    mVinWL

    AVTVT =σ

    0

    2

    4

    6

    8

    0.0 0.2 0.4 0.6 0.8 1.0

    σΔVT(mV)

    10/0.2510/1

    2/1

    0.2/4

    0.4/10

    10/10

    1.2 1.4

    2/10

    2/0.18

    0.4/1

    1.6 1.8

    Ref: M. Pelgrom IEEE JSSC 1989 p. 1433

    0.5 μm NMOS

    m/1inWL/1 μ

    0.18 μm NMOS

  • 10

    Matching: CMOS 90nm, W/L=10/5

    1.5 volt

    0.50

    0.60

    0.70

    0.80

    0.90

    0.30 0.40 0.50 0.60 0.70

    typsnspsnfpfnspfnfp Vn

    Vp

    10 μA

    Vn

    Vp

    (simulation)

    200 Monte Carlo sim

    0.50

    0.60

    0.70

    0.80

    0.90

    0.30 0.40 0.50 0.60 0.70

    typ

    snsp

    snfp

    fnsp

    fnfp

    1.5 volt

    Vn

    Vp

    10 μA

    Vn

    Vp

    Matching: CMOS 90nm, W/L=1/0.5

    (simulation)

  • 11

    0.50

    0.60

    0.70

    0.80

    0.90

    0.30 0.40 0.50 0.60 0.70

    typ

    snsp

    snfp

    fnsp

    fnfp

    Vn

    Vp 1.5 volt

    Vn

    Vp

    10 μA

    Matching: CMOS 90nm, W/L=0.2/0.1

    (simulation)

    Mismatch dominates process tolerances

    clock

    C

    C

    C

    C

    C

    C

    C

    C

    C

    C

    deco

    ding

    1.6Gsps 6b ADC 1.6Gsps 6b ADC ScholtensScholtens//Vertegt Vertegt

    ISSCC2002ISSCC2002

    Yield in full-flash ADCs

    0 mV 2 mV 4 mV 6 mV0%

    20%

    40%

    60%

    80%

    100%

    Yield

    σcomparator

    Probability ofmonotonicity

    7-bit8 bit9 bit10 bit

  • 12

    Latch

    Analog and digital

    kT100ACCE

    WLCC,LW

    A

    2VTox

    2VTgategate

    oxgateVT

    VT

    ≈=σ×=

    Δ

    Δ

    EgateσΔVT

    Vin VrefW,L

    Diff pair

    Transistor mismatch dominates thermal noise:• Major issue in many analog components• Requires extensive measures in multiplexed systems• Starts bothering digital designers

    I

    II

    VinI VoutII

    VinI VoutII

    [V]

    [V]

    SNM

    Static Noise Margin: size of “eye” defines robustness

    count

    SRAM has problems…

    SRAM cells now move from 6T to 7,8 and 10T implementations

  • 13

    SRAM moving to 10 transistor cell

    BL BL

    + + +

    write read

    Ref: B. Calhoun, MIT, ISSCC2006

    WL WL

    ΔT1 ΔT2

    0.25 μm 0.18 μm 0.13 μm 0.1 μm

    16 ps

    16 ps

    21 ps

    16 ps

    σΔT2(Cload=50fF)

    38 ps 68 ps

    σΔT2 (50,35,25,20fF)

    22 ps 33 ps

    …getting worse for new generations.

    Wp=2Wn=8Lmin

  • 14

    Variability, random component mismatch:

    • Mismatch in analog circuits is a well-known problem,some interesting correction algorithms allow tofight this problem.

    • In nanometer CMOS mismatch dominates over process corner variation.

    • Memory designers spend more transistors toovercome the problems.

    • Stochastic nature requires new approaches andmore analog way of thinking in digital.

    Variability:

    Deterministic effects, but difficult to predict and control:- NBTI- Lithographical deviations- Signal integrity- Stress (by wiring or STI)- Temperature gradient- Substrate noise

    Stochastic (random) processes:- Component mismatch- Jitter

  • 15

    propagationH. Veendrick

    Substrate Noise:

    A designers view

    The problem:

    0.0000000000001 Wattsensitivity

    0.1-5 Watt

  • 16

    The problem:

    Interference generator:every node of the circuit is contributing, dependingon frequency components, capacitor, undershoot

    Interference channel:mostly through substrate, but may take short-cuts!

    Interference receiver:every node picks up interference, many (canceling) paths

    A simple experiment

    Courtesy: AMoS/G.Vogels

    N-well

    VDD

    GND

    0.18 um CMOSHigh-ohmic substrate

  • 17

    injection through large array of substrate contacts Sensor surrounded by different

    guard ring widths:0,1,2 contacts

    X

    Y

    different X and Y spacing

    A simple experiment8 variants in x,y, guard ringsilicon compared to simulation

    Ignore this area for the moment

    Courtesy: AMoS/G.Vogels

    A simple experiment

    N-well

    VDD

    GND

    0.18 um CMOSHigh-ohmic substrateSubstrate model extractedby commercial tool:5487R’s and 6765 C’s

    Zx,y Zring

    GND

    Courtesy: AMoS/G.Vogels

    GND

    0.1 V

    RGND

  • 18

    70 dB between different layout implementations ! (interferer: 1 MHz sine wave at 100 mV amplitude)

    A simple experiment8 variants in x,y, guard ringsilicon compared to simulation

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    201 2 3 4 5 6 7 8

    layout

    nois

    e [d

    b]

    measurementssimulations

    Courtesy: AMoS/G.Vogels

    0.0 1.0 2.0 3.0 4.0 5.0 0.0

    10.0m

    20.0m

    30.0m

    40.0m

    50.0m

    60.0m

    70.0m

    80.0m

    90.0m

    -25.0

    0.0

    25.0

    50.0

    75.0

    100.0

    125.0

    150.0

    175.0

    200.0

    RGND

    MAG(VN(OUT1))

    PHA(VN(OUT1))

    Power rail R determines net effect!

    Zring=10 Ω

  • 19

    injection through digital logic

    X

    Y

    A simple experiment!?

    Too complex substrate descriptionfor interpretation

    Commercial tool:From 456403 into 11 internal nodesCPU 2h:7m:28s !Memory: 1.7GSub circuit spice file: 260MB

    Variability, substrate noise:

    • Still a problem hardly realized by digital designers.

    • Major limitation for integration possibilities forconnectivity.

    • Complex due to interaction between power wiringand substrate.

    • No real CAD solution available.

  • 20

    Variability: What to do?

    • Actual values from stochastic distributions cannot be predicted.

    • Circumstances can be measured

    • More optimum setting can then be achieved

    Measuring of analog parameters in VLSI ICs

    analogueanalogue

    logic logic

    memories

    memories

    memories

    memories

    Signal Integrity Self Test (SIST) architecture

  • 21

    Signal Integrity Architecture Phase 1

    Functional block 1

    Processorblock 2

    IP block 3

    IEEE Std. 1149.1 TAP

    regi

    ster

    Monitor 1

    register

    Monitor 2

    regi

    ster

    Monitor 4

    SIST controller

    CMOS IC

    register

    Monitor 3

    SIST Monitor Specification• Power Supply Sensor: overshoot, dips, average value

    – 20mV resolution @ 100ps pulse width

    • Temperature Sensor– 0-150°C with 10°C resolution, untrimmed

    • MOS threshold voltage sensor – 10mV resolution

    • Timing sensor– Tclock/16 resolution

    In design

  • 22

    Analog challenges

    • No impact on the digital design flow, library and specification

    • No additional Vdd and Vss• Matches standard cell layout style• Area penalty around 0.1%• No analog interfaces• Switched off during non monitoring• Control algorithm complies to IEEE 1149.1

    std. (keeps compatibility to present test equipment)

    RSFF

    GND

    Vdac

    OUT

    reset

    -

    +

    DAC

    Scan registerDAC SEL reset out pon

    VDD

    pon

    selector

    Supply noise monitor: circuit diagram

  • 23

    Trend of the usable Beta

    yes! ≈3x

    no benefit …

    NMOS

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Ldrawn [?m]

    usab

    le β

    [][ μ

    A/V

    2 ]

    .18um LSTP90nm LSTP90nm LOP65nm LSTP65nm LOP45nm LSTP

    Usable Beta behaviour: background

    short channel• high dope level• impaired mobility• threshold variability

    long channel• low dope level• better device behaviour • poor output impedance

    pocketimplants

  • 24

    Supply noise monitor: lay-out

    The supply noise monitor in standard-cell style(tiling patterns removed).

    Area: 4 pitches high, 124 μm wide

    Test set-up

    Functional blockActivity programmable Shift register2000 flipflops+25.000 gates

    SISTcontroller

    TAP

    Register/TPR

    Monitor 1 Monitor 2

    Register/TPR

    IN/OUT SIST

  • 25

    Test settings:• Switching activity• Vary frequency• Different decap

    1483.0 μm

    1481.5 μm

    Functional Core Layout

    technologymonitors

    designmonitors

    functionalcore

    A

    B

    C

    D

    Silicon

    • Four identical functional cores– A: No decap– B: Half decap– C: Nominal decap 500pF– D: Double decap

    • With different test settings

    • In 90nm CMOS process

  • 26

    1.3

    0.0 10.0n 20.0n 30.0n0.9

    1.0

    1.1

    1.2

    Vdd

    (V)

    Time (s)

    min Vdd

    nominal decap

    Simulation Results

    Measurements Results

    nohalfnominaldouble

    DECAP

    100%0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    0% 20% 40% 60% 80%Activity

    min

    Vdd

    (V)

    2x

    1x

    0.5x

    0

  • 27

    NTR

    Temperaturecomparator

    +-

    ×1NRR

    Vref=0.8V

    Temperature Monitor and Reference

    1.05-1.4 V

    -

    +R

    ×DN×1

    I=PTAT

    800804808812

    0 50 100 150V ref

    in m

    V

    Temperature in 0C

    02468

    10

    0 50 100 150Temperature in 0C

    tem

    pera

    ture

    rang

    e

    1214

    σ=4.5mV

    resolution=110C

    Measurement Results: temperature sensor 90 nm CMOS

  • 28

    Pow

    er s

    witc

    h

    SIST Monitor Locations on 65 nm test chip

    SIST7

    SIST5

    SIST1 SIST8

    SIST0

    SIST6

    SIST3

    SIST4

    SIST2

    ARM

    CGU

    Pow

    er s

    witc

    h

    65 nm test chip

  • 29

    Measurement Results65 nm

    V ref

    in m

    V

    823824825826827828829830831832

    -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

    Temperature

    Ref

    eren

    ce v

    olta

    ge

    0

    20

    40

    60

    80

    100

    120

    0 10 20 30 40 50 60 70 80 90 100 110

    Actual temperature

    Switc

    h po

    int t

    empe

    ratu

    re sist0sist1sist2sist3sist4sist5sist6sist7sist8

    What can be done with SIST info?Phase 1, today:

    • Debug, check for local disturbances

    • Compare CAD predictions to real life

    Phase 2:

    • Improve performance based on actual status.

    • Switch between power supply levels

    • Control refresh cycle of dynamic memory/logic tothe actual temperature (leakage doubles every 6oC)

    • Adapt error protection to expected bit-error rate.

    • etc.

  • 30

    Outlook

    • Economical efficiency, (low) power and variabilitywill determine the future choices and options in IC design.

    • More digital design decisions will be determined by physical (analog) effects.

    • The stochastic nature of variability will force somedramatic changes in design and CAD tools.

    • Major adaptations of standard digital cells willbe needed to improve variability sensitivity.

    • Measuring effects within the digital cores is thefirst step towards mastering this problem.

    Courtesy of Roland Pantel, STM

    Thank you!