nadca - die materials committee meeting

41
NADCA - Die Materials Committee Meeting DIE MATERIALS FOR CRITICAL APPLICATIONS AND INCREASED PRODUCTION RATES Cleveland, OH - November 14, 2001 John F. Wallace David Schwam Quanyou Zhou Case Western Reserve University

Upload: kim-sparks

Post on 30-Dec-2015

211 views

Category:

Documents


3 download

DESCRIPTION

NADCA - Die Materials Committee Meeting. DIE MATERIALS FOR CRITICAL APPLICATIONS. AND INCREASED PRODUCTION RATES. John F. Wallace David Schwam Quanyou Zhou Case Western Reserve University. Cleveland, OH - November 14, 2001. OUTLINE. 1. Shorter cycles - cooling curves in the biscuit. - PowerPoint PPT Presentation

TRANSCRIPT

NADCA - Die Materials Committee Meeting

DIE MATERIALS FOR CRITICAL APPLICATIONSAND INCREASED PRODUCTION RATES

Cleveland, OH - November 14, 2001

John F. Wallace David SchwamQuanyou Zhou

Case Western Reserve University

OUTLINE

1. Shorter cycles - cooling curves in the biscuit.

2. Evaluation of non-ferrous alloys.

3. Results of recently tested die steels.

INCREASING PRODUCTIVITY WITH SHORTER CYCLES

METHOD: • Utilize high thermal conductivity materials to extract heat faster from the large cross sections.

EXPERIMENTAL

• Shot blocks made of H13, Brush Alloy 3 (CuBe-based), • Brush MoldMax (CuBe-base), Brush MoldMax XL (copper-base) CMW Anviloy (W), ALLVAC 718 (Ni-base), Nibryl (NiBe). • Record cooling curve of the biscuit.• Determine “Die Open” time for different shot block materials.

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F

) Cooling Curve in the Biscuit with H13 Shot Block

Die Open Temperature=950oF

CWRU10190

TH13-Open=28.6(s)

Die Open Time

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F

) Cooling Curve in the Biscuit with Copper Based Mold Max High Shot

Block

Die Open Temperature=950oF

CWRU050401

TMold Max XL-Open=20.0(s)

Die Open Time

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F

) Cooling Curve in the Biscuit with Copper based Mold Max XL Shot

Block

Die Open Temperature=950oF

CWRU050301

TMold Max High-Open=18.0(s)

Die Open Time

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F)

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F

) Cooling Curves in the Biscuit with Anvilloy Shot Blocks

Die Open Temperature=950oF

CWRU050701

TAnvilloy1150-Open=23.8(s)

Die Open Time

Cooling Curve in the Biscuit with Anvilloy 1150 Shot Block

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F

)

Cooling Curves in the Biscuit with CuBeC3 Shot Blocks

Die Open Temperature=950oF

CWRU10190

TCuBeC3-Open=18.2(s)

Die Open Time

Cooling Curve in the Biscuit with CuBe-C3 Shot Block

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60 70

Time(s)

Tem

pera

ture

(o F)

Cooling Curves in the Biscuit with Copper-based, Anvilloy & Steel Shot Blocks

Die Open Temperature=950oF

CWRU10190

Die Open Time

TH13-Open=28.6(s)

TMold XL-Open=20.0(s)

TAnvilloy 1150-Open=23.5(s)

TMold Ma-Open=18.0(s)

TCuBe-3C-Open=18.2(s)

Effect of Thermal Conductivity of the Shot Block

Material on Cooling Time of Biscuit at 950oF

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

Thermal Conductivity(Btu/ft.h.F)

Coo

lin

g T

ime(

s)

H13

Anvilloy

3C CuBe

Type of Material Cooling Time at 950oF(s)

Mold Max High(Cu-Base) 18.0CuBe-3C(Cu-Base) 18.2Mold Max XL(Cu-Base) 20.0CMW Anvilloy-1150(W-Base) 23.5H13(Fe-Base) 28.6

Effect of Shot Block Material on Cooling Time of Biscuit

Die Open” time (@950oF)for Brush Alloy 3C is 18.2 sec.vs. 28.6 sec. for H13. This is a 36% reduction in cycle time.

LIST OF NON-FERROUS CANDIDATE MATERIALS

Material C W Mo Fe Ni Ti Zr Cu Be Cr Nb SnCMW-Anviloy1150

90.00 4.00 2.00 4.00

Kulite-Kuldie 90.00 4.00 2.00 4.00

Allvac 718L 0.01 3.10 18.20 53.80 0.93 17.90 5.06

CSM-PM Mo 100

Brush-QMAX Copper Beryllium

0.20 Bal. 2.00

Brush-Nybril 360 Nickel Beryllium

Bal. 0.50 2.00

Brush-Nybril-FX1 Nickel Beryllium

Bal. 0.50 12.50 1.00

Brush NBCXBal. 0.5 12.5 1.2

Brush M220C0.4 Bal. 2.00

Brush ToughMet2 9.00 Bal. 6.00

Brush ToughMet3 15.00 Bal. 8.00

Nickel Beryllium

Nickel Beryllium

TOTAL CRACK AREA AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7")

0

100

200

300

400

500

600

Test Materials

Tot

al C

rack

Are

a (

x 10

6m

2)

1"X1"X7", WC7

P.G

. H13

/Oil

/49R

c

Boh

ler

W30

3/O

i/45

Rc

Bru

sh W

rou

ght

Nyb

ril F

X/4

4Rc

Bru

sh C

ast

Nyb

ril F

X/4

9Rc

Bru

sh W

rou

ght

Nyb

ril 3

60/3

5Rc

Bru

sh C

ast

Nyb

ril 3

60-1

/34R

c

Bru

sh C

ast

Nyb

ril 3

60-2

/ 35R

c

Boh

ler

W10

0/44

Rc

Kin

d R

PU

1/48

Rc

Kin

d T

Q1/

48R

c

Bru

sh Q

MA

X/2

4Rc

CS

M P

M M

o/20

Rc

CM

W A

nvi

loy

1150

/37R

c

Ku

lite

Ku

ldie

/33R

c

AVERAGE MAXIMUM CRACK LENGTH AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7")

0

5

10

15

20

25

30

35

40

45

50

Test Materials

Ave

rage

Max

Cra

ck L

engt

h (

x100

m)

1"X1"X7", WC7

Allv

ac I

N71

8/46

Rc

(Pit

tin

g D

epth

)

P.G

. H13

/Oil/

49R

c

Boh

ler

W30

3/O

i/45R

c

Bru

sh W

rou

ght

Nyb

ril F

X/4

4Rc

Bru

sh C

ast

Nyb

ril F

X/4

9Rc

Bru

sh W

rou

ght

Nyb

ril 3

60/3

5Rc

Bru

sh C

ast

Nyb

ril 3

60-1

/34R

c

Bru

sh C

ast

Nyb

ril 3

60-2

/ 35R

c

Boh

ler

W10

0/44

Rc

Kin

d R

PU

1/48

Rc

Kin

d T

Q1/

48R

c

Bru

sh Q

MA

X/2

4Rc

CS

M P

M M

o/20

Rc

CM

W A

nvi

loy

1150

/37R

c

Ku

lite

Ku

ldie

/33R

c

Total Crack Area

0

100

200

300

400

500

600

700

800

0 2500 5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rack

Are

a (x

10

6

m2) H13

NBCX-1

M220C-1

Nibryl 360

Cast- Nibryl 360

1"x1"x7", w c7

H13/Oil/49HRC

NBCX-1/42HRC

M220C-1/52HRC CAST-NIBRYL360/40HRC

NIBRYL360/35HRC

Average Maximum Crack Length

0

10

20

30

40

50

60

70

0 2500 5000 7500 10000 12500 15000

Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00

m) H13

NBCX-1

M220C-1

NIBRYL360

CAST-NIBRYL360

1"x1"x7", w c7

NBCX-1/42HRC

H13/Oil/49HRCM220C-1/52HRC

CAST-NIBRYL360/40HRC

NIBRYL360/35HRC

Soldering Damage at the Corners of Cu-Ni-Sn Thermal Fatigue Specimens

ToughMet 3 ToughMet 2 ToughMet 2 ToughMet 2

0.5”

Thermal Fatigue Damage in NBCX-1 and M220C-1

NBCX-1 M220C-1

Soldering

Thermal Fatigue Cracks

Thermal Fatigue Cracks

Cor

ner

0.5”

CORNER DAMAGE IN ALLVAC A-286(Iron-based w/ca.25% Ni)

CermeTi - Titanium Metal Matrix Composite

Composition: matrix Ti-6Al-4V + 10wt% TiC particles.

Manufacturing: by PM at Dynamet, Burlington MA.

Main application: Liner for shot sleeves.

Advantages: Low thermal conductivity (5.9 W/mK that is ca. 25% of H13)

Good resistance to soldering and dissolving in molten Al

Good wear resistance (@40HRC)

AVERAGE MAXIMUM CRACK LENGTH OF CermeTi-C-10 vs. H13

0

10

20

30

40

50

60

70

80

0 2500 5000 7500 10000 12500 15000

Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00m

)

1"x1"x7", wC7

CermeTi-C-10 H13/oil quench/50HRC

COMPOSITION OF RECENTLY TESTED STEELS (spec.)

wt % P.G. H-13 Schmidt

H-11

Bohler

W302(H13)

Thyssen

2344(H13)

Kind

H-11

KDA1

C 0.40 0.49 0.39 0.40 0.38 0.38

Si 1.00 0.90 1.00 1.00 1.00 0.21

Mn 0.35 0.30 0.40 0.25 0.40 0.42

P 0.025 0.025 0.01 0.009 0.015max 0.01

S 0.001 0.05 0.002 0.001 0.005max 0.002

Cr 5.25 5.0 5.10 5.3 5.2 5.20

Mo 1.50 1.3 1.30 1.4 1.3 1.85

V 1.00 0.5 1.00 1.00 0.4 0.51

Cu 0.08 - 0.03

Ni 0.15 - 0.09 0.6 0.3

W -

TOTAL CRACK AREA OF ALLVAC WH38 AND H13

0

50

100

150

200

250

300

350

400

450

500

550

600

650

5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rack

Are

a (

x106

m2 )

WH38 H13

2"X2"X7", WC7

H13 / OIL / 51HRC

WH38 / 50HRC

AVERAGE MAXIMUM CRACK LENGTH OF ALLVAC WH38 AND H13

0

5

10

15

20

25

30

35

40

45

50

55

60

5000 7500 10000 12500 15000

Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00m

)

HW38

H13

2"X2"X7", WC7

H13/ OIL/ 51HRC

WH38 / 50HRC

TOTAL CRACK AREA OF wH38-3 AND H13

0

20

40

60

80

100

120

140

160

180

5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rac

k A

rea

(x

10

6m

2 )

WH-38-3 H13

2"X2"X7", WC7

H13 / OIL / 51HRC

WH38-3/43HRC

TOTAL CRACK AREA OF wH38-3 AND H13

0

20

40

60

80

100

120

140

160

180

5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rac

k A

rea

(x

10

6m

2 )

WH-38-3 H13

2"X2"X7", WC7

H13 / OIL / 51HRC

WH38-3/43HRC

AVERAGE MAXIMUM CRACK LENGTH OF WH38-3 AND H13

0

2

4

6

8

10

12

14

16

18

20

5000 7500 10000 12500 15000

Thermal Cycles

Av

era

ge

Ma

x C

rac

k L

en

gth

(x

10

0

m)

WH38-3 H13

2"X2"X7", WC7

H13/ OIL/ 51HRC

WH-38-3/43HRC

TOTAL CRACK AREA OF SCHMIDT H11 AND H13

0

50

100

150

200

5000 7500 10000 12500 15000Thermal Cycles

To

tal C

rack

Are

a (

x 10

6 m

2 )

H13 SCHMIDT/H11-ESR

2"X2"X7", WC7

H13 / OIL / 51HRC

SCHMIDT/H11-ESR/45HRC

AVERAGE MAXIMUM CRACK LENGTH OF SCHMIDT H11 AND P.G. H13

0

5

10

15

20

5000 7500 10000 12500 15000Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00m

)

H13 SCHMIDT/H11-ESR

2"X2"X7",WC7

H13 / OIL/ 51HRC

SCHMIDT/H11-ESR/45HRC

TOTAL CRACK AREA OF BOHLER 302 AND P.G. H13

0

50

100

150

200

5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rack

Are

a (

x106

m2 ) H13 BOHLER W302

2"X2"X7", WC7

H13 / OIL / 51HRC

W302/47HRC

AVERAGE MAXIMUM CRACK LENGTH OF BOHLER W302 AND P.G. H13

0

5

10

15

20

5000 7500 10000 12500 15000

Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00m

)

2"X2"X7", WC7

H13 / OIL/ 51HRC

W302/47HRC

TOTAL CRACK AREA OF THYSSEN 2344 AND P.G. H13

0

50

100

150

200

5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rack

Are

a (

x106

m2 )

2"X2"X7", WC7

H13 / OIL / 51HRC

THYSSEN 2344/45HRC

AVERAGE MAXIMUM CRACK LENGTH OF THYSSEN 2344(H13) AND P.G. H13

0

5

10

15

20

5000 7500 10000 12500 15000

Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00m

)

H13 2344

2"X2"X7", WC7

H13 / OIL/ 51HRC

Thyssen 2344/47HRC

TOTAL CRACK AREA OF KIND H11 AND P.G. H13

0

50

100

150

200

250

300

5000 7500 10000 12500 15000

Thermal Cycles

To

tal C

rack

Are

a (

x106

m2 )

2"X2"X7", WC7

H13 / OIL / 51HRC

KIND H11/47HRC

AVERAGE MAXIMUM CRACK LENGTH OF KIND H11 AND P.G. H13

0

5

10

15

20

25

5000 7500 10000 12500 15000

Thermal Cycles

Ave

rag

e M

ax C

rack

Len

gth

(x1

00m

)

2"X2"X7", WC7

H13 / OIL/ 51HRC

KIND H11/47HRC

TOTAL CRACK AREA OF KDA1 AND H13

0

20

40

60

80

100

120

140

160

180

5000 7500 10000 12500 15000

Thermal Cycles

Tota

l C

rack

Are

a (

x 10

6 m

2 )

KDA1 H13

2"X2"X7", WC7

H13

KDA1

AVERAGE MAXIMUM CRACK LENGTH OF KDA1 AND H13

0

2

4

6

8

10

12

14

16

18

5000 7500 10000 12500 15000

Thermal Cycles

Av

era

ge

Ma

x C

rac

k L

en

gth

(x

10

0

m)

KDA1 H13

2"X2"X7", WC7

H13

KDA1

TOTAL CRACK AREA AFTER 15,000 THERMAL FATIGUE CYCLES

0

100

200

300

400

500

600

700

WH38

Kind H

11

Bohler W

302

Schm

idt H

11

P.G

.H13

Thysse

n 234

4

KDA1

WH38

-3

1016

3

Tota

l C

rack

Are

a (x

106

m2 ) 2"x2"x7",WC7

Bo

hle

r W

302

Sch

mid

t H

11

P.G

.H13

Th

ysse

n 2

344

KD

A1

WH

38-3

Kin

d H

11

AVERAGE MAXIMUM CRACK LENGTH AFTER 15,000 THERMAL FATIGUE CYCLES

0

10

20

30

40

50

60

70

WH38

Kind H

11

P.G

.H13

Schm

idt H

11

Bohler W

302

Thysse

n 234

4

WH38

-3

KDA1

1016

3

Ave

rag

e M

ax C

rack

Len

gth

(x1

00 m

)

2"x2"x7",WC7

P.G

.H13

Sch

mid

t H

11

Bo

hle

r W

302

Th

ysse

n 2

344

KD

A1

WH

38-3

Kin

d H

11