n. mitro et al. nature advance online publication 24 december 2006 doi:10.1038/nature05449

7
N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Upload: dwayne-mitchell

Post on 18-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

N. Mitro et al. Nature advance online publication 24 December 2006 doi: /nature05449

TRANSCRIPT

Page 1: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Page 2: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Page 3: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Page 4: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Glucose displaces a labelledhigh-affinity LXR ligand

a, d-Glucose and glucose-6-phosphate compete for LXR binding and displace [3H]T0901317 (25 nM) in an SPA assay. b, [3H]Glucose binds LXR. A scatchard analysis is shown in the inset. Labelled glucose did not bind the RXR LBD (data not shown). Unlabelled LXR ligands displace bound [3H]glucose (20 mM) but not completely. Values are expressed as percentage binding of labelled compound. Fractional occupancy of the receptor (see Methods) is 95% for LXR- and 98% for LXR-. c.p.m., counts per minute. c, Addition of labelled glucose to a saturating dose of [3H]T0901317 (10 µM) increases scintillation in an SPA assay; percentage efficacy is relative to 10 µM [3H]T091317. d, Addition of glucose, but not GW3965, to a maximal dose of T0901317 enhances coactivator recruitment. Note the different scales. Values are presented as fold induction versus vehicle (increase in coactivator recruitment measured as a change in 665/615 nm emission relative to vehicle). All error bars indicate s.d.; experiments performed in triplicate.

Page 5: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Glucose regulates direct LXRtarget genes in vivo (a)

HepG2 cells cultured in 0 mM (white bars), 2 mM (grey bars) or 25 mM (black bars) glucose medium were treated overnight with GW3965 (1 µM), 22-(R)-hydroxycholesterol (5 µM), or D-glucose (20 mM) and gene expression was analysed using qRT-PCR. Glucose stimulates expression of direct LXR cholesterol homeostasis target genes. Note that efficacy of known LXR ligands increases with increasing glucose concentration. All error bars represent s.d.

Page 6: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Glucose regulates direct LXRtarget genes in vivo (b)

Glucose induces LXR target genes in mouse liver. Mice fasted overnight were challenged orally with GW3965 (50 mg ハ kg-1), or re-fed with a glucose or sucrose diet and killed 6 h later. d-Glucose and GW3965 regulate the same direct LXR targets (genes involved in cholesterol and fatty acid metabolism) as well as indirect carbohydrate metabolism targets. All error bars represent s.d., n = 5-6 mice per group. Asterisk, P<0.05; double asterisk, P<0.001 treatment versus fasted.

Page 7: N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449

N. Mitro et al. Nature advance online publication 24 December 2006 doi:10.1038/nature05449http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature05449.html

Schematic representation of pathways influencing

glucose fate in the liver

Glucose induces insulin secretion, suppressing hepatic gluconeogenesis and – through LXR – activating SREBP-1c expression and lipogenesis. Glucose can also bind directly to LXR to induce SREBP-1c expression, suppress hepatic glucose output, and increase ChREBP expression. ChREBP activitity is modulated by glucose metabolites, further increasing lipogenesis. For clarity, glycogen metabolism is not included in the diagram.