mse spectral analysis on the madison symmetric torus betsy den hartog jinseok ko kyle caspary daniel...

11
MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Upload: paula-hodge

Post on 18-Dec-2015

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

MSE Spectral Analysis on the Madison Symmetric

TorusBetsy Den Hartog

Jinseok Ko

Kyle Caspary

Daniel Den Hartog

Darren Craig

Page 2: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

MST RFP is a toroidally axisymmetric current carrying plasma with B ~ B, 0.2 ≤ |B| ≤ 0.5 T

Self-generated currents drive plasma to a relaxed state in which toroidal field is reversed at edge

Page 3: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Motional Stark Effect Overview• H beam atoms experience an

electric field: E = vbeam x B

• H emission stark splitting

• Linear at high fields

• Obtain B┴ from line splitting

• components linearly polarized along E

• components circularly polarized

n=3

n=2

= o2(3/2)(eao/hc)|E|

Page 4: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

MSE implementation on MST

Diagnostic Neutral BeamE = 46 keVI = 5.5 ADivergence = 18 mradDuration = 20 ms

On-Axis Views•7 views• all looking at magnetic center• shuttered to look at different time points

Mid-Radius views• 4 views• 2 orthogonal polarizations• 2 time points

Page 5: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

On-Axis Analysis• Low Fields of MST Present Challenge - E~ 1 MV/m • Stark components not resolved• use polarizer to block most of and pass radiation• Data is fit to the sum of 9 gaussians based on linear

Stark model – relative I’s taken from Mandl

Note +/- asymmetry. This is typical of MST MSE data.

Page 6: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Analysis considerations

• Linear Stark model not adequate at low

fields

• Need a model which includes Zeeman and

spin-orbit terms (ADAS 605)

• Cannot account for +/- asymmetry, non-

equilibrium populations?

Page 7: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

On-axis spectral fitting

400 kA

plasma

200 kA

plasma

Old fit New fitB = 0.41 T B = 0.39 T

B = 0.27 T B = 0.26 T

Page 8: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Mid-radius view – a challenge!

• Two orthogonal polarizers

• Now getting usable data showing

broadening on one polarizer view

• Geometry constraints limit ‘contrast’

between 2 views

Page 9: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Mid-radius view

• and radiation patterns mapped onto the plane of the polarizer

• mid-radius patterns depend on pitch angle

• ellipse lies oriented in same direction as linear – limiting ‘contrast’

pi

Page 10: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Mid-radius view – first cut

pi

fit|B| and pitch angle now both free parameters in fit

|B| = 0.42 ± 0.07 T = 40.3° ± 9.4°

Page 11: MSE Spectral Analysis on the Madison Symmetric Torus Betsy Den Hartog Jinseok Ko Kyle Caspary Daniel Den Hartog Darren Craig

Summary

• Incremental improvement in on-axis analysis

utilizing ADAS 605

• Still have not explained +/- asymmetry - ADAS

development underway may yield insight

• Mid-radius view promising to yield |B| and