monitoring and forecasting floods over north africa based on … · 2014. 3. 7. · ghardimaou...

21
Monitoring and Forecasting Floods over North Africa based on Satellite data: Uncertainties and Challenges T. Kunhikrishnan *1 , F . Policelli 1 , S. Habib 1 , J. David* 1 , K. Melocik* 1 G. Huffman 1 , M. Anderson 2 , Atef B H Ali 3 , S. Bacha 3 , A. Er Raji 4 1 NASA GSFC, Greenbelt; *SSAI, Lanham; 2 USDA-ARS, Beltsville; MD, USA 3 CRTEAN, CNCT & DGRE, Tunisia; 4 RCRS, Morocco

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Monitoring and Forecasting Floods over North Africa based on Satellite data:

    Uncertainties and Challenges

    T. Kunhikrishnan*1, F . Policelli1, S. Habib1, J. David*1, K. Melocik*1 G. Huffman1, M. Anderson2,

    Atef B H Ali3, S. Bacha3, A. Er Raji4  

    1NASA GSFC, Greenbelt; *SSAI, Lanham; 2USDA-ARS, Beltsville; MD, USA 3CRTEAN, CNCT & DGRE, Tunisia; 4RCRS, Morocco

  • Motivation, Why North Africa? Ø  Unique in hydrological processes due to complex

    meteorology, geography, and arid climate Ø  Limited understanding, because of lack of sufficient data Ø  Performance of multi-sensor satellite products is not very

    well known q  Utilize satellite data for NRT flood monitoring and modeling q  Better to understand the uncertainties in the model inputs,

    which can propagate through the flood model

  • Coupled Routing and Excess Storage (CREST) model, V.2.0.

    Ø Forcing Data: TMPA-RT: TRMM Multi-Satellites Precipitation Analysis

    (Huffman G et al., 2007) PET: Famine Early Warning Systems Network (FEWS) Ø Input Basics: Shuttle Radar Topography Mission (SRTM)-

    DEM and derived products FAC, FDR

    (Wang et al., 2012)  

  • Seasonal Water Balance from Space: A first order check (P-E), TMPA-RT- ALEXI-ET, (2007-2011, climatology)  JAN   APR  

    JUL   OCT  

    ALEXI-ET: Atmosphere-Land Exchange Inverse model, [Anderson et al., 2012],  

  • Jul  

    Nov  

    Oct  

    May  

    Mar  

    Aug  

    Sep  

    P(x)

    mm/month

    Tunisian Flood, Climatology (QJRMS, R.Met.Soc.)

    Probability of Exceedance based on Rain Gauges, Tunisia, 2007

  •                Gauge                                            3B42RT-‐V7  

      Gauge 3B42RTV6 3B42RTV7 3B42 Std.

    mm/m

    onth  

    TMPA    V7RT  vs.  Gauges-‐Daily   TMPA-GPCP for Jan-Feb. 2007

    0  

    1  

    2  

    3  

    4  

    5  

    JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

    R.GAUGE R.V7R R.V6 R.V7R2

    TMPA (Versions) vs. Gauges-Monthly CREST model sensitivity to TMPA versions

    Max diff.

  • Spatial Correlation: TMPA(3B43) vs. Rain-Gauge Analysis

    2007  (mostly  r0.6)    

    195  Rain-‐Gauge  LocaLons  

  • TMPA  

    CMOPRH  

    PERSIANN  

    Min.: 28.47 Max.: 103.2 Mean: 50.9 SD: 12.1  

    RMS Errors (RMSE, mm/month) against Rain-Gauge Analysis for 2007

    Min.: 23.42 Max.: 70.91

    Mean : 38.99 SD: 10.06

     

     Min:  30.731    Max:  111.47    Mean:  57.447    

    Medjerda  Basin  -‐Tunisia  

    General ly   Maximum  RMS   errors   are   found   to  be   in   regions   Close   to  Atlas   mountain   areas.  RMS   error   is   relaIvely  small  for  TMPA  (3B43)  

  • GAUGE

    OCT. 2007JUL. 2007

    JAN. 2007 APR. 2007

    mm/month mm/month

    p(x)

    p(x)

    PERSIANNCMORPHTMPAGAUGE

    PERSIANNCMORPHTMPAGAUGE

    PERSIANNCMORPHTMPAGAUGE

    PERSIANNCMORPHTMPA

    Exceedance Probability of getting extreme Rainfall based on Gauge, TMPA(3B43), CMORPH and PERSIANN  

    Extreme RF rates occur less frequently with a prob. of less than 0.1%, especially

    during extended winter

    Rain fraction analysis: Only less than 1% of rainy pixels greater than 1-2 cm/hr. rainfall

    No. of rainy days in a month with 100-250mm rainfall is < 5days. Flood usually comes if the rain

    rate >10-20mm/hour.  

     

  • ALEXI CREST

    ALEXI CREST

    Ghardimaou (mm/month)

    Sers Deligation

    Ghardimaou (mm/day)

    Sers Deligation (36.07N, 9.02E)

    ALEXI-ET CREST-EACT PET EPOT

    ALEXI-ET CREST-EACT PET EPOT

    Daily and monthly ET based on CREST and ALEXI-ET

  • ALEXI  ET  MODIS  ET  GLDAS  ET  

    Bousalem  (Tunisia)  mm

    /mon

    th

    Sp.Correlation(plotted only r >0.5) CREST vs. ALEXI  

    RMS Errors (0.1-2.3 mm)

    CREST vs. ALEXI  

  • Tunisia-DEM (from Site) Aerial Photography-aertriangulaization SRTM-900 vs. Tunisia-DEM

    Rel. diff: ~10-15%

    Tunisia-‐DEM    

    SRTM

    DEM

    ,

    SRTMDEM-‐TunisiaDEM  

    m3/s Rtunisia-‐DEM  RSRTM  

    Max. Rel. Diff.=30-40% Medjerda-sub domain  

    CREST  simulaLon:  SensiLvity  to  DEMs    

  • MNWDI      

    Linear Water-Summer FAC 90m

    Sidi Salem Lake FAC 90m

    FAC

    Sidi Salem Lake FAC 900m  

    Linear Water-Summer FAC 900m

    FAC versus LANDSAT derived water delineated rivers and lakes Landsat derived Index: MNWDI=(G-MIR)/(G+MIR), WRI=(G+R)/(NIR+MIR), – Green:(0.52-0.60µm, Red:0.63-0.69µm, NIR :0.77-0.9µm, MIR:1.55.-1.75µm)

    MNWDI      FAC

  • Runoff CREST-Calib. Runoff Gauge

    m3 /s  

    El Herri (Tunisia), Monthly

    0

    5

    10

    15

    20

    25

    30

    Robs  Rcalib  

    m3 /s  

    El Herri (Tunisia) Daily

    CREST  CalibraIon  (1km)    versus  Stream-‐Gauge    

    NSCE:0.275, Bias: 7.64%, Cor: 0.53 (daily calibration)  

  • CREST Simulation: 13-17 Oct. 2007, 15Z, Flood over Tunisia

    Rain  

    R  (m3/s)  Water  Ext    

    Media  Report  Water Extent

    Rain  (mm)  

  • 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

    In collaboration with:

    Global&Flood&Detection&System&3&Version&2An experimental system to detect and map in near-real time major river floods based on daily passive microwave satellite observations. The purpose is to identify and measure floods with potential humanitarianconsequences after they occur.

    Home Current floods Global map Search areas Regions Animations Download About

    Area ID

    Area description contains

    Monitoring Group NASA_Tunisia

    Country All Countries

    River All Rivers

    Find areas

    Generate a KML for all results here

    Id Download Area Description Pixels11/11/2013 11/26/2013

    15201 Tunisia Station 10 1

    15200 Tunisia Station 16 1

    15199 Tunisia Station 15 1

    15198 Tunisia Station 14 1

    15196 Tunisia Station 13 1

    15195 Tunisia Station 12 1

    15194 Tunisia Station 11 1

    15193 Tunisia Station 8_9 1

    15192 Tunisia Station 7 2

    15191 Tsunami Station 6 1

    15190 Tunisia Station 5 1

    15189 Tunisia Station 4 1

    15188 Tunisia Station 3 1

    15187 Tunisia Station 2 2

    15186 Tunisia Station 0_1 2

    Source: Europe Media Monitor

    Notes: X = No Data (or data being calculated). The data values of today can change if new data is acquired by the satellite.Table legend: blue shades indicate flood magnitude (mouse over the box to see the value); magnitudes greater than 2 have an orange outline, magnitudes greater than 4 have a red outline. Map legend: the map shows the valuesof today; red = magnitude >= 4, orange = magnitude >= 2; green = magnitude < 2.

    Please note that the information provided on this website has no official status and does not replace local flood warnings. Please refer to the competent local hydrographic authorities for officialinformation on the flood status in each country.

    © 2009-2010 European Commission Joint Research Centre. Reproduction authorized for non-commercial purposes provided the source is acknowledged.

    Map data ©2013 Google

    Search areas http://new.gdacs.org/flooddetection/searchareas.aspx

    1 of 2 11/26/13 5:17 PM

     River Watch Locations, Tunisia Signal M/C = BTwet/Btdry Wet measurement pixel over River Dry pixel not affected by flooding Magnitude: Signal anomaly (SD removed from mean) Courtesy: Global Flood Detection, JRC

    Ø  Uses 36GHz H-polarization band (AMSRE on NASA EOS Aqua) Ø  Footprint size ~ 8x12km (level 2A) Ø Assumption: Wet and Dry land surfaces have same characteristics except

    for water surface extent

    Stream Watch from Space (Space-borne sensor of Runoff)  

  • 0.9700  

    0.9750  

    0.9800  

    0.9850  

    0.9900  

    0.9950  

    1.0000  

    1.0050  

    0.00  

    2.00  

    4.00  

    6.00  

    8.00  

    10.00  

    12.00  

    14.00  

    16.00  

    18.00  

    20.00  

    09/25/07   09/30/07   10/05/07   10/10/07   10/15/07   10/20/07   10/25/07   10/30/07   11/04/07  

    Mag Robs Sig

    17th Oct

    13th Oct

    0.9700  

    0.9750  

    0.9800  

    0.9850  

    0.9900  

    0.9950  

    1.0000  

    1.0050  

    0.00  

    0.50  

    1.00  

    1.50  

    2.00  

    2.50  

    3.00  

    3.50  

    4.00  

    4.50  

    5.00  

    09/25/07   09/30/07   10/05/07   10/10/07   10/15/07   10/20/07   10/25/07   10/30/07  

    Rcrest  Sig  StaIon:  Elherri    

    Rcrest (m3/s)  

    Sig (M/C)

    Robs (m3/s) Mag  

    Sig (M/C)

    Gauge-‐Runoff  vs.  RW  

    CREST  model  -‐Runoff  vs.  RW  

    îî    

    ì  

    StaIon:  Elherri    

    OCT.2007  FLOOD  

  • Flood Peak 21-23 Feb.2012 CREST

    R  Water  ext.  

    ECMWF-‐ERA  DIV.    21-‐22  Feb.2012  

    12 17th October 2007, Flood

    CREST 2.0, TUNISIAStation: Goulette (10.3N,36.27E)

    (mm) (m^3/s)

    RainExcS

    R

    Flood Peak 13-17 Oct.2007 CREST

    Integrated Water Vapor Convergence is a proxy for detecting the onset of floods  

    ECMWF  ERA  IWV-‐DIV,  13-‐17  Oct  2007  

  • Concluding Remarks    Ø  Considerable uncertainties in daily input basics (DEM, FAC) and rainfall

    were noted for North Africa. Overall, TMPA monthly (3B43) shows relatively better performance in comparison with Gauges.

    Ø  The model is able to simulate the episodic flood events fairly well, but

    underestimated as compared to Gauges. Model’s accuracy in simulating streamflow is limited by poor calibration

    with small volume of available Gauge data.    Ø  River Watch based on AMSR-E is found to be a promising tool for flood

    detection, monitoring, and flood model evaluation.

    Ø  ECMWF-ERA interim-vertically integrated water vapor convergence is found to be a useful proxy for detecting the onset of floods.

     

  • Flood model implementation: Uncertainties and Challenges Ø  1. Model uncertainty: modeling strategy: Conceptual + Distributed)

    Nonlinear conversion of RF to Runoff, hydraulic routing over steep orography etc.

    Ø  2. Input Uncertainty: (mainly hydrological model is data driven, rather than Physics/ dynamics) .

    Considerable uncertainties in input basics and forcing data. Satellite data correction requires reliable reference data. Note: Generally calibrations mask the uncertainties,

    so needs high volume data for better parameterization and convergence Ø  3. Parameter Uncertainty:

    Due to imperfect assessment of model parameters Ø  4. Natural and operational uncertainty (i) Real-time forecasting: faces problem with data latency, dealing with different sources of information and data that need to be processed in short time during critical situations (ii) Expert knowledge-based evaluation: how to interpret model outputs, especially when it concerns extreme conditions linked to rare events      

  • Thank you!!!