module 7 - gas measurement (v.01)

Upload: widcak

Post on 05-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    1/32

    PRODUCTIONOPERATIONSCOMPETENCYLEARNINGMODULE

    Module7:

    GasMeasurement

    No. #:

    Category: Operations Production

    Version: 01

    Date: February 2009

    Initial Writing by: Sardjono

    Review by: Kodeco Operations Team

    Copyright to: KODECOENERGYCO.,LTD.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    2/32

    Page 1

    GASMEASUREMENT

    ORIFICEMETERMEASUREMENT

    Tomeasure volume of vapor/gas or liquid commonly use differentialmeasurement device, orifice

    meter.

    Definitions:

    DifferentialTaps:Formeterusingflangetapsthecenteroftheupstreampressuretapisplacedoneinchfromtheupstreamfaceoftheorificeplate.Thecenterofthedownstreampressuretap isplacedone inch from the downstream face of the orifice plate. Formeters using pipe tap the upstream

    pressuretapisplacedtwoandonehalftimestheactualinsidepipediameterfromtheupstreamfaceof

    theorificeplateandthedownstreampressuretapisplacedeighttimestheactualinsidepipediameter

    fromthedownstreamfaceoftheorificeplate.

    DifferentialPressure :Differentialpressure is thedifferencebetween twopressures.Thedifferentialpressureacrossandorificeinametertubeisthedifferencebetweenthepressureattheupstreamtap

    before thegaspasses through theorificeand thepressureat thedownstream tapafter ithaspasses

    throughtheorifice.

    StaticorLinePressure :StaticPressure isusuallymeasuredbyacoiledmetal tubewitha flattenedcrosssection(apressurespring).Thepressureofthegasinthelineisadmittedtoandactsontheinside

    of the tubeand theatmosphericpressureactsupon theoutsideof the tube.Therefore thepressure

    springmeasures thedifferencebetween thepressure in the line and the atmosphericpressure.The

    pressure inthe linemaybegreateror lessthantheatmosphericpressure.Thestaticpressuremaybe

    takenfromeithertheupstreamorthedownstreampressuretap.

    AbsolutePressure :AbsolutePressure is thepressure above the absolute zero,or aboveaperfectvacuum.Theatmosphericpressure isalwaysexpressedasanabsolutepressure. Ifthepressureofthe

    gasinalineisgreaterthantheatmosphericpressure,theatmosphericpressureinpsiaisaddedtothe

    gagepressureinpsigtoobtaintheabsolutepressureofthegasintheline.Ifthegagepressureis40psig

    (aboveatmosphericpressure)and theatmosphericpressure is14.4psia, theabsolutepressurePf, is

    54.4psia.

    Tomeasurepressurebelowatmosphericpressurewithgagescalibratedininchesofmercuryvacuum.

    Insuchcases it isnecessary toconvert thevacuum from inchesofmercury intopoundspersquare

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    3/32

    Page 2

    inchbymultiplyingbytheconversionfactor0.491;forexample,10inchesofmercuryvacuum=4.91

    psig(10x0.491)belowtheabsolutepressureoftheatmosphere.

    PressureBase:Thepressurebaseisthepressureatwhichthecubicfootistheunitofmeasurementaccordingtothecontract.Thebasicorificeflowfactorsinthispublicationwerecalculatedforapressure

    baseof14.73psia.

    AbsoluteTemperature :On theFahrenheit thermometerscale the temperature isexpressed in thedegreesaboveorbelowanarbitraryzero,which is32degreesbelowthefreezingpointofwater.The

    absolute zero is 460 degrees below the zero of the Fahrenheit thermometer scale. The absolute

    temperatureisthetemperatureabovetheabsolutezeroandisobtainedbyadding460degreestothe

    readingof the thermometer. If the readingof theFahrenheit thermometer is60, thecorresponding

    absolute temperature is60 added to460 or520 Fabsolute. If the reading is 20 F, theabsolute

    temperatureis 20 F+460 For440 Fabsolute.

    TemperatureBase :The temperaturebase is the temperatureatwhich thecubic foot is theunitofmeasurementaccordingtothecontact.Theorificeflowfactorsinthispublicationwerecalculatedfora

    temperaturebaseconditionof520 Fabsolute(60 F).

    SpecificGravity:Therealspecificgravityofagasistheweightofacubicfootofgascomparedtotheweightofa cubic footofdryairunder the samepressureand temperature condition. If the specific

    gravityof gasis2.0,itistwiceas heavyasair,orifthespecificgravityofagasis0.6,itissixtenthsas

    heavyasair.

    Acorrectlyinstalledorificecanprovideanoverallaccuracywithinplusorminus2%.

    Theorificemeterconsistsof staticpressureanddifferentialpressure recording gauges connected to

    anorificeflangeororificefitting.

    Theorificemetertube(meterrun)consistsofupstreamanddownstreamsectionofpipe.

    Theorificeplateisheldperpendiculartoflowbyflangesorfitting.Borecircumference,edgesharpness.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    4/32

    Page 3

    ORIFICEFITTING

    (3TypesofOrificeFitting)

    StandardOrificeFlange. Requirethatthelineneedtobeshut down and depressurized inordertoinspectorchangetheorificeplate.

    Single Chamber Orifice Fitting. This fitting also requires that the line be shut down anddepressurizedinordertoinspectorchangethe orificeplate.

    SeniorOrificeFitting.Thisfittingallowstheremovalandinspectionofanorificeplatewhilethelineremainsunderpressure.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    5/32

    Page 4

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    6/32

    Page 5

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    7/32

    Page 6

    ORIFICEPLATE

    Thethicknessoftheorificeplatefor2 inchthrough10 inchnominaldiameterpipeshallbeat

    least0.115in.,for12inpipeshallbeatleast0.175in.

    Theupstreamfaceoftheorificeplateshallbeflatandperpendiculartotheaxisofthemeter

    tube,wheninposition betweentheorificeflangesorintheorificefitting,squareand sharp,

    shallnothaveaburredorfeatherededgeandshallbe maintainedinthisconditionatalltimes.

    Thethicknessoftheorificeplateattheorificeedgeshallnot exceedthesmallerof:

    a.1/50ofthepipediameterD

    b.1/8oftheorificediameterd

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    8/32

    Page 7

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    9/32

    Page 8

    BETARATIO (d/D).

    Theorificetometertubediameterratio, ,beta=d/D,shouldbelimitedasfollows:

    a.Withmetersusingflangetaps,betashallbebetween0.15and0.70

    b.Withmetersusingpipetaps,betashallbebetween0.20and0.67

    Whenusingtheabovebetaratio,thetoleranceoftheorificecoefficient(Fbfactors)isplusor

    minus0.5%forflangetapsandplusorminus0.75%forpipetaps.Betaratiosdownto0.10andupto0.75maybeusedforflangetapsbutthecoefficienttoleranceincreases.Betaratiosdown

    to0.10andupto0.70maybeusedforpipetapsbutthecoefficienttoleranceincreases.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    10/32

    Page 9

    METERTUBE

    TheMeterTubemean thestraightupstreampipeof thesamediameter (of lengthAandA)

    betweentheorificeflangesorfittings,andthesimilardownstreampipe( lengthBbeyondthe

    orifice).

    Thesectionofpipetowhichtheorificeflangesareattachedshallcomplywiththefollowing:

    a. Seamless pipe , the pipewallsmay be honed,machined, or ground. Thewall finish

    shouldsimulatethatofnewsmoothpipe.

    b. Grooves,scoring,pits,raisedridgesresultingfromseams,distortioncausedbywelding

    whichaffecttheinsidediametershallnotbepermitted.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    11/32

    Page 10

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    12/32

    Page 11

    STRAIGHTENINGVANES

    Thepurposeofstraighteningvanes istoeliminateswirlsandcrosscurrentssetupbythepipe

    fittingsandvalvesupstreamofthemetertube.

    Theconstructionofvanesthemaximumtransversedimensionaofanypassagethroughthe

    vanesshallnotexceedthe insidediameter,Dof thepipe.ThecrosssectionalareaAof

    anypassagewithintheassembledvanesshallnotexceed1/16 of the crosssectional area of

    thecontainingpipe.ThelengthLofthevanesshallbeatleast10timesthelargesinsideadimension.Allthe vanespassagesisnotnecessarythesame sizebutshouldbesymmetrical.

    Thevanestubeshouldbesecurelyweldedtogetherateachtangentpoint.Allweldmetalshould

    begroundoffsmoothtopreventdisturbancestotheflowandshouldbesecurelyanchored in

    themetertubebyuseof aflangeringorsetscrews.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    13/32

    Page 12

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    14/32

    Page 13

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    15/32

    Page 14

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    16/32

    Page 15

    GASMEASUREMENT.

    Inthemeasurementofgasbyorificemeter,thechartcontainsrecordsofthedifferentialandthestatic

    pressure.Fromtheserecordsthequantityofgasmeasuredisdeterminedbytheuseoftheformula:

    Qh = C ,inwhich

    Qh = rateofflowatbaseconditionincu.Ft.perhr.

    C = orificeflowconstant.Itistherateofflowincu.Ft.perhr.atbaseconditionwhenthe

    Pressureextension =1.000

    hw = differentialininchesofwater.

    Pf = staticpressureinpsia.

    = pressureextension

    C=FbxFrxYxFpbxFtbxFtfxFgxFpvxFmxFaxF

    Fb : basicorificeflowfactor

    Fr : Reynoldsnumberfactor

    Y : expansionfactor

    Fpb : pressurebasefactor

    Ftf : flowingtemperaturefactor

    Fg : specificgravityfactor

    Fpv : supercompressibilityfactor

    Fm :manometerfactor(formercurytypemetersonly)

    Fa : orificethermalexpansionfactor

    F : gagelocationfactor

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    17/32

    Page 16

    Note :Fororificeconstantfactor,pleaseseetableonpage1through62oforificeconstant

    factor.

    BasicOrificeFlowfactor,Fb :Theorifice factor isbasedupon theconditions :pressurebase,Pb=14.73 psia; temperature base, Tb = 60F (520 F absolute); specific gravity, G = 1.000; flowing

    temperature,Tf=60F.(520Fabsolute);andunderconditionswheretheReynoldsnumberisinfinite

    andexpansionfactorisunity.Thevalueofthisfactordependsonupon:thelocationofdifferentialtaps;

    thediameteroftheorifice,d;andupontheinternaldiameterofthepipe,D.

    TableofFbareshownonpage2through4forflangetaps.

    ReynoldsNumberfactor,Fr:TheReynoldsnumberfactortakes intoaccountthevariationsofthedischarge coefficient of an orifice with Reynolds number. The discharge coefficient of the orifice

    decreasesas theReynoldsnumber increasesuntil theReynoldsnumber infinite,when thedischarge

    coefficientwillhavethe leastpossiblevalueforthatparticular installation.Dischargecoefficientsvary

    considerablywithReynoldsnumber inthemeasurementofviscousliquids;theytendtobecomemore

    constant as the viscosity of the liquid decreases, and as the Reynolds number correspondingly

    increases.Withinthelimitsofcommercialmeasurementofgases,thedischargecoefficientispractically

    constant, varying only slightly with Reynolds number. The variation is sufficiently slight, and the

    viscositiesofcommercialgasesaresufficientlyconstant towarrantarbitrarilyusing theaveragevalue

    forthegasviscosity incomputingReynoldsnumberfactors.Forallpracticalpurposes,this leavesthe

    Reynoldsnumber factorasa functionof theorificeandmeter tubedimensions, the locationof the

    differentialpressuretaps,andtherateofflow afunctionofthepressureextension, .

    When gaseswith other characteristics are to bemeasured, the ReynoldsNumber factor should be

    adjustedasfollows:

    (Fc), Fc=5124 ,whereistheabsolutevicosityinlb/ftsec

    TablesofbvaluesfromwhichtheReynoldsnumberfactorcanbereadilyobtainedareshownonpage

    10through15forflangetaps,andpages32through37forpipetaps.

    ExpansionFactor,Y:Whenagasflowsthroughanorifice,thechangeinvelocityandpresureisaccompaniedbyachangein

    specificweightandafactormustbeappliedtothecoefficienttoallowforthischange.Theexpansion

    factordependsupon the locationof thedifferentialpressure taps, the locationof thestaticpressure

    tap,andtheratiooftheorificediametertothediameterofthemetertube.Itisalsodependentupon

    theratioofdifferentialpressuretostaticpressureanduponofspecificheatsfortheflowinggas.The

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    18/32

    Page 17

    variationofthefactorisslightandtheratioofspecificheatsforcommercialgasesissufficientlyconstant

    towarrantusinganassumedconstantratioofspecificheats.Anassumedratioofspecificheatsofk=1.3wasused incalculating theexpansionfactors inA.G.AReportno.3andthispublication (SingerOrifice

    MeterConstantHandbook).Thispermits tabulationof the factorsaccording to thediameter ratio,,

    andtheratioofdifferentialpressuretostaticpressure,hw/pf.Inthetablespfisindicatedaspforpf

    dependinguponwhetherthestaticpressureisobtainedfromtheupstreamtaporfromthedownstream

    tap.

    Whengasesbeingmeasuredhaveasignificantlydifferentratioofspecificheats thanthevalueof1.3

    assumed inReportNo.31969, thedesirabilityofusingadjustedYvaluescanbedetermined from the

    following:

    AdjustedvalueofY = )

    AdjustedvalueofY =Y )

    Tablesofexpansionfactorsareshownonpages17through20forflangetaps.

    Pressure Base Factor, Fpb : The orifice factorswere calculated to give gas volumes at a basepressure,pb,of14.73psia. Ifthemeasurementatanyotherbasepressure isdesired,thenapressure

    basefactormustbeapplied. Thesefactors,andtheequationrepresentingthefactors,areindicatedon

    page16.(Fpb=14.73basepressure,psia.).

    TemperatureBaseFactor,F tb :Theorifice factorswere calculated togivegasvolumesatabasetemperature,Tb,of60F.(520F.absolute). Ifmeasurementatanyothertemperaturebaseisdesired,

    then a temperature base factormust be applied. These factors, and the equation representing the

    factors,areindicatedonpage16.(Ftb= )

    Flowing Temperature Factor, Ftf : The orifice factorswere calculated, assuming that the gas isflowingthroughthemetertubeatatemperature,Tf,of60F.(520F.absolute).Ifmeasurementistobe

    made at any other flowing temperature, then a flowing temperature factormust be applied. These

    factors,andtheequationrepresentingthefactor,areindicatedonpage21.

    Ftf =

    SpecificGravityfactor,Fg: Theorificefactorswerecalculatedtogivegasvolumesbasedupontheflowinggashavingaspecificgravity,G,of1.000.Forgaseshavingaspecificgravityotherthan1.000a

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    19/32

    Page 18

    specificgravity factormustbeapplied.These factors,and theequation representing the factors,are

    indicatedonpage16.Fg =

    SupercompressibilityFactor,Fpv:Thesupercompressibilityfactoraccountsfordeviationfromidealgaslaw.Inthebasicflowequations,gasvolumesareassumedtovarywithpressureandtemperature

    in accordancewith Boyles andCharles laws ( the ideal gas laws).Actually the volume occupiedby

    individualgasesdeviate,byaslightdegree,fromthevolumeswhichtheidealgas laws indicate.The

    amountofdeviationisafunctionofthecompositionofthegasandvariesprimarilywithstaticpressure

    andtemperature.Theactualdeviationmaybeobtainedbyalaboratorytestconductedonasampleof

    thegas,carefullytakenatlineconditionsofpressureandtemperature.

    Practicalrelationshipshavebeenestablishedbywhichthisdeviationcanbecalculatedandtabulatedfor

    natural gases containing normalmixtures of hydrocarbon components, considering the presence of

    smallquantitiedofcarbondioxideandnitrogenandalsorelatingthedeviationtotheheatingvalueof

    thegas.

    TheA.G.AmanualfortheDeterminationofSupercompressibilityFactorsforNaturalGasshouldbeused

    fordeterminationofthefactorFpv.ThevalueofthesupercompressibilityfactorFpvcanbedetermined

    fromtablesonpages44through58. Illustrativeexamplesare includedwiththesetablestoclarifythe

    methodbywhichthesefactorsareobtained.

    ManometerFactor,Fm : Themanometerfactor isusedwith themercurytypedifferentialgagetocorrecttheslighterror inmeasurementcausedbytheweightoftheunbalancedcolumnofdensegas

    above the mercury. This factor is not applicable where measurement is made with bellowstype

    differentialgagessincethereisnounbalancedcolumnofdensegasinamanometerofthattype.Atable

    ofmanometerfactorsisshownonpage21.

    Orifice Thermal Expansion Fator, F a : The thermal expansion factor is used to adjust for thedeviationoforificediameter,fromthatofitsmanufacture,withextremetemperaturechange.Withina

    temperature rangeof0Fto120F, thisdeviationordinarily isnogreater than tolerancesassigned to

    orifice platemanufacture. Therefore, it is recommended that thisfactor be ignored in natural gas

    measurement. The thermal expansionfactor is usually appied to steam and high temperature liquid

    measurement.A tableof thermalexpansion factors forstainlesssteelandmonelorifices isshownon

    page22.

    GageLocationFactor,F l: Thegagelocationfactoris included inordertoadjustforlocationotherthan45latitudeandsealevel.Atableoflocationfactorsisshownonpage22.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    20/32

    Page 19

    EXAMPLES

    DETERMINATIONOFTHEORIFICEFACTOR,FbThevalueoftheorificefactor,Fb,isexpressedbytheformula:

    Fb=338.17Kod,inwhich

    338.17 = constant formeasurementwhen the pressure base is 14.73 psia, the temperature

    basis60F,theflowingtemperatureis60F,andthespecificgravityis1.000.

    Ko =dischargecoefficientwhentheReynoldsnumberisinfinite.

    d =diameteroforificeininches.

    When theorifice factor is tobe determined for ameter tube of standard internal diameter and an

    orificeofevensizethevalueofthebasicfactorcanbefoundfromtablescontainedonpages2through

    4forflangetaps,andonpage24through26forpipetaps.

    Example:Ifa2.375inchorificeisusedwithflangetapsina9.564inchI.D.line,theorificefactor,Fbis

    foundfromthetableonpage3 tobe1140.1.

    Intheformula,Fb=338.17Kod,thedischargecoefficientKoforanygivenvaluefor,variesslightly

    withthesizeoftheline.Theorificefactorforvarioussizesoforificesandforthelinesizesnotgivenin

    thetablescanbecomputedbytheuseofthetablesonpages5through9forflangetaps,andonpages27through31forpipetaps.

    Thebasic empirical equations fromwhich valuesof Ko are calculated arequite complex. Itwas felt

    desirable todevelopamethodbywhichorifice factorscouldbedeterminedwithout resorting to the

    basicequations.

    Inordertodothis,theformulafortheorificefactorisconvertedto:

    Fb=FFddinwhich

    F =338.17Kofor4.026inchline.

    Fd =factorforconvertingKofor4.026inchlineforacertainvalueof,intoKofor the

    samevalueof,forothersizeoflines.

    d =diameteroftheorificeininches.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    21/32

    Page 20

    Fb=FxFdDinwhich

    Fx =338.17Ko fora4.026inchlineorFx= F

    Fd =factorforconvertingKofor4.026inchlineforacertainvalueof,intoKofor the

    samevalueof,forothersizeoflines.

    D =internaldiameterofthepipeininches.

    Example : Ifa3.800inchorifice isusedwithpipe taps ina line7.981 inches indiameter,=3.800

    7.981=0.47613.Refferingtopage31,

    For=0.477, Fx=54.994

    For=0.476, Fx=54.713

    Byinterpolation,for=0.47613;Fx=54.749

    Seepage29,for =0.476andD=7.981;Fd=0.9999

    ThenFb=54.749x0.9999x7.981=3487.0

    DETERMINATIONOFPRESSUREBASEFACTOR,FpbUsing the table on page 16 for apressurebase of 14.65psia thepressure base factor, Fpb,willbe

    1.0055.Tocomputeapressurebasefactor,Fpb,foranyvalueofpressurebasenotshown,thefollowing

    relationshipcanbeused:

    Fpb= ,where: Pb=therequiredcontractpressurebaseinpsia.

    Ifthecontractpressurebaseis14.65psiathenthepressurebasefactorequal

    Fpb= =1.0055

    DETERMINATIONOFTEMPERATUREBASEFACTOR,FtbTochangetoanybasetemperatureotherthan60 F,thetableonpage16maybeused.Iftherequired

    contracttemperaturebaseis70 F,thenfromthetablethetemperaturebasefactorFtb=1.0192.Ifthe

    contracttemperaturebaseisnotshowninthetablethefactorcanbedeterminedfromtheexpression:

    Ftb= ,where: Tb=theabsolutetemperaturebasespecifiedbythecontract,(460+ F).

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    22/32

    Page 21

    Using70Fasrequiredcontracttemperaturebase,thetemperature basefactor,

    Ftb= ,=1.0192

    DETERMINATIONOFSPECIFICGRAVITYFACTOR,FgThespecificgravityfactor,Fg,canbedeterminedfromthetableonpage16.Ifthespecificgravityisnot

    foundinthistablethenthefactorcanbedeterminedfromtheexpression:

    Fg = ,where:G=specificgravityoftheflowinggas,air=1.000

    Example: Ifthespecificgravityoftheflowinggasis0.450,thenthespecificgravityfactor,

    Fg = =1.4907

    DETERMINATIONOFFLOWINGTEMPERATUREFACTOR,FtfWhen the flowing temperature of the gas beingmeasured is something other than 60 F a flowing

    temperaturefactor,Ftf,mustbeapplied.Foraflowingtemperatureof146 Fafactorof0.9263canbeobtainedfromthetableonpage21.Ifthetemperatureoftheflowingfluidisnotshowninthetablethe

    factorcanbedeterminedfromtheexpression:

    Ftf = ,where: Tf=actualflowingtemperatureindegreesFabsolute,(460+ F).

    Iftheactualflowingtemperatureis146 FthenFtf = =0.9263

    DETERMINATIONOFREYNOLDSNUMBER FACTOR,FrWhentheReynoldsnumberfactor,Fr, isrequiredusingastandardsizepipeandanevensizeorifice,

    thisfactorcanbedeterminedusingthebfactorsonpages10through12forflangetaps,andpage32

    through34forpipetaps.

    Example : If an 8.000inch orifice is used in a 19.000inchmeter tube, and the average extension,

    , is 115, using flange taps, the Reynolds number factor, = =

    1.0001.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    23/32

    Page 22

    DETERMINATIONOFEXPANSION FACTOR,YValuesofexpansionfactor,Y,arecontainedinthetablesonpages17through20forflangetapsandon

    pages38through41forpipetaps.Sincetheexpansionfactordependsuponthepointwherethestatic

    pressuretapsislocated,twotablesofexpansionfactorsforflangetapsarerequired:Y,forupstream

    static pressure and Y, for downstream static pressure. For expansion factor using pipe taps, two

    additionaltablesareprovided:Y,forupstreamstaticpressure,andY,fordownstreamstaticpressure.

    Example:Usingflangetaps,withadifferentialof53inchesandwithastaticpressureof264.4psia(250

    psig)observedatthedownstreamtap;= = =0.20.Ifthevalueof is0.40,thepropervalueof

    theexpansionfactorcanbeobtainedfromthetableonpage19.Y=1.0013

    DETERMINATIONOFSUPERCOMPRESSIBILITY FACTOR,FpvThevalueofthisfactorcanbeevaluatedfromthetableslistedanddescribedonpages44through58.

    It is recommended that theappropriatealternatemethoddeterminingadjusting factorFpandFT,be

    usedforgasmixturesexceedingaspecific gravityof0.75.Forgasmixturesexceedingaspecificgravity

    of1.00,itisrecommendedthatcompressibilitytestsberuntodeterminethesuitabilityofapplyingthe

    standardoranalternatemethod.Thediluentcontentofanygasmixturetowhichthemethodistobe

    appliedshouldbe limitedto15mol.percentcarbondioxideand15mol.percentnitrogen,andactual

    testsarerecommendedfordiluentcontentexceedingthesequantities.

    Thespecificgravity,carbondioxideandnitrogencontents,inconjunctionwiththeflowingpressureand

    temperature,areusedtodeterminetheadjustingpressureandtemperaturenecessaryforrelatingany

    gas to the supercompressibility data of the 0.600 specific gravity, hydrocarbon gas. The adjusted

    pressureisobtainedbymultiplyingthegagepressureoftheflowinggasbythepressureadjustingfactor

    Fp,and theadjusted temperature isobtainedbymultiplying theabsolute temperatureof the flowing

    gasbythetemperatureadjustingfactorFTandsubtracting460fromthisproduct.AdjustingfactorFp

    andFTarecalculatedasfollows:

    WhereKpisthediluentpressureconstant,Kp=Mc0.392Mnand

    WhereKTisthediluenttemperatureconstant,KT=Mc+1.681Mnand

    G=specificgravity;Mc=Mol.Percentcarbondioxide;Mn=Mol.Percentnitrogen.

    Adjustedpressure=PfFppsig;adjustedtemperature=TfFT 460 F

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    24/32

    Page 23

    After the adjusted pressure and the adjusted temperature are determined, the supercompressibility

    factorFpvcanbefoundintableA(page44through58)usingtheadjustedvalues.

    TablesB (page59 through 60) andC (page 61 through62) give the valuesof Fpand FT for specific

    gravities between 0.550 and 1.000 and appropriate ranges of the diluent constants. In the ranges

    coveredbythesetables,conditionsmaybeindicatedwhichwouldneverexist;however,incommercial

    measurementtheuseoftheseareaswillseldomoccur.

    ThefollowingexampleillustratestheAGAspecificgravitymethodofcalculatingthesupercompressibility

    factorFpv.

    Example :Assumeagashavinga specificgravityof0.570, zeropercent carbondioxideand1.1mol.

    Percentnitrogen,atapressureof370psigand65 F.

    Pressureconstant:Kp=00.392(1.1)= 0.431

    Referring to Table B, the pressure adjusting factor, Fp, for G = 0.570 and Kp = 0.431 is found by

    interpolationas:Fp=1.0014.

    Temperatureconstant:KT=0+1.681(1.1)=1.849

    ReferringtoTableC,thetemperaturearenowcalculatedfrom:

    Adjustedpressure=PfFp=370(1.0014)=370.5psig

    Adjustedtemperature=TfFT460=525(1.0376)460=84.7 F

    ReferringtoTableAandusingtheadjustedpressure (370.5psig)andadjustedtemperature (84.7 F),

    thesupercompressibilityfactor,Fpvisfoundbyinterpolationas:Fpv=1.0254

    DETERMINATIONOFTHEMANOMETER FACTOR,FmThis factor isusedwithmercurytypemeterswhere thegas comes in contactwithmercury surfaces.

    Thisfactorcanbeobtainedfromthetableonpage21.

    DETERMINATIONOFTHETHERMALEXPANSION FACTOR,FaThisfactormaybeusedwhenflowingtemperatureareoutsidethelimitsof0 Fto120 Fandcanbe

    obtainedfromthetableonpage22.

    DETERMINATIONOFTHEGAGELOCATION FACTOR,FlThisfactor isspecificallyapplicabletothemanometer.Thisfactor isrepresentedbythetableonpage

    22.

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    25/32

    Page 24

    CALCULATIONOFORIFICECONSTANT,CThevalueoftheorificeconstant,C,correspondstotheexpression:

    C=FbxFrxYxFpbxFtbxFtfxFgxFpvxFmxFaxFl

    In the following examples the conditions ofmeasurement and some of the calculations are

    givenontheleft.Thefactorsrequiredtoobtaintheorificeconstant,withcorrespondingpage

    references,aregivenontheright.

    Example1.

    ConditionAtMeter ValueOffactor

    MeterequippedwithPipeTaps AndReferencePage

    d=diameteroforifice=3.000inches

    D=internaldiameterofmetertube=7.981inches.. Fb=2012.7 24

    Staticpressureobtainedatupstreampipetap

    Averagedifferential=64.5inches

    Averagestaticpressure=539.4psia(525psig)

    =3.0007.981=0.38

    =pressureextension(average)=187.

    Seepage36.For =0.38 andD=7.981;b=0.0214

    Fr=1+(0.0214187)Fr=1.0001 36

    Differentialratio,hwPf=64.5539.4=0.12

    Seepage38.For=0.38andhwPf=0.12.. Y =0.9983 38

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    26/32

    Page 25

    Pb=pressurebase,4oz,above14.4=14.65psia. Fpb=1.0055 16

    Tb=temperaturebase=60 F. Ftb=1.0000 16

    Tf=flowingtemperature=60 F Ftf=1.0000 21

    G=specificgravity=0.64. Fg=1.2500 16

    Itisassumedinthisexamplethatthesupercompressibility factor

    isnotused,bytermsofcontract.

    Manometerfactor. Fm=0.9989 21

    ThenC=2012.7x1.0001x0.9983x1.0055x1.0000x1.0000x1.2500x0.9989=2522.9

    Foranaveragepressureextension, = =186.52,theflowratewouldbe

    Qh=C =2522.9x186.52=470,570cu.Ft.perhr.

    Example2.

    ConditionAtMeter

    ValueOffactor

    MeterequippedwithFlangeTaps AndReferencePage

    d=diameteroforifice=4.200inches

    D=internaldiameterofmetertube=9.800inches

    =4.2009.800=0.42857;interpolatingforFfromthetable,

    page5,F=206.87

    Interpolatingfromthetable,page7,Fd=0.9992

    Fb=FxFdxd=206.87x0.9992x4.200. Fb=3646.3

    Staticpressureobtainedatdownstreamflangetap

    Averagedifferential,hw=55.0inches

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    27/32

    Page 26

    Averagestaticpressure,Pf=1523psia(1510psig)

    =pressureextension(average)=290.

    Seepage14,interpolatingfor =0.43andD=9.800,b=0.0227

    =1+0.0227290 Fr=1.0001 14

    Differentialratio,hwPf=0.04

    Seepage19,interpolatingforhwPf=0.04and=0.43.. Y =1.0002 19

    Pb=pressurebase,10oz,above13.0=13.625psia

    Fpb=14.7313.625 . Fpb=1.0811 16

    Tb=temperaturebase=50 F. Ftb=0.9808 16

    Tf=flowingtemperature=70 F Ftf=0.9905 21

    G=specificgravity=0.68.. Fg=1.2127 16

    Supercompressibility,asdeterminedbyanactualtestfactor

    Onasampleofgas .. Fpv=1.1130

    Manometerfactor... Fm=0.9957 21

    ThenC=3646.3x1.0001x1.0002x1.0811x0.9808x0.9905x1.2127x1.1130x0.9957=5148.3

    Foranaveragepressureextension, = =289.42,theflowratewouldbe

    Qh=C =5148.3x289.42=1,490,000cu.Ft.perhr.

    Example3.

    ConditionAtMeter ValueOffactor

    MeterequippedwithFlangeTaps AndReferencePage

    d=diameteroforifice=3.500inches

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    28/32

    Page 27

    D=internaldiameterofmetertube=6.065inches.. Fb=2654.9 2

    Staticpressureobtainedatdownstreamflangetap

    Averagedifferential=52.5inches

    Averagestaticpressure=562.7psia(548psig)

    =3.5006.065=0.577

    =pressureextension(average)=171.877

    Seepage10.For =0.577 andD=6.065;b=0.0426

    Fr=1+(0.0426171.877) Fr=1.0002 10

    Differentialratio,hwPf=52.5562.7=0.093

    Seepage19.For=0.577andhwPf=0.093. Y =1.0006 19

    Pb=pressurebase,14.7psia.. Fpb=1.0020 16

    Tb=temperaturebase=60 F. Ftb=1.0000 16

    Tf=flowingtemperature=120 F Ftf=0.9469 21

    G=specificgravity=0.74. Fg=1.1625 16

    Supercompressibilityfactor,N2=0.0856Mol.%,CO2=0.6087Mol.%

    Thisfactorwouldbecalculatedinaccordancewiththeformulabelow:

    Kp=Mc0.392Mn=0.60870.392(0.0856)=0.60870.03355=0.57515

    =1.0102

    KT=Mc+1.681Mn=0.6087+1.681x0.0856=0.7526

    =0.8867

    Adjustedpressure=PfFp=562.7x1.0102=568.43psig.

    AdjustedTemperature=TfFT460=580(0.8867)460=514.286460=54.286 F

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    29/32

    Page 28

    ReferringtoTableAandusingtheadjustedpressure(568.43psig)andadjustedtemperature(54.286

    F),thesupercompressibilityfactor byinterpolationas:. Fpv=1.04948 44

    ManometerfactorFmandFl isneglected(notmercurytypemeter)

    Areafactor,Fa(flowingtemperature120 F):.. Fa =1.0010 22

    ThenC=2654.9x1.0002x1.0006x1.0020x1.0000x0.9469x1.1625x1.04948x1.0010=3078.7084

    Foranaveragepressureextension, = =171.877,theflowratewouldbe

    Qh=C =3078.7084x171.877=529,159.1636cu.Ft.perhr.(12,699,819.9280cu.Ft.perday).

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    30/32

    Page 29

    ExampleofGasAnalyzeReport:

    INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYALEMBAGA PENELITAN DAN PENGABDIAN PADAMASYARAKAT

    GAS COMPOSITION ANALYSIS

    SPESIFIC GRAVITY AND CALORIFIC VALUE CALCULATIONS

    Sample : BW

    Date of Sampling : July 28, 2008 at 17.00 Opening Condition :

    Pressure : 548 Psig - Opening Press : 548 psig

    Temperatur : - Opening Temp : 120oF

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    31/32

    Page 30

  • 7/31/2019 Module 7 - Gas Measurement (v.01)

    32/32