modulation i i

Upload: david-siegfried

Post on 04-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Modulation i i

    1/46

    ECNG 6703 - Principles of CommunicationsLinear Modulation - Modulation, Demodulation, Detection &

    Synchronization: Part II

    Sean Rocke

    November 4th, 2013

    ECNG 6703 - Principles of Communications 1 / 46

    http://find/
  • 8/13/2019 Modulation i i

    2/46

    Outline

    1 Mary Baseband Pulse Amplitude Modulation

    2 Mary Quadrature Amplitude Modulation

    3 Maximum Likelihood Detection

    4 Modulation Performance

    5 Conclusion

    ECNG 6703 - Principles of Communications 2 / 46

    http://find/
  • 8/13/2019 Modulation i i

    3/46

    Mary Baseband Pulse Amplitude Modulation

    Mary Baseband Pulse Amplitude Modulation (PAM)

    1Dimensional signal set with basis function 0(t) =p(t), wherep(t)is any unit energy pulse.

    Consider a symbol sequence with a new symbol occurring every

    Tsseconds.The resulting PAM signal is given by,s(t) =

    na(n)p(t nTs)

    nmay be a finite or infinite symbol sequence.

    Minimum Euclidean distance between any two symbols in symbolspace is 2A.

    ECNG 6703 - Principles of Communications 3 / 46

    http://find/
  • 8/13/2019 Modulation i i

    4/46

    Mary Baseband Pulse Amplitude Modulation

    Baseband PAM Constellation Examples

    Question:The average energy of a signal set is given byEavg=

    ipiEi, where pi

    andEiare the probability of occurrence and energy of symbol i,respectively. Show that, assuming equiprobable symbols, the average

    energy of the general PAM constellation is given by

    Eavg=

    M213 A

    2.

    ECNG 6703 - Principles of Communications 4 / 46

    http://goforward/http://find/http://goback/
  • 8/13/2019 Modulation i i

    5/46

    Mary Baseband Pulse Amplitude Modulation

    PAM: ContinuousTime Realization

    ECNG 6703 - Principles of Communications 5 / 46

    http://find/
  • 8/13/2019 Modulation i i

    6/46

    Mary Baseband Pulse Amplitude Modulation

    PAM: ContinuousTime Realization

    Received signal: r(t) =s(t) +w(t),w(t)zeromean white

    Gaussian noise with PSD N02 W/Hz

    MF output:

    x(t) =r(t) p(t) = T2+t

    T1+t r()p( t)d

    x(t) =

    ka(k)T2+t

    T1+t p( kTs)p( t)d + T2+tT1+t w()p( t)dMF output sampled att=lTs:

    x(lTs) =

    ka(k)rp((k l)Ts) +v(lTs) =a(l) +v(lTs)

    1 rp(mTs) =T2

    T1 p(t)p(t mTs)dt= 1, m= 00, m=02 v(lTs)is noise projection in signal space.

    Outcome:In signal space the noise term causes the received

    signal term to be displaced from the constellation location.

    ECNG 6703 - Principles of Communications 6 / 46

    http://find/
  • 8/13/2019 Modulation i i

    7/46

    Mary Baseband Pulse Amplitude Modulation

    Example: Binary PAM, CT Realization

    ECNG 6703 - Principles of Communications 7 / 46

    M B b d P l A li d M d l i

    http://find/http://goback/
  • 8/13/2019 Modulation i i

    8/46

    Mary Baseband Pulse Amplitude Modulation

    PAM: DiscreteTime Realization

    Received signal after ADC:r(nT) =s(nT) +w(nT)

    MF output:

    x(nT) =r(nT) p(nT) = n+ T2Tm=n+

    T1T

    r(mT)p(mT nT)

    x(nT) = n+

    T2T

    m=n+T1T

    (la(l)p(mT lTs)) p(mT nT) +n+ T2T

    m=n+T1T

    w(mT)p(mT nT)x(nT) = 1T

    la(l)rp(lTs nT) +v(nT)

    MF output after sample rate conversion n=kTsT:

    x(kTs) = 1T

    la(l)rp(lTs kTs) +v(kTs) = a(k)T +v(kTs)1 v(kTs) N(0, N02T2 )is noise projection in signal space.

    Outcome:In signal space the noise term causes the received

    signal term to be displaced from the constellationlocation.

    ECNG 6703 - Principles of Communications 8 / 46

    M B b d P l A lit d M d l ti

    http://find/
  • 8/13/2019 Modulation i i

    9/46

    Mary Baseband Pulse Amplitude Modulation

    PAM: DiscreteTime Realization

    ECNG 6703 - Principles of Communications 9 / 46

    M ary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    10/46

    Mary Quadrature Amplitude Modulation

    Mary Baseband Quadrature Amplitude Modulation

    (QAM)

    2Dimensional signal set with basis functions:1 0(t) =

    2p(t)cos(0t)

    2 1(t) =

    2p(t)sin(0t), wherep(t)is any unit energy pulse.

    3 Orthonormal basis functions are 900 apart.

    At symbol rate,

    1

    Ts symbols/s, the general MQAM signal is a pulsetrain given by,

    s(t) =

    2

    na0(n)p(t nTs)cos(0t) a1(n)p(t nTs)sin(0t)s(t) =I(t)

    2cos(0t)

    Q(t)

    2sin(0t)

    1 Inphase: I(t) =

    na0(n)p(t nTs)2 Quadrature:Q(t) =

    na1(n)p(t kTs)

    Symbol energy for thenth symbol is

    T2+nTsT1+nTs

    s2(t)dt=a20(n) +a21(n)

    ECNG 6703 - Principles of Communications 10 / 46

    M ary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    11/46

    Mary Quadrature Amplitude Modulation

    Baseband MQAM Constellation Examples: MPSK

    Points equallyspaced around a circle of radiusEavg.Signals have the same energy, and only differ in phase.

    ECNG 6703 - Principles of Communications 11 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    12/46

    M ary Quadrature Amplitude Modulation

    Baseband MQAM Constellation Examples: Square

    MQAM

    Points on equallyspaced square grid. Only exist for

    M=22n, n=1, 2, . . .Signal point projections on0(t) &1(t)axes:

    A(M 1),A(M 3), . . . ,A, A, . . . , A(M 3),A(M 1).Average signal energies:

    1 M=4 Eavg=2A22 M=16 Eavg=10A23 M=64 Eavg=42A24

    GeneralM Eavg= 2

    3 (M 1)A2

    ECNG 6703 - Principles of Communications 12 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    13/46

    M ary Quadrature Amplitude Modulation

    Baseband MQAM Constellation Examples: CCITT

    More tolerant to phase jitter than equivalent square QAMFallback subset is used when SNR is not high enough to allow

    reliable communications.

    Can be thought of as APSK constellations.

    ECNG 6703 - Principles of Communications 13 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    14/46

    M ary Quadrature Amplitude Modulation

    Baseband MQAM Constellation Examples: minimum

    PeConstellations

    Designed to minimize error probability, Pe.

    Points constrained to lie on a rectangular grid / concentric circles.Constrained optimization used to minimizePethrough

    maximization of normalized Euclidean distances between points.

    Much more complex decision regions than square QAM, so not

    frequently used in practice.

    ECNG 6703 - Principles of Communications 14 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    15/46

    y p

    QAM Modulator: ContinuousTime Realization

    ECNG 6703 - Principles of Communications 15 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    16/46

    QAM Demodulator: ContinuousTime Realization

    ECNG 6703 - Principles of Communications 16 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    17/46

    MQAM: ContinuousTime Realization

    Received signal:

    r(t) =Ir(t)2cos(0t) Qr(t)2sin(0t) +w(t)MF outputs:

    x(t) =T2+t

    T1+t Ir()p( t)d +v0(t)

    y(t) =T2+t

    T1+t Qr()p( t)d +v1(t)v0(t)andv1(t)are MF outputs due to noise.

    MF outputs sampled att=lTs:

    x(lTs) = ka0(k)rp((k l)Ts) +v0(lTs) =a0(l) +v0(lTs)y(lTs) =ka1(k)rp((k l)Ts) +v1(lTs) =a1(l) +v1(lTs)v0(lTs)andv1(lTs)are noise projections in signal space.

    Outcome:In signal space the noise term causes the received

    signal term to be displaced from the constellation location.

    ECNG 6703 - Principles of Communications 17 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    18/46

    Example: QPSK Modulator, CT Realization

    ECNG 6703 - Principles of Communications 18 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    19/46

    Example: QPSK Demodulator, CT Realization

    ECNG 6703 - Principles of Communications 19 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    20/46

    MQAM: DiscreteTime Realization

    Received signal after BPF & ADC:

    r(nT) =Ir(nT)2cos(0n) Qr(nT)2sin(0n) +w(nT)After Direct Digital synthesis mixing:

    r(nT)

    2cos(0n) =Ir(nT) +Ir(nT)cos(20n)

    Qr(nT)sin(20n) +w0(nT)

    r(nT)2sin(0n) =Qr(nT) +Ir(nT)sin(20n) +Qr(nT)cos(20n) +w1(nT)

    MF outputs:

    x(nT) =n+ T2

    Tm=n+

    T1T

    Ir(mT)p(mT nT) +v0(nT))

    y(nT) =n+ T2

    T

    m=n+T1T

    Qr(mT)p(mT nT) +v1(nT))

    ECNG 6703 - Principles of Communications 20 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    21/46

    MQAM: DiscreteTime Realization

    Assuming frequency & phase synchronization, MF outputs

    after sample rate conversionn=kTsT:

    x(kTs) = 1T la0(l)rp(lTs

    kTs) +v0(kTs) = a0(k)

    T +v0(kTs)

    y(kTs) = 1T

    la1(l)rp(lTs kTs) +v1(kTs) = a1(k)T +v1(kTs)

    1 v(kTs) N(0, N02T2 )is noise projection in signal space.

    Outcome:In signal space the noise term causes the received

    signal term to be displaced from the constellation location.

    ECNG 6703 - Principles of Communications 21 / 46

    Mary Quadrature Amplitude Modulation

    http://find/
  • 8/13/2019 Modulation i i

    22/46

    MQAM: DiscreteTime Realization

    ECNG 6703 - Principles of Communications 22 / 46

    Maximum Likelihood Detection

    http://find/
  • 8/13/2019 Modulation i i

    23/46

    Maximum Likelihood (ML) Detection

    Scenario:

    1 Detector is presented with a series of numbers, r, corresponding toLotransmitted symbols (1 of Mconstellation points),a= [a(0)a(1) . . . a(L0 1)]T.

    2 True data sequence,a, unknown (i.e., uncertainty about true datasequence at receiver)

    Detection:1 How do we estimate the transmitted sequence?

    Detection Problem:

    1 Detection Task:estimatingais based on observing samplesr.2 Prior symbol sequence probabilities: P(a)3 Probability transition model: P(r|a)4 Detection objective: Select candidate sequence that maximizes

    P(a|r)a= argmaxa{P(a|r)}= argmaxa{P(r|a)P(a)}

    ECNG 6703 - Principles of Communications 23 / 46

    Maximum Likelihood Detection

    M i Lik lih d (ML) D i

    http://find/
  • 8/13/2019 Modulation i i

    24/46

    Maximum Likelihood (ML) Detection

    a= argmaxa{P(a|r)}is actually theMaximum a Priori (MAP)detection criterion

    Requires knowledge ofP(r

    |a)andP(a).

    In generalP(a)may be unknown

    Designer typically assumes symbol sequences are equally likely.

    Thus,P(a) = 1ML0

    anda=argmaxa{P(r|a)}(ML decision rule)Requires knowledge ofP(r

    |a)only.

    ECNG 6703 - Principles of Communications 24 / 46

    Maximum Likelihood Detection

    M i Lik lih d (ML) D t ti

    http://find/
  • 8/13/2019 Modulation i i

    25/46

    Maximum Likelihood (ML) Detection

    Consider observing received signal,r(t), consisting ofL0 symbols,each of durationTsseconds

    Received signal,r(t) =s(t) +w(t), wherew(t)is a zeromeanwhite Gaussian RP with PSD N02 W/Hz

    Signal sampled everyTseconds to get

    r(nT) =s(nT) +w(nT), n=0,1, . . . , NL0 1Assumptions:

    1 Phase/frequency/symbol timing synchronization2 ExactlyNsamples/symbol interval

    Observation/sample vectors:1 r= [r(0)r(T) . . . r((NL0 1)T)]T2 s= [s(0)s(T) . . . s((NL0 1)T)]T3 w= [w(0)w(T) . . . w((NL0 1)T)]T

    ECNG 6703 - Principles of Communications 25 / 46

    Maximum Likelihood Detection

    M i Lik lih d (ML) D t ti

    http://find/
  • 8/13/2019 Modulation i i

    26/46

    Maximum Likelihood (ML) Detection

    IID noise signal samples,w(nT) N(0, N02T)Hence,P(w) = 1

    (22)L0N

    2

    e 1

    22NL

    0

    1

    n=0 w2(nT)

    Symbol vector,a= [a(0)a(1) . . . a(L0 1)]T, where1 a(k) = [a0(k)a1(k) . . . aK1(k)]

    T

    2

    a(k) S={s0, s1, . . . , sM1}The likelihood function,

    P(r|a) = 1(22)

    L0N

    2

    e 1

    22

    NL01n=0 |r(nT)s(nT;a)|

    2

    The loglikelihood function,(a) =log

    {P(r

    |a)

    }ML estimates1 a= argmaxaSL0 {(a)}

    a= argmaxaSL0 {L01

    k=0 |x(k) a(k)|2}(for symbol sequence)2 a(k) =argmaxaS

    {|x(k)

    a(k)

    |2

    }(for single symbol)

    ECNG 6703 - Principles of Communications 26 / 46

    Modulation Performance

    E l PAM B d idth P f

    http://find/
  • 8/13/2019 Modulation i i

    27/46

    Example: PAM Bandwidth Performance

    Consider independent & equallylikely symbols in pulse train

    s(t) =

    na(n)p(t nTs)PSD given byPs(f) =

    EavgTs

    |P(f)|2, where1 P(f)- continuoustime fourier transform of pulse shape p(t)

    Pusle shape examples:

    1 NRZ - nonreturn to zero2 RZ - Return to zero3 MAN - Manchester4 HS - Half Sine5 SRRC - SquareRoot Raised Cosine

    Pulse shape BW typically of the formBW = BTs =

    BRblog2M, where

    1 B- constant depending on pulse shape & BW definition adopted2 Rs- symbol rate (symbols/s)3 Rb- bit rate (bits/s)4 M- constellation size (symbols)

    ECNG 6703 - Principles of Communications 27 / 46

    Modulation Performance

    Pulse Shape Examples

    http://find/
  • 8/13/2019 Modulation i i

    28/46

    Pulse Shape Examples

    ECNG 6703 - Principles of Communications 28 / 46

    Modulation Performance

    Pulse Shape Examples

    http://find/
  • 8/13/2019 Modulation i i

    29/46

    Pulse Shape Examples

    ECNG 6703 - Principles of Communications 29 / 46

    Modulation Performance

    Pulse Shape Examples

    http://find/
  • 8/13/2019 Modulation i i

    30/46

    Pulse Shape Examples

    Babs:|P(f)|2 =0 forf BabsB%:

    B%0 |P(f)|2df = 100

    0 |P(f)|2df

    -60dB BW:

    |P(f)

    |2

  • 8/13/2019 Modulation i i

    31/46

    Pulse Shape Examples

    ECNG 6703 - Principles of Communications 31 / 46

    Modulation Performance

    Pulse Shape Examples: RC

    http://find/
  • 8/13/2019 Modulation i i

    32/46

    Pulse Shape Examples: RC

    ECNG 6703 - Principles of Communications 32 / 46

    Modulation Performance

    Pulse Shape Examples: SRRC

    http://find/
  • 8/13/2019 Modulation i i

    33/46

    Pulse Shape Examples: SRRC

    ECNG 6703 - Principles of Communications 33 / 46

    Modulation Performance

    Calculating Error Probability

    http://find/
  • 8/13/2019 Modulation i i

    34/46

    Calculating Error Probability

    P(E) =

    M1m=0P(E|a=sm)P(a=sm)

    Typical assumption: equiprobable symbol occurrences

    P(a= sm) = 1M, m=0,1, . . . , M 1

    P(E) = 1MM1m=0P(E|a=sm)

    How to calculateP(E|a=sm)?

    ECNG 6703 - Principles of Communications 34 / 46

    Modulation Performance

    Calculating Error Probability

    http://find/
  • 8/13/2019 Modulation i i

    35/46

    Calculating Error Probability

    P(E|a(k) = +A) =1P( 2ATx(kTs)) =1P( ATv(kTs) AT)P(E|a(k) = +3A) =1P(0x(kTs) 2AT) =1P( ATv(kTs))P(E) = 32 Q

    2Eavg5N0

    Pb(E) = 34 Q4Eb5N0

    ECNG 6703 - Principles of Communications 35 / 46

    Modulation Performance

    Calculating Error Probability

    http://find/
  • 8/13/2019 Modulation i i

    36/46

    Calculating Error Probability

    For Mary PAM:

    P(E) =2 M1M Q

    6Eavg(M21)N0

    Pb(E) =

    2(M1)Mlog2M

    Q6log2MEb(M21)N0

    ECNG 6703 - Principles of Communications 36 / 46

    Modulation Performance

    Calculating Error Probability

    http://find/http://goback/
  • 8/13/2019 Modulation i i

    37/46

    Calculating Error Probability

    ECNG 6703 - Principles of Communications 37 / 46

    http://find/
  • 8/13/2019 Modulation i i

    38/46

    Modulation Performance

    Calculating Error Probability: Union Bound

  • 8/13/2019 Modulation i i

    39/46

    Ca cu at g o obab ty U o ou d

    Useful approximation when decision regions are irregularlyshaped, making the previous approach extremely complicated

    Assumings0 was transmitted,

    P(E|s0) =P([s=s1] [s=s2] . . . [s= sM1]|s0)

    Since probability of union of events is upper bounded by the sumof the probabilities of the events, P(E|s0)M1

    n=1 P(s= sn|s0)Assuming equallylikely symbols,

    P(E) 1M

    M1m=0

    M1n=0 P(s= sn|sm)

    Each pairwise error probability given by,

    P(s= sn|sm) =Q

    dm,n2Tv

    =Q

    d2m,n

    2Eavg

    EavgN0

    ECNG 6703 - Principles of Communications 39 / 46

    Modulation Performance

    Calculating Error Probability

    http://find/
  • 8/13/2019 Modulation i i

    40/46

    g y

    ECNG 6703 - Principles of Communications 40 / 46

    Modulation Performance

    Error Probability Comparison

    http://find/
  • 8/13/2019 Modulation i i

    41/46

    y p

    ECNG 6703 - Principles of Communications 41 / 46

    Modulation Performance

    Error Probability Comparison

    http://find/
  • 8/13/2019 Modulation i i

    42/46

    y p

    ECNG 6703 - Principles of Communications 42 / 46

    Modulation Performance

    Error Probability Comparison

    http://find/
  • 8/13/2019 Modulation i i

    43/46

    y p

    ECNG 6703 - Principles of Communications 43 / 46

    Modulation Performance

    Spectral Efficiency Comparison

    http://find/
  • 8/13/2019 Modulation i i

    44/46

    ECNG 6703 - Principles of Communications 44 / 46

    Conclusion

    Conclusion

    http://find/
  • 8/13/2019 Modulation i i

    45/46

    We covered:

    Modulation & Demodulation Realization

    Modulation & Demodulation Performance Evaluation

    Your goals for next class:

    Continue ramping up your MATLAB & Simulink skills

    Work on your CW exercises

    Work on HW 4for submission next week

    ECNG 6703 - Principles of Communications 45 / 46

    Q & A

    Thank You

    http://find/
  • 8/13/2019 Modulation i i

    46/46

    Questions????

    ECNG 6703 - Principles of Communications 46 / 46

    http://find/