mod&sim sist fis

78
1 Modelamiento de Sistemas Dinamicos Dr. Jorge A. Olórtegui Yume, Ph.D. Escuela Académico Profesional de Ingeniería Mecánica Universidad Privada Cesar Vallejo MODELAMIENTO DE SISTEMAS FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

Upload: margaret-fisher

Post on 28-Apr-2015

40 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Mod&Sim Sist Fis

1

Modelamiento de Sistemas Dinamicos Dr. Jorge A. Olórtegui Yume, Ph.D.

Escuela Académico Profesional de Ingeniería Mecánica

Universidad Privada Cesar Vallejo

MODELAMIENTO DE SISTEMAS FISICOS

Dr. Jorge A. Olortegui Yume, Ph.D.

Page 2: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

For ease in writing linear lumped-parameter differential equations, the D operator (S operator) is introduced

The Laplace transform is used to represent a continuous time domain system, f(t), using a continuous sum of complex exponential functions of the form where s is a complex variable defined as . The complex domain (or s plane as it’s often called) is just a plane with a rectangular x–y coordinate system where is the real part and is the imaginary part

Page 3: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

The cause–effect relationship for many systems can be approximated by a linear ordinary differential equation. For example, consider the following second-order dynamic system with one input, , and one output

The transfer function is the ratio of the output variable over the input variable represented as the ratio of two polynomials in the D or s operator

3 step procedure to convert linear ordinary differ. equation to transfer function

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 4: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

3 step procedure to convert linear ordinary differ. equation to transfer function

GAIN

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 5: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

Simulation is the process of solving a block diagram model on a computer

Block diagram models have 2 fundamental objects: signal wires and blocks

Fundamental set of 3 basic blocks that all block diagram languages possess

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 6: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 7: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

Block diagrams are rarely constructed in a standard form, and it is often necessary to reduce them to more efficient or understandable forms

Page 8: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

Block diagrams are rarely constructed in a standard form, and it is often necessary to reduce them to more efficient or understandable forms

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 9: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

Page 10: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

Page 11: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 12: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

• R is the input to the BFS • E is the control or error variable • Y is the output

Determination of closed-loop transfer function for the BFS

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 13: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

• R is the input to the BFS • E is the control or error variable • Y is the output

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 14: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

Ejemplo

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 15: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

Ejemplo

The block diagram is to be reduced such that two blocks are present: one in the forward loop and one in the feedback loop. The reduced system will be in BFS form

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Page 16: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Most commonly used visual simulations environments are: • MATRIXX/System Build (National Instruments) • MATLAB/Simulink (Mathworks) • LabVIEW (National Instruments) • VisSim (Visual Solutions) • Easy5 (Boeing)

Page 17: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

2 approaches for developing block diagram models from system illustrations:

• Direct Method • Modified Analogy Method

Page 18: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method

• Modeling of simple models • Single-discipline models of multidiscipline models with minimal coupling

STARTING POINT: • Set of linear ODE’s • Transfer function • Illustration of the system itself

Page 19: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method

Transfer Function (or ODE) Conversion to Block Diagram Model

A 6-step process

• Ordinary differential equation (ODE) is a differential equation with all derivatives taken with respect to time

• Time is the independent variable • Set of initial conditions must be specified for each (time) derivative

term

• Transfer function in proper form: order of the numerator polynomial is less than or equal to the order of the denominator polynomial

Page 20: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method

Transfer Function (or ODE) Conversion to Block Diagram Model

Ejemplo Given

Step 1 Create the state variable, x(t), by “sliding” the numerator part of the transfer function into a new block located to the right of the denominator part of the transfer function

order of the transfer function

Page 21: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method

Transfer Function (or ODE) Conversion to Block Diagram Model

Step 2. From step 1, write the state equation (SE) as the differential equation relating the input, r(t), to the state, x(t).

Page 22: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method

Transfer Function (or ODE) Conversion to Block Diagram Model

ny-integrator blocks in series and connect them from left to right beginning with the highest derivative.

In our example

Initial conditions will be added in step 6.

Page 23: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Solve state equation for highest derivative of state variable

Using summing junction, implement previous state equation to block diagram

Page 24: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

STATE EQUATIONS TO BLOCK DIAGRAM

Page 25: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 5. write the output equation (OE) as the differential equation relating the output, y(t), to the state, x(t), and its derivatives

Page 26: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 5. write the output equation (OE) as the differential equation relating the output, y(t), to the state, x(t), and its derivatives

Page 27: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 6. Add the initial conditions, i.e, translate IC’s from output variable, y(t), to state variable, x(t), its derivatives, and input

State: output of an integrator

Page 28: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 6. Add the initial conditions, i.e, translate IC’s from output variable, y(t), to state variable, x(t), its derivatives, and input

State: output of an integrator

Page 29: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 6. Add the initial conditions, i.e, translate IC’s from output variable, y(t), to state variable, x(t), its derivatives, and input

State: output of an integrator

Page 30: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 6. Add the initial conditions, i.e, translate IC’s from output variable, y(t), to state variable, x(t), its derivatives, and input

Page 31: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 6. Add the initial conditions, i.e, translate IC’s from output variable, y(t), to state variable, x(t), its derivatives, and input

Solving for the state and its derivatives

Page 32: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Step 6. Add the initial conditions, i.e, translate IC’s from output variable, y(t), to state variable, x(t), its derivatives, and input

Add the initial conditions to the block diagram

BLOCK DIAGRAM WITH INITIAL CONDITIONS

Page 33: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Transfer Function (or ODE) Conversion to Block Diagram Model

Example Given the transfer function convert it to block diagram model

Solución

Page 34: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Conversion of Mechanical Illustrations to Block Diagram Models

• For single domain systems (Ex: mechanical translation or rotation • Method uses basic force relationships for : mass, spring ,damper

Example

Given the system illustration is used with input r, output y, and all required initial conditions obtain the block diagram model

Page 35: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Conversion of Mechanical Illustrations to Block Diagram Models

Solution Step 1. For each mass in the illustration, write Newton’s 2nd Law equation and solve it for acceleration of the particular mass

Integrate as many times as needed to obtain x(t)

Page 36: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Conversion of Mechanical Illustrations to Block Diagram Models

Solution

Page 37: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Conversion of Mechanical Illustrations to Block Diagram Models

Solution

Page 38: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Conversion of Mechanical Illustrations to Block Diagram Models

Example Given the system illustration obtain the block diagram model

Page 39: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

MODELADO Y SIMULACION DE SISTEMAS FISICOS

Block Diagram Modeling—Direct Method Conversion of Mechanical Illustrations to Block Diagram Models

Example Given the system illustration obtain the block diagram model

Solution

Page 40: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 40

MODELOS DE SISTEMAS BASICOS SISTEMAS MECANICOS

Sistemas Mecánicos: (a) Resorte, (b) Amortiguador, (c) Masa

BLOQUES FUNCIONALES

Page 41: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 41

SISTEMAS MECANICOS

(a) Modelo masa-resorte-amortig., (b) bloque funcional (sistema), (c) DCL

SISTEMAS TRASLACIONALES

MODELOS DE SISTEMAS BASICOS

Page 42: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 42

MODELOS DE SISTEMAS BASICOS SISTEMAS MECANICOS

Masa rotacional en el extremo de un eje (a) situación física (c) modelo

SISTEMAS ROTACIONALES

Page 43: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 43

MODELOS DE SISTEMAS BASICOS SISTEMAS MECANICOS Bloques Funcionales Mecánicos

Page 44: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 44

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS

(a) Resistor (b) Inductor (c) Capacitor

BLOQUES FUNCIONALES

iaCapacitanc :

aInductanci :

Eléctrica aResistenci :

Potencial de Diferencia :

Eléctrica Corriente :

C

L

R

v

i

Page 45: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 45

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS Bloques Funcionales Eléctricos disipada Potencia :

almacenada Energía :

P

E

Page 46: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 46

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS MODELADO

1era LEY DE KIRCHOFF Forma Práctica: Análisis de Nodos

0 salenentranii

0321 iii

321 iii

4321 RR

v

R

v

R

vv AAA

Usando ley de Ohm

R

vi

Page 47: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 47

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS MODELADO

2da LEY DE KIRCHOFF Forma Práctica: Análisis de Mallas

ivv

21 RiiRiv IIII 1era Malla

2da Malla

2430 RiiRiRi IIIIIII

Sist. De 2 ecuaciones con 2 incognitas

04322

221

RRRiRi

vRiRRi

III

IIIIII ii e despeja Se

Page 48: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 48

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS MODELADO

1era LEY DE KIRCHOFF Forma Práctica: Análisis de Nodos

321 iii 2da LEY DE KIRCHOFF Forma Práctica: Análisis de Mallas

III ii e despeja Se

II

III

I

ii

iii

ii

3

2

1

:calcula Se

Page 49: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 49

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS MODELADO SISTEMA RESISTOR-CAPACITOR

i

2da LEY DE KIRCHOFF

CR vvv

iRvR

dt

dvRCv C

R

dt

dvCi C

CC v

dt

dvRCv

Ecuación lineal de 1er orden

INPUT

“v” OUPUT

“vC”

Page 50: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 50

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS MODELADO SISTEMA RESISTOR-INDUCTOR-CAPACITOR

2da LEY DE KIRCHOFF

RLR vvvv

iRvR dt

dvRCv C

R dt

dvCi C

CCC v

dt

vdLC

dt

dvRCv

2

2

Ecuación lineal de 2do orden

INPUT

“v” OUPUT

“vC”

i

2

2

dt

vdLC

dt

dvC

dt

dL

dt

diLv CC

L

Page 51: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 51

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS SIMILITUD ENTRE SISTEMAS MECANICOS Y ELECTRICOS

Fuerza (F) Velocidad (v) Const. de Amortiguamiento (c) Amortiguador Resorte Masa

Corriente (i) Diferencia de Potencial (v)

Conductancia (1/R) Resistor Inductor Capacitor

Page 52: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 52

MODELOS DE SISTEMAS BASICOS SISTEMAS ELECTRICOS SIMILITUD ENTRE SISTEMAS MECANICOS Y ELECTRICOS

Amortiguador Resistor

22 1

1

vRR

vP

vRR

vi

2cvP

cvF

Page 53: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 53

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SIMILITUD ENTRE SISTEMAS ELECTRICOS Y FLUIDICOS

Bloque funcional de un sistema

fluidico

SIST. ELECTRICOS SIST. FLUIDICOS

Corriente Electrica (i) Flujo Volumetrico (q)

Diferencia de Potencial (v)

Diferencia de Presion (p=p1-p2)

Resistencia Electrica (R) Resistencia Hidraulica o Neumatica (R)

Sistemas fluidicos

Hidraulicos

Neumaticos

Fluido no compresible

Fluido compresible

INPUT

“q” OUPUT

“p”

Page 54: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 54

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SISTEMAS HIDRAULICOS

R

pp

R

pq 21

Resistencia Hidraulica

Oposición al flujo de líquido debido a válvulas o cambios de sección

Page 55: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 55

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SISTEMAS HIDRAULICOS

dt

dVqqq 21

Capacitancia Hidraulica Energía potencial almacenada por un líquido

g

AC

AhV

dt

dhA

dt

Ahdq

dt

dp

g

A

dt

g

pd

Aq H

H

ghpppp H 21

dt

dpCq H qdt

CpH

1

Page 56: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 56

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SISTEMAS HIDRAULICOS Inercia Hidraulica

Equivalente de inductancia en un sistema eléctrico

A

LI

LAm

dt

dqIp

pAAppApApFFFneta 212121

dt

dvmmapAFneta

Avq

dt

dqLpA

dt

A

qd

LApA

Page 57: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 57

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SISTEMAS NEUMATICOS

21 ppR

pm

Resistencia Neumatica

dt

dmm

Oposición al flujo de líquido debido a válvulas o cambios de sección

Definida en función al flujo másico

Page 58: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 58

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SISTEMAS NEUMATICOS

Capacitancia Neumatica dt

Vdmm

21recipienteen masa de cambio deRazon

dt

dV

dt

dVmm

21

dt

dV

dt

dp

dp

dVmm

21

Para gas ideal:

dt

dp

RTdt

dRT

V

mp

1

dt

dp

RT

V

dt

dp

dp

dVmm 21

dt

dp

RT

V

dp

dVmm 21

dt

dpCCmm 2121

dtmmCC

pp

21

21

21

1dp

dVC 1

RT

VC 2

Capacitancia debida a cambio de Volumen de

recipiente

Capacitancia debida a compresibilidad del gas

Page 59: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 59

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS SISTEMAS NEUMATICOS

Inercia Neumatica

dt

mvdApp 21

Inercia neumatica

LAm Lq

A

qLAmv

Avq

dt

qdLApp

21 qm

dt

md

LApp

21

A

LI

dt

md

Ip

Debida a la caída de presión necesaria para acelerar un bloque de gas

Page 60: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 60

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS

Page 61: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 61

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS

Eléctrico sist. "" Analogos

Neumatico Sist.""

Hidraulico Sist.""

i

m

q

Recordar que:

Eléctrico sist. "" Analogos

Neumatico Sist.""

Hidraulico Sist.""

v

p

p

Eléctrico Sist.

R""

C""

Analogos

E""Disipan Neumatico & Hidraulico Sist.""

E""Almacenan Neumatico & Hidraulico Sist.""

R

C

Page 62: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 62

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS MODELADO SISTEMA HIDRAULICO (EJEMPLO)

Sistema: Recipiente con líquido Entrando/saliendo • Capacitor: Líquido en recipiente • Resistencia: Válvula • Inercia: Desprec. “q´s” lentos

Capacitor:

Resistor: Velocidad salida del fluido igual a velocidad salida por válvula

dt

dpCqqq H 21

221 Rqppp ghpppp H 21R

p

R

ghq H

2

dt

dpC

R

pqq HH

1

g

AC

h

R

g

dt

dhAq

1

Ecuac. Dif. Lineal de 1er Orden

Page 63: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 63

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS MODELADO SISTEMA NEUMATICO (EJEMPLO)

Sistema: Fuelle • Capacitor: El fuelle mismo • Resistencia: Reducción de diámetro entrada • Inercia: Despreciable “dm/dt” lento

Capacitor:

Resistor: Resistencia de constricción

dt

dpCCmm 2

2121

mRqqq 21

dt

dpCCm 2

21

R

qqm 21

dt

dpCC

R

pp 221

21

22

211 pdt

dpCCRp

Ecuac. Dif. Lineal de 1er Orden

“Variación de p2 respecto a p1”

Page 64: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D. 64

MODELOS DE SISTEMAS BASICOS SISTEMAS FLUIDICOS MODELADO SISTEMA NEUMATICO (EJEMPLO-cont.)

Sistema: Fuelle 2

2211 p

dt

dpCCRp

Fuelle forma de resorte

kxFAp2 A

kxp 2

xA

k

dt

dx

A

kCCRp

211

Ecuac. Dif. Lineal de 1er Orden

“Cambio en extensión/compresión (x) del fuelle con p1”

Capacitancia neumática debida a cambio de volumen

k

A

dp

k

ApAd

dp

Axd

dp

dVC

2

2

2

22

1

Capacitancia neumática debida a compresibilidad

del aire

RT

Ax

RT

VC 2

Page 65: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor

Page 66: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor

Page 67: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor

The primary loads on the motor are inertia and friction

The DC servo motor drives a mechanical load which consists of dynamic and static components

Page 68: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Example

A permanent magnet (PM) DC gear motor is used to lift a mass, as shown. Develop a mathematical relationship between the voltage applied to the motor and the rotational displacement of the motor shaft which is also a measure of the linear displacement of the mass. Assume that the string is inextensible, and also neglect the friction between the string and the pulleys

Page 69: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Load on the motor considering the gear ratio, G

Page 70: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Relationship between the angular displacement of the motor shaft and gear output shaft

Page 71: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Combining

Page 72: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Combining

Page 73: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Combining

both torque constant and voltage constant can be assumed to be equal to k

Page 74: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Example

Simulate the response of the system described in Figure for a constant input voltage of 10 V DC using MATLAB. Use the data given for a Shayang gear motor model number IG420049-SY3754

Page 75: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

neglecting rotor inertia and damping losses in the motor

applying the Laplace transform

at zero initial condition

at zero initial condition

Page 76: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Page 77: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution

Page 78: Mod&Sim Sist Fis

MOD. SIST. FISICOS Dr. Jorge A. Olortegui Yume, Ph.D.

PROCESO DE DESARROLLO DEL SISTEMA MECATRONICO DE UN MOTOR DC DE POSICIONAMIENTO

DIRECT CURRENT MOTORS

Mathematical Model of a DC Motor Solution