modelling of the carbon cycle in the geoland project … · modelling of the carbon cycle in the...

46
Integrated GMES Project on Landcover and Vegetation geoland MODELLING OF THE CARBON CYCLE IN THE GEOLAND PROJECT Jean-Christophe Calvet – Météo-France – ECMWF Seminar – 06.09.2005 Co-funded by the European Commission within the GMES initiative in FP-6

Upload: ngomien

Post on 15-Dec-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Integrated GMES Project on Landcover and Vegetation

geoland

MODELLING OF THE CARBON CYCLE IN THE GEOLAND PROJECT

Jean-Christophe Calvet – Météo-France – ECMWF Seminar – 06.09.2005Co-funded by the European Commission within the GMES initiative in FP-6

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Contents

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

• Overview of geoland/ONC

• Models used in geoland/ONCISBA-A-gs / C-TESSEL (Météo-France / ECMWF)ORCHIDEE (LSCE)

• Representation of land surface patchiness

• VALIDATION: LAIFaPARwater flux comparison with operational modelsground based flux measurementscrop production

• Data Assimilation

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Overview

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

The geoland project

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Overview

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

The Observatory of Natural Carbon Fluxes of geoland

Partners

• Research partners: KNMI, LSCE, ALTERRA

• Service providers: ECMWF, Météo-France

• Associated user: LSCE

Objectives• Kyoto protocol

• Transpose the tools used for weather forecast to the monitoring of vegetation and of natural carbon fluxes:

Near real-time monitoring at the global scale (ECMWF) based on modelling,in situ data,assimilation of satellite data.

• Scientific validation of the system

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Overview

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

The products

• The terrestrial biospheric CO2 flux at the soil-vegetation-atmosphere interface• The water flux at the soil-vegetation-atmosphere interface• The vegetation biomass• The leaf area index• The root-zone soil moisture• The carbon storage.

SPATIAL RESOLUTION: ½ degree

The anthropogenic fluxes are not accounted for here: to be treated in atmospheric analysis projects (e.g. GEMS).The fluxes produced by geoland will be used by GEMS.

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Overview

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Root-zonesoil moisture

Vegetation Biomass(above-ground green

and wood)

Leaf Area IndexCarbon storage

(soil)

CO2 Flux Water Flux

STRONG PHYSICAL LINKS BETWEEN THE PRODUCTS:All these quantities interact and need to be fullyconsistent, i.e. produced at the same time by a physically-based model

The products

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Overview

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Usefulness of remote sensing data

• Land use maps (e.g. ECOCLIMAP)

• Analysis of the above-ground biomass by assimilation

• Model error Bias reduction• Atmospheric forcing Precipitation + Radiation• Model parameters Assimilation • Scalingissues Tiling

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Overview

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Maturity

• Assimilation of Ta & qa to analyse soil moisture already operational at ECMWF and Météo-France

• Assimilation of NDVI to analyse vegetation biomass is well advanced at LSCE

• ELDAS FP5 project

• New versions of operational land surface models are able to simulate the CO2fluxes

•Modelling: ISBA-A-gs at Météo-France, ORCHIDEE at LSCE, both involved in the PILPS-Carbon international intercomparison exercise

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

RRnn

RRGG

RRATAT

Rn=RGL-RCL=H+LE+G

RRTT

GG

LELEHHRRnn

RRGG

RRATAT

Rn=RGL-RCL=H+LE+G

RRTT

GG

LELEHH

GG

LELEHH

GGGG

LELEHH LELEHH

Land-surface modelling: the energy budget

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

PrecipitationPrecipitation

RunoffRunoff

DrainageDrainage

∆W = P – R – Dr - E

Soil moisture(W)

InterceptionInterception

TranspirationTranspirationPrecipitationPrecipitation

RunoffRunoff

DrainageDrainage

∆W = P – R – Dr - E

Soil moisture(W)

InterceptionInterception

TranspirationTranspirationPrecipitationPrecipitation

RunoffRunoff

DrainageDrainage

∆W = P – R – Dr - E

Soil moisture(W)

InterceptionInterception

TranspirationTranspiration

Land-surface modelling: the water budget

Transpiration

Photosynthesis

Respiration

Photosynthesis/Transpiration

The stomatal aperture controls the ratio:

according to the environment conditionsLight, temperature, air humiditysoil moisture atmospheric [CO2]

qa Ta

qs Ts

H20

Ci

Cs

Ca CO2

PAR

Glucides

qsat

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Land-surface modelling: the role of stomatal control

stomatestomate

,

10µ

m

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

ISBA-A-gs (Calvet et al. 1998-2004, Gibelin et al. 2005)A new version of the operational SVAT of Météo-France

C-TESSEL (Voogt et al. 2005)A new version of the operational SVAT of ECMWF, based on ISBA-A-gs

ORCHIDEE (Krinner et al. 2005)A research dynamic vegetation model with a high level of complexity

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

ISBA-A-gs / C-TESSEL

Met. forcing LAI

LE, H, Rn, W, Ts…

Active Biomass

CO2 Flux[CO2]atm

ISBA / TESSEL

Met. forcing LAI

LE, H, Rn, W, Ts…

ISBA-A-gs / C-TESSEL are CO2-responsive land surface models, new versions of operational schemes used in atmospheric models

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

ORCHIDEE is a research dynamic global vegetation model

STOMATESTOMATE SECHIBASECHIBAEnergy budget

Hydrology+

Photosynthesis

Vegetation and soilCarbon cycle

LMDZLMDZGeneral C irculation Model

LAI,roughness,albedo

Soil profiles ofw ater and tem perature,GPP

rainfall,tem perature, solar radiation, CO2 concentration...

Sensible and latent heat fluxes,albedoroughness, surface tem perature, CO2 flux...

DynamicVegetation Model

NPP, biom ass,litterfall ...

Vegetation typesbiom ass

ORCH IDEE

Biosphere

LPJLPJ

Atm osphere

Prescribed or calculated by

∆ t=1 h o ur∆ t=1 d a y

∆ t=1 ye arPrescribed or calculated by

Meteorological variables

Vegetation distribution

Prognostic phenology and allocation

STOMATESTOMATE SECHIBASECHIBAEnergy budget

Hydrology+

Photosynthesis

Vegetation and soilCarbon cycle

LMDZLMDZGeneral C irculation Model

LAI,roughness,albedo

Soil profiles ofw ater and tem perature,GPP

rainfall,tem perature, solar radiation, CO2 concentration...

Sensible and latent heat fluxes,albedoroughness, surface tem perature, CO2 flux...

DynamicVegetation Model

NPP, biom ass,litterfall ...

Vegetation typesbiom ass

ORCH IDEE

Biosphere

LPJLPJ

Atm osphere

Prescribed or calculated by

∆ t=1 h o ur∆ t=1 d a y

∆ t=1 ye arPrescribed or calculated by

Meteorological variables

Vegetation distribution

Prognostic phenology and allocation

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Photosynthesis

• SVAT approach (time step = minutes)

• Biochemical approach (explicit simulation of photosynthesis): Jacobs et al. 1996

• Big-leaf but radiative transfer within the canopy for photosynthesis and stomatal conductance

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Photosynthesis

Other global models using a biochemical approach:

SiB2 (Sellers et al. 1996)IBIS (Foley et al. 1996)BATS (Dickinson et al. 1998)MOSES (Cox et al. 1998-2001)BETHY (Knorr 2000)ORCHIDEE (Krinner et al. 2005)

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Soil water stress

• Key parameters of the photosynthesis model are affected by drought: the well-watered value are adjusted by using the Soil Wetness Index (SWI)• 2 possible strategies: drought-avoiding / drought-tolerant:

Mesophyll conductance gmMax leaf-to-air saturation deficit Dmax

Mesophyll conductance gmMax Ci coupling factor f0

DROUGHT-TOLERANT DROUGHT-AVOIDING

Crops, Grasslands

Trees, Shrubs

f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 0 SWI = 0f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 1 (unstressed)SWI = 1 (unstressed)

SWI = θC

ln(g

m(m

m s

-1))

SWI = 0

ln(Dmax (g kg-1))

SWI = 1 (unstressed)

ln(Dmax (g kg-1))

SWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θC

DROUGHT-TOLERANT DROUGHT-AVOIDING

Crops, Grasslands

Trees, Shrubs

f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 0 SWI = 0f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 1 (unstressed)SWI = 1 (unstressed)

SWI = θC

ln(g

m(m

m s

-1))

SWI = 0

ln(Dmax (g kg-1))

SWI = 1 (unstressed)

ln(Dmax (g kg-1))

SWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θC

DROUGHT-TOLERANT DROUGHT-AVOIDING

Crops, Grasslands

Trees, Shrubs

f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 0 SWI = 0f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 1 (unstressed)SWI = 1 (unstressed)

f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 0 SWI = 0f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 1 (unstressed)

SWI = 0f0

ln(g

m(m

m s

-1))

SWI = θC

SWI = 1 (unstressed)SWI = 1 (unstressed)

SWI = θC

ln(g

m(m

m s

-1))

SWI = 0

ln(Dmax (g kg-1))

SWI = 1 (unstressed)

ln(Dmax (g kg-1))

SWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θC

SWI = θC

ln(g

m(m

m s

-1))

SWI = 0

ln(Dmax (g kg-1))

SWI = 1 (unstressed)

ln(Dmax (g kg-1))

SWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θC ln(g

m(m

m s

-1))

SWI = 0

ln(Dmax (g kg-1))

SWI = 1 (unstressed)

ln(Dmax (g kg-1))

SWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θC

ln(Dmax (g kg-1))

SWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θCSWI = 0

ln(g

m(m

m s

-1)) SWI = 1 (unstressed)

SWI = θC

Calvet 2000, Calvet et al. 2004

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Respiration

• Ecosystem respiration is calculated by using a simple Q10 function depending on soil temperature this is enough to calculate a net CO2flux but NPP cannot be simulated

• Autotrophic respiration is calculated for the above-ground biomass only• Heterotrophic respiration is not explicitly calculated in the present version

Gifford 2003

ACTIVE BIOMASS

ABOVE-GROUND BIOMASS

Net assimilation of C

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Allocation

• The active biomass (= leaves) is a reservoir fed by the net CO2 uptake by leaves (i.e. An = Photosynthesis – Leaf respiration). It looses carbon following an exponential law whose e-folding time depends on the daily maximum An (parameter = max leaf span time).

• The above-ground biomass (non-woody) is derived from the active biomass:

Growing period: a logarithmic nitrogen dilution equation is used

Senescence: respiration losses and exponential decline

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Phenology

• LAI is linearly related to the active biomass (parameters = leaf nitrogen concentration and 2 plasticity parameters)• A minimum value of LAI is prescribed (e.g. 0.3 for annual vegetation), permitting a self restart of the vegetation when photosynthesis becomes active• Possibility to cut the vegetation or to maintain LAI at its minimum value, for agricultural applications

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Phenology

Merits of this methodology

• Simple• Leaf onset and offset dates don‘t have to be prescribed (permitting to simulate the interannual variability and climate change effects)• No use of empirical degree-day sums (all the factors are accounted for, not only temperature)

Other models using this approach

AVIM (Ji 1995, Dan et al. 2005)STEP (Mougin et al. 1995)

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Parameters at a global scale for the ECOCLIMAP vegetation types

0.3

1

1

0.3

0.3

0.3

0.3

LAImin(m2m-2)

230

365

365

150

150

150

150

τm(d)

0.15

0.15

0

0.15

0.25

0.15

0.25

gc(mm s-1)

2

2.5

2.8

1.3

1.3

1.9

1.3

NL (%)

2.53

2.53

-0.24

-4.33

6.73

-4.33

9.84

f(m2kg-1)

4.83

4.83

4.85

7.68

5.56

7.68

3.79

e(m2kg-1

%-1)

0.3

0.3

0.3

0.3

0.3

0.3

0.3

θc

3

2

2

6

1

9

1

gm(mm s-1)

Deciduous forests

Evergreen forests

Coniferous forests

C4 grasslands

C3 grasslands

C4 crops

C3 Crops

Vegetation type

Cuticular conductance

Mesophyll conductance

Critical SWI

Leaf N

N Plasticity parameters

Max leafspan time

Photosynthesis Allocation/Phenology

Gibelin et al. 2005

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ISBA-A-gs / C-TESSEL

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Example of Carbon flux simulations by ISBA-A-gs for Southwestern France (Toulouse)

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

ORCHIDEE

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

• Litter (above/below ground, structural/metabolic, natural/agricultural)• 3 soil organic matter pools (active, slow, passive)

Carbon storage

• Fire occurrence described in LPJFires

• Grass/tree competition and competition between tree species described in LPJ

Competition

• Degree-day model for leaf onset, accounting for soil moisture, tuned at a global scale by using satellite data• Senescence: soil moisture and temperature are accounted for

Phenology

• Allocation to leaves/stems/roots function of resources: water, light, nutrients (Tilman 1998)• 8 pools of living biomass

Allocation

• CENTURY-like modelHeterotrophic respiration

• Maintenance respiration: linear response to temperature (Ruimy et al.), and possible adaptation to climate change• Growth respiration: a fixed part of net assimilation

Autotrophic respiration

• Biochemical approach (Farquhar, Ball & Berry)Photosynthesis

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Representation of land surface patchiness

Modelling of the carbon cycle in the geoland project

S. Lafont

geoland

06.09.2005

Usefulness of tiling

Herbaceous classes of ECOCLIMAP:Mainly 4 ‘metaclasses’

type 1 type 2

Usefulness of tiling

Herbaceous classes of ECOCLIMAP:Mainly 4 ‘metaclasses’

type 1 type 2

½ × ½ °

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Representation of land surface patchiness

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

S. Lafont

Usefulness of tiling

Herbaceous classes of ECOCLIMAP:Fraction of type 2 can be high

8 tiles:

•bare soil (and rock/snow)•Deciduous forests•Coniferous forests•Evergreen forests•grass C3•grass C4•crops C3•crops C4

Usefulness of tiling

Herbaceous classes of ECOCLIMAP:Fraction of type 2 can be high

8 tiles:

•bare soil (and rock/snow)•Deciduous forests•Coniferous forests•Evergreen forests•grass C3•grass C4•crops C3•crops C4

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: LAI

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Yearly maximum of LAI

ISBA-A-gs

MODIS

ISLSCP-2

ECOCLIMAP

Gibelin et al. 2005

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: LAI

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Zonal mean of the maximum of LAIsimulated by ISBA-A-gs (mean 1986-1995), ISLSCP-II data set (mean 1986-1995), MODIS data set (mean 2001-2004), ECOCLIMAP data set (climatology).

Gibelin et al. 2005

MODIS

ISLSCP-2Model

ECOCLIMAP

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: LAI

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Correlation of the monthly LAI anomaly (difference between monthly LAI and the mean annual cycle) between ISBA-A-gs and the ISLSCP-II data (1986-1995).

Gibelin et al. 2005

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: LAI

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Monthly time series of LAI from ISBA-A-gs and ISLSCP-II over Southern Africa [-35°N:-15°N, 10°E:40°E]

Gibelin et al. 2005

ISBA-A-gs

ISLSCP-2

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: LAI

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Sahel Southern Africa

Relative anomaly of LAI (%) versus precipitation anomaly (mm d-1) (blue boxes: ISLSCP2 ; red dots: ISBA-A-gs ; green bars: precipitation)

Gibelin et al. 2005

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: LAI

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Start of the growing season (mean 1986-1995) simulated by ISBA-A-gs and observed in ISLSCP-II

ISBA-A-gs ISLSCP-2

Gibelin et al. 2005

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: FaPAR

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

N. Viovy

2003 FaPAR anomaly:ORCHIDEE (2003-1972/2002)MODIS (2003-2000/2002) – Reinstein

ORCHIDEE MODIS

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: water flux comparison with operational models

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

A.-L. Gibelin

Comparison of the evapo-transpiration flux (JJA) of ISBA and ISBA-A-gs

ISBA standard ISBA standard − ISBA-A-gs

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: ground-based flux measurements

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

N. Viovy

Validation of the ORCHIDEE fluxes by using more than 30 FLUXNET sites: Average diurnal cycle

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: ground-based flux measurements

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

N. Viovy

Validation of the ORCHIDEE fluxes by using more than 30 FLUXNET sites: Average seasonal cycle

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: crop production

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

N. Viovy

1900-2000 crop production simulated by the STICS module of ORCHIDEE over Europe: the management effect

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: crop production

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Wheat yield (t ha-1) estimated by ISBA-A-gs for the area of Toulouse, by assuming a Harvest Index of 0.5

Spring wheat

Winter wheat

5.3 6.2 4.2 4.6

6.2 6.2 4.8 5.8

- 5.9 4.6 5.7 Observation for Midi-Pyrénées

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

VALIDATION: crop production

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Maize yield (t ha-1) estimated by ISBA-A-gs for the area of Toulouse, by assuming a Harvest Index of 0.5

Rainfed maize

Irrigated maize

6.1 8.1 4.4 4.7

8.9 8.4 8.5 8.3

- 8.6 6.0 8.1 Observation for Midi-Pyrénées

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Data Assimilation

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

x is the control variables vectory is the observation vectorH is the observation operator

LAI

t

Bm

t

The analysis is obtained by the minimization of the cost function J(x)

B is the background error covariance matrix

R is the observation error covariance matrix

= ½ (x – xb) T B-1 (x – xb) + ½(y – H(x))T R-1 (y – H(x))

J(x) = J b(x) + J o(x)Formalism: Minimization of a cost function

Observations

Analysis

Litteral solution for linear model :xa = xb + K(y-Hxb)

with K = BHT(HBHT+R)-1

x is the control variables vectory is the observation vectorH is the observation operator

LAI

t

Bm

t

The analysis is obtained by the minimization of the cost function J(x)

B is the background error covariance matrix

R is the observation error covariance matrix

= ½ (x – xb) T B-1 (x – xb) + ½(y – H(x))T R-1 (y – H(x))

J(x) = J b(x) + J o(x)Formalism: Minimization of a cost function

Observations

Analysis

Litteral solution for linear model :xa = xb + K(y-Hxb)

with K = BHT(HBHT+R)-1

The variational approach

L. Jarlan

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Data Assimilation

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

A simplified algorithm (adapted from Balsamo and Bouyssel)

L. Jarlan

Binit B’init=Binit + δBinit

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜⎜

=T

LAIδΒ init

δ (1)

...H

From a perturbation of the initial total biomass δ Binit applied on each model land grid-point.

δLAI (i) = LAIG (i) - LAIG’ (i)Guess G

Guess G’

LAI

tt=0 1 2 … p

δBinit

LAIδΒ init

δ (p)

Numerical linearization of the observation operator H

Binit B’init=Binit + δBinit

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜⎜

=T

LAIδΒ init

δ (1)

...H

From a perturbation of the initial total biomass δ Binit applied on each model land grid-point.

δLAI (i) = LAIG (i) - LAIG’ (i)Guess G

Guess G’

LAI

t

LAI

tt=0 1 2 … pt=0 1 2 … p

δBinit

LAIδΒ init

δ (p)

Numerical linearization of the observation operator H

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Data Assimilation

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

A simplified algorithm (adapted from Balsamo and Bouyssel)

L. Jarlan

Two main hypotheses have to be validated

••TLTL (linearity)

••2D2D (horizontal decoupling)

H(Binit)

H(Binit)for

δBinit≈ σBBinit

Minimization of the cost function with a look up table …… + comparison to a sequential stochastic approach

(Ensemble Kalman Filter, not shown)

Verified at our spatial scale ?

Two main hypotheses have to be validated

••TLTL (linearity)

••2D2D (horizontal decoupling)

H(Binit)

H(Binit)for

δBinit≈ σBBinit

for δBinit≈ σB

Binit

Minimization of the cost function with a look up table …… + comparison to a sequential stochastic approach

(Ensemble Kalman Filter, not shown)

Verified at our spatial scale ?

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Data Assimilation

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Application to the SMOSREX fallow

L. Jarlan

Analysis of Biomass thanksto in situ LAI observations(10 days analysis period)

Perfect LAI correction

Overall good Biomass analysis (particularly in 2002)

Low impact on w2 (different LAI differentroot water extraction andtranspiration rates)

Analysis of Biomass thanksto in situ LAI observations(10 days analysis period)

Perfect LAI correction

Overall good Biomass analysis (particularly in 2002)

Low impact on w2 (different LAI differentroot water extraction andtranspiration rates)

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Data Assimilation

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

Application to the SMOSREX fallow

L. Jarlan

Analysis of Biomass andw2 thanks to in situ LAI observations (10 daysanalysis period)

Perfect LAI correction

Overall good Biomassanalysis

High scattering of analysed w2 …

… but w2 better in agreement with observations during high water stress period

Analysis of Biomass andw2 thanks to in situ LAI observations (10 daysanalysis period)

Perfect LAI correction

Overall good Biomassanalysis

High scattering of analysed w2 …

… but w2 better in agreement with observations during high water stress period

Observatory Natural Carbon Fluxes Jean-Christophe Calvet

Météo-France

Prospects

Modelling of the carbon cycle in the geoland project

geoland

06.09.2005

• ISBA-A-gs / C-TESSEL (Météo-France / ECMWF)RootsWoodSoil carbonNPP

• Representation of land surface patchinessRegional applications (5-10 km) at Météo-France and LSCE

• VALIDATION:Test of C-TESSEL global simulations of LAITest of ISBA-A-gs and C-TESSEL using the FLUXNET data

• Data AssimilationISBA-A-gs: Use of a 2D assimilation system over South-Western France using

SPOT/VGT data (1999-2005)Global assimilation of LAI products in ORCHIDEE and C-TESSEL

Integrated GMES Project on Landcover and Vegetation

Co-funded by the European Commission within the GMES initiative in FP-6

geoland

Thank you for your attention!

www.gmes-geoland.info

Contact: geoland coordinators:

Medias-France

Infoterra GmbH

Jean-Christophe Calvet

+33 561079341

[email protected]