modeling the progressive damage in 2d and 3d woven fabric

2
© 2010, University of Delaware, all rights reserved BACKGROUND PROGRESSIVE DAMAGE MODEL FOR UD S-2 GLASS/SC15 RESEARCH GOAL AND SCOPE Advantages of 3D Fabric Composites: High Fracture Toughness (G IC , G IIC , G IIIC ) Damage Tolerance Easy Handling & Infusion Prediction of the Properties of 2D/3D Woven Composites Micro- or Meso-scale Levels through Theoretical and Finite Element (FE) Analysis Non-linear Responses and Softening Behaviors after Damages Have Been Hardly Studied SINGLE ELEMENT ANALYSIS OF UD S-2 GLASS/SC15 SUMMARY OF UD S-2 GLASS/SC15 MODEL SUMMARY OF SC15 INTERSTITIAL RESIN MODEL MODELING THE PROGRESSIVE DAMAGE IN 2D AND 3D WOVEN FABRIC COMPOSITES S.-G. Kang, B.A. Gama, and J.W. Gillespie, Jr. University of Delaware . Center for Composite Materials Research Goal: Modeling Damage of 3D S-2Glass/SC15 OWF (orthogonal weave fabric) Composite using UCM (unit cell model) Approach Research Scope: Single Element (SE) Analysis (SEA) of Uni- Directional (UD) S-2 Glass/SC15 Composites & Pure SC15 Resin Mechanical Response Simulation of 3D S-2 Glass/SC15 OWF Composite using the Meso- Mechanical UCM Homogenization of 3D S-2Glass/SC15 OWF Composite Properties 3D Orthogonal Weave Fabric (Bogdanovich, J Mater Sci (2006)) Progressive Composite Damage Model MAT162 in LS-Dyna Stress-Based Failure Criteria (Hashin , J Appl Mech, 1980), and Matzenmiller’s Damage Model (Compos Struc, 1995) Damage Modes for UD Composite Fiber Tension/Shear Fiber Compression Fiber Crush Transverse Compression Perpendicular Matrix Crack Parallel Matrix (Delamination) 0 200 400 600 800 1000 1200 1400 1600 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.01 0.20 0.50 1 2 4 10 100 (Table 3) AM1 Axial Tensile Strain, x , mm/mm. Axial Tensile Stress, x , MPa. -900 -800 -700 -600 -500 -400 -300 -200 -100 0 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.20 0.50 1 2 4 10 100 (Table 3) AM1 Axial Compressive Strain, x , mm/mm. Axial Compressive Stress, x , MPa. Tension Compression 0 10 20 30 40 50 60 70 80 90 100 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.01 0.10 (Table 3) 0.20 0.50 1 2 4 10 AM4 XY Shear Strain, xy , mm/mm. XY Shear Stress, xy , MPa. 0 5 10 15 20 25 30 35 40 45 50 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.01 0.10 (Table 3) 0.20 0.50 1 2 4 10 AM4 YZ Shear Strain, yz , mm/mm. YZ Shear Stress, yz , MPa. In-Plane Shear Inter-Laminar Shear -1000 -750 -500 -250 0 250 500 750 1000 1250 1500 -0.20 -0.15 -0.10 -0.05 0 0.05 0.10 0.15 0.20 X-Direction Y-Direction Z-Direction Shear (XY plane) Strain, mm/mm. Stress MPa. -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 Tension Compression Shear Strain, mm/mm. Stress, MPa. Elastic-plastic Model Progressive Damage Model SINGLE ELEMENT ANALYSIS OF UD S-2 GLASS/SC15

Upload: others

Post on 19-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling the Progressive Damage in 2D and 3D Woven Fabric

© 2010, University of Delaware, all rights reserved

BACKGROUND PROGRESSIVE DAMAGE MODEL FOR

UD S-2 GLASS/SC15 RESEARCH GOAL AND SCOPE

Advantages of 3D Fabric Composites:

High Fracture Toughness (GIC, GIIC, GIIIC)

Damage Tolerance

Easy Handling & Infusion

Prediction of the Properties of 2D/3D Woven

Composites

Micro- or Meso-scale Levels through Theoretical

and Finite Element (FE) Analysis

Non-linear Responses and Softening Behaviors

after Damages Have Been Hardly Studied

SINGLE ELEMENT ANALYSIS

OF UD S-2 GLASS/SC15

SUMMARY OF UD S-2

GLASS/SC15 MODEL

SUMMARY OF SC15

INTERSTITIAL RESIN MODEL

MODELING THE PROGRESSIVE DAMAGE IN

2D AND 3D WOVEN FABRIC COMPOSITESS.-G. Kang, B.A. Gama, and J.W. Gillespie, Jr.

University of Delaware . Center for Composite Materials

Research Goal:

Modeling Damage of 3D S-2Glass/SC15 OWF

(orthogonal weave fabric) Composite using

UCM (unit cell model) Approach

Research Scope:

Single Element (SE) Analysis (SEA) of Uni-

Directional (UD) S-2 Glass/SC15 Composites &

Pure SC15 Resin

Mechanical Response Simulation of 3D S-2

Glass/SC15 OWF Composite using the Meso-

Mechanical UCM

Homogenization of 3D S-2Glass/SC15 OWF

Composite Properties3D Orthogonal Weave Fabric

(Bogdanovich, J Mater Sci (2006))

Progressive Composite Damage Model MAT162

in LS-Dyna

Stress-Based Failure Criteria (Hashin , J Appl

Mech, 1980), and Matzenmiller’s Damage Model

(Compos Struc, 1995)

Damage Modes for UD Composite

Fiber Tension/Shear

Fiber Compression

Fiber Crush

Transverse Compression

Perpendicular Matrix Crack

Parallel Matrix (Delamination)

0

200

400

600

800

1000

1200

1400

1600

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.010.200.5012410100 (Table 3)AM1

Axial Tensile Strain, x, mm/mm.

Axia

l T

en

sile

Str

ess,

x,

MP

a.

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

-0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

0.010.200.5012410100 (Table 3)AM1

Axial Compressive Strain, x, mm/mm.

Axia

l C

om

pre

ssiv

e S

tre

ss,

x,

MP

a.

Tension

Compression

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.010.10 (Table 3)0.200.5012410AM4

XY Shear Strain, xy

, mm/mm.

XY

Sh

ea

r S

tre

ss, x

y,

MP

a.

0

5

10

15

20

25

30

35

40

45

50

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.010.10 (Table 3)0.200.5012410AM4

YZ Shear Strain, yz

, mm/mm.

YZ

Sh

ea

r S

tre

ss, y

z,

MP

a.

In-Plane

Shear

Inter-Laminar

Shear -1000

-750

-500

-250

0

250

500

750

1000

1250

1500

-0.20 -0.15 -0.10 -0.05 0 0.05 0.10 0.15 0.20

X-DirectionY-DirectionZ-DirectionShear (XY plane)

Strain, mm/mm.

Str

ess M

Pa

.

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

TensionCompressionShear

Strain, mm/mm.

Str

ess,

MP

a.

Elastic-plastic ModelProgressive Damage Model

SINGLE ELEMENT ANALYSIS

OF UD S-2 GLASS/SC15

Page 2: Modeling the Progressive Damage in 2D and 3D Woven Fabric

© 2010, University of Delaware, all rights reserved

UNIT CELL MODEL (UCM) OF 3D OWF

COMPOSITE

X-COMPRESSIONX-TENSION

MODELING PROGRESSIVE DAMAGE IN

2D AND 3D WOVEN FABRIC COMPOSITES

(Continued)

XY-IN-PLANE SHEAR APPLICATIONXZ-INTER-LAMINAR SHEAR ACKNOWLEDGEMENTS

- Research was sponsored by the Army

Research Laboratory and was

accomplished under Cooperative

Agreement Number W911NF-07-2-0026.

- The authors gratefully acknowledge the

prior funding provided by U.S. Army

Research Office, STTR Phase II contract

DAAD 19-02-C-0044 “3-D Orthogonal

Woven Composites in Armor Systems.”

Partial funding was also provided by the

Composite Materials Technology (CMT,

DAAD19-01-2-0005).

Interstitial Resin Pockets

Z Fibers

Warp (X) and Fill (Y) Tows

: UD S-2 Glass/SC15

2×2 UCM

- Composite Density: 1720.30 kg/m3

- Aerial Density: 9.271 kg/m2 (1.9 psf)

0

50

100

150

200

250

300

350

0 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

102030100AM1

UCM

Axial Compressive Strain, x, mm/mm.

Axia

l C

om

pre

ssiv

e S

tre

ss,

x,

MP

a.

0

10

20

30

40

50

60

0 0.01 0.02 0.03 0.04 0.05

0.5125AM4

UCM

In-plane Shear Strain, xy

, mm/mm.

In-p

lan

e S

he

ar

Str

ess, x

y,

MP

a.

0

5

10

15

20

25

30

35

0 0.005 0.010 0.015 0.020 0.025

UCM (ZX

)

-------------0.5125AM4UCM (

YZ)

Inter-laminar Shear Strain, mm/mm.

Inte

r-la

min

ar

Sh

ea

r S

tre

ss,

MP

a.

(a) Before Loading (b) Pmax/2 (c) Pmax (d) After Failure

0

100

200

300

400

500

600

0 0.005 0.010 0.015 0.020 0.025 0.030

102030100AM1

UCM

(d) After Failure

(c) Pmax

(b) Pmax

/2

(a) Before Loading

Axial Tensile Strain, x, mm/mm.

Axia

l T

en

sile

Str

ess,

x,

MP

a.

Damage Propagation

Homogenized Properties from Tension/Compression

299.8XCS MPa

0.15SFFC 2 30m

30.2XE GPa

517.5XTS MPa

12 0.0961

1 30m

Stress-Strain Curve and Deformed Shape Stress-Strain Curve and Deformed Shape

Homogenized PropertiesHomogenized Properties

2.67XYG GPa2.20YZG GPa 2.08ZXG GPa

45.6XYS MPa22.8ZXS MPa28.0YZS MPa

4 2m 4 2m

Prediction of Effective

Property For Different 3D OWF Composites