modeling of biofilaments: elasticity and fluctuations combined d. kessler, y. kats, s. rappaport...

42
Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar- Ilan) S. Panyukov (Lebedev) Mathematics of Materials and Macromolecules IMA, Minneapolis, October 3, 2004

Upload: sharon-richardson

Post on 16-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Modeling of Biofilaments: Elasticity and Fluctuations Combined

D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan)

S. Panyukov (Lebedev)

Mathematics of Materials and MacromoleculesIMA, Minneapolis, October 3, 2004

Page 2: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Stretching of helical springs

Overview

1. Motivation

2. Ribbons: geometry, elasticity, fluctuations

3. Computer simulations: Frenet algorithm

Stretching of filaments

Twisting dsDNA

CyclizationDistribution functions

Page 3: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Polymers – objects with atomic thickness (1 A) and arbitrary length

Atomic resolution

Quantum mechanics

RIS models

Coarse grained description

Statistical mechanics

Random walks

Page 4: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

What sort of objects are described by this model?

N

n

nnn l

P1

2

21exp)(

RRR

This is the probability distribution of a random walk!

Beads connected by entropic springs

The standard model of polymers:

nn-1

nRspring constant= kT/l2

Page 5: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Random walks are not lines!

s

R(s)

0

L

1|/| dsdR

Continuous curve:

1d f

Inextensible line

Random walk:

2d f

arbitrarydsd |/| R

Extensible fractal

Page 6: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

What about nano-filaments: thickness 10-100 A?

1 Intrinsic shape 2 Resistance to change of shape (bending, twist)

Biofilaments: DNA, actin and tubulin fibers, flagella, viruses …

Synthetic filaments: organic microtubules, carbon nanotubes, …

But: thermal fluctuations are still important!

Theory of elasticity of fluctuating filaments with arbitrary intrinsic shape

New elements:

Page 7: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Bending elasticity of inextensible lines

Modeling dsDNA at large deformations

Bustamante et al., Science 265, 1599 (1994)

The first step:

Page 8: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

dsDNA under stretching and torque

1. Cannot twist lines 2. Lines have no chirality

degree of over/unwinding

Strick et al., Science 271, 1835 (1996)

Page 9: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Geometry of space curves:

s

s’t

tn

n

b

b

,nb

ds

d,bt

n ds

dn

t ds

d

Frenet eqs: generate curve by rotation of the triad bnt ,,

- curvature, - torsion This is not a physical twist !

Page 10: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Helix

p

2r22

22

2

r

p

Straight line

0

0

/1

r

Circle

r

Page 11: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Ribbons (stripes)

t2(s)

t1(s)

Physical triad: t1, t2, t3

n(s)

b(s))(s

Page 12: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

3

2

1

12

13

23

3

2

1

0

0

0

t

t

t

t

t

t

ds

d

Generalized Frenet eqs. – rotation of physical axes

Ribbon - principal axes ; tangent 21, tt 3t

cos1 sin2 ds

d 3

Configuration of the ribbon – uniquely defined by )(sior by )(),(),( sss

rate of twist

Page 13: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Mechanics: Linear Elasticity

Deviations from stress-free state: kkk 0

Elastic Energy k

L

kkel dsbU0

2

2

1

kb - rigidity with respect to bending and twist

Small local but arbitrarily large global deviations from equilibrium configuration!

k0Equilibrium shape defined by spontaneous curvatures

Page 14: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Stretching a helical spring

pitch > radius, bending rigidity > twist rigidity4 turns,

minimize ))(,,()(2

100

2

0sFRsdsbE ii

L

ii

Page 15: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

pitch < radius, bending rigidity < twist rigidity

Phys. Rev. Lett. 90, 024301 (2003)

The energy landscape E(R) has multiple minima with depths and locations that vary with F

Page 16: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Stretching helical ribbons of cholesterol:

Smith, Zastavker and Benedek, Phys. Rev. Lett. 87, 278101 (2001)

Mechanical noise-induced transitions?

Page 17: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Stretching transitions and hysteresis in chromatin ?

Y. Cui and C. Bustamente, PNAS 97, 127 (2000).

Page 18: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Correlation functions )'()( ss ji tt for ribbons with arbitrary spontaneous

shape and rigidity!

0)( si )'()'()( 1 ssass ijiji

i - random Gaussian variables

L

iiiel ads

kTU

0

2

2Fluctuation energy:

Thermal Fluctuations

ia - persistence lengths

Phys. Rev. Lett. 85, 2404 (2000) Phys. Rev. E 62, 7135 (2000)

Page 19: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

01

31

21

1 aaa

Weak fluctuations of a helix:

skijk

sjiij

sjiji

RR esesetst

)sin()cos()0()( 0

0

002

0

00

20

00 1

e1

t3(s )t2(s )

t1(s )

s

e3 ( )

e2 ( )

Persistence lengths > helical period

,001 ,002 003 20

200 frequency

Page 20: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Ribbon with spontaneous twist – model for dsDNA?

20 10 Lk

,10Lk0 10,100,1 321 aaa

)(1000);(350);(50/ cbakTFlf Europhys. Lett. 57, 512 (2002)

Page 21: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Buckling under torsion: stability diagram

Page 22: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Frenet-Based Computer Simulations

)'()'()( ssb

kTss ij

iji

1. Generate random numbers i

2. Integrate Frenet eqs. to generate configurations

3. Excluded volume, attractive interactions – Boltzmann weights

Direct simulation of fluctuating lines!

Phys. Rev. E 65 020801 (2002)

Page 23: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Rectilinear rod 12321 bbb

L=2

Page 24: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Does twist affect conformation?

is independent of twist !2R

Exact result: if there is no spontaneous curvature -

WLC model ok ?

Page 25: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

321 105.7,75.0 aa

Rectilinear ribbon

Twist affects conformation!

J. Chem. Phys. 118, 897 (2003)

L=2

Page 26: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

What about objects with spontaneous curvature?

Consider small deformations of a planar ring

y

x

2/0

rss /)(0

00

2r

Page 27: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Twist and bending fluctuations – always decouple, but:

for curved filaments – twist is not simply rotation of cross-section!

Example: small fluctuations of a planar ring

andTwist rigidity - coupling between (rotation) (conformation)

0ta zero-energy modesrds

d

Out-of-plane fluctuations diverge!

(vanishes for )r

222

rds

da

ds

d

rds

dadsE tb

Page 28: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Euler Angles

)0()( s )0()( s

)0()( s )0()( s

s/r

Page 29: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Open Ring

1

4321 10,1 bbb

510

310

110

10

Pro

babi

lity

T=

Fluctuation-induced shape transitions – at fixed local curvature!

elastic moduli

Page 30: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35Y

Axi

s T

itle

X Axis Title

k0=0

k0=1

k0=2

k0=3

k0=4

Length L=1.5

Effect of spontaneous curvature on cyclization

Pro

babi

lity

of

R

End-to-end distance Rcyclization

Page 31: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

0.1 0.15 0.2 0.25 0.3

1E-3

0.01

log

(P(r

|r<

R)

log(R)

r3

Fundamental Exponent

Page 32: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

2 4 6 8 10 12 14 160.00000

0.00001

0.00002

0.00003

0.00004

k0=0

Yamakawa

P0

L

Page 33: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

1 22 3 44

1E-4

1E-3

0.01

k0=0

k0=1

k0=2

k0=3

k0=4

log

(P0)

L

Effect of constant spontaneous curvature

Page 34: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

0 1 2 3 4 5 6 7 8

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Y A

xis

Titl

e

X Axis Title

sequence 1,2<3

k0=0

Effect of random spontaneous crvature

Page 35: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

0 1 2 3 4 5 6 7 8

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007Y

Axi

s T

itle

X Axis Title

sequence 1 sequence 2 k

0=1.5

Page 36: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

1 2 3 4

0.005

0.010

0.015

0.020

0.025

P0

L

b3=0.01 b3=100 b3=1

40

Effect of twist rigidity on cyclization of curved filaments

Page 37: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Stretching fluctuating filaments

Unbiased sampling of configurations – works only for small f

f

How are fluctuations affected by the force?

Page 38: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Large-scale fluctuations are suppressed by stretching

Page 39: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

MS approximation breaks down for short filaments with L<a (neglect orientational effects)!

L=6.28

Page 40: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

All orientations are equally probable

Flexible chain Rigid filament

No Wall

Page 41: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

f=1 f=10f=2 f=3

y

xEnd fluctuations of stretched filaments:simulation results

Experiments: short dsDNA segments (ca 1000 bp)actin filaments

Page 42: Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials

Take home message:

Bending rigidity is not enough!

New generation of models of biofilaments that account for :

• intrinsic shape (spontaneous curvature and twist)

• twist rigidity