meteorologisk institutt met.no toulouse 5.9.-9.9.2005 radar data quality – the challenge of beam...

14
Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no Günther Haase, SMHI th thanks to Joan Bech, meteocat

Upload: hugo-harrell

Post on 27-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.noToulouse 5.9.-9.9.2005

Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes

Uta Gjertsen, met.noGünther Haase, SMHI

With thanks to Joan Bech, meteocat

Page 2: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Why radar data quality?

Composite of radar-derived precipitation

Do we trust the spatial distribution?

What about blockages, overshooting, anaprop etc?

Page 3: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Suggested NORDRAD quality projects:a) Beam Propagation Projectb) VPR Background: Issues concerning the

propagation of the radar beam are identified as being of great importance for the quality of radar reflectivity and precipitation products.

Objective: The objective of the proposed project is to coordinate the work carried out in the NORDRAD member countries to define common algorithms for addressing these challenges.

Deliverables: site maps for each NORDRAD radar in polar coordinates to correct beam blockage

implementation of the correction fields in the NORDRAD2 system to improve the accuracy of precipitation estimates in blocked regions

Page 4: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

BPM output and 1-year accumulation for radar Bømlo

Height of lower beam edge 0.5 degree elevation

accumulated precipitation for 2004

Page 5: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Correction field for precipitation

2

2222

*2*

arcsin

a

aay

ayayBB

(BB=beam blockage, y=distance center beam - topography, a=radius radar beam

cross section)

b

BBbcorr

1

1

1

(bcorr=correction factor for precipitation, b=Marshall-Palmer b

coefficient)

50% 1.54

60% 1.77

70% 2.12

Page 6: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Radar Bømlo

* =

=-

Uncorrected precipitation Correction filed Corrected precipitation

Corrected precipitation Uncorrected precipitation Corrected areas

Page 7: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Blockage correction at station 46610, 75 km from radar, daily accumulations 2004

uncorrectedRMSf = 3.39

corrected RMSf = 2.65

2

12

1

ln1

exp

n

i i

i

G

R

NRMSf

Page 8: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

40-100 km from radar

14 stations

Page 9: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

100-160 km from radar

24 stations

Page 10: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

RMSf and mean bias for different distances and blockages

40-100

100-160

160-240

0% 1.73 3.45 14.58

1 - 50%

2.732.19

11.759.7

37.1630.7

50-70%

8.274.57

40.722.75

167.597.19

40-100 100-160

160-240

0% -2.33 -5.19 -11.17

1 - 50%

-4.17-3.22

-9.33-8.5

-15-14.17

50-70%

-9.3-6.5

-14.96-12.29

-21.44-19.05

Black=uncorrectedBlue= corrected

RMSfkm km

bb bb

bias(10*log10(radar/gauge)

Page 11: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

What about anaprop?

Radar Bømlo, Western NorwayRadar Hemse, Gotland, Sweden

Page 12: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Radar Bømlo and radiosonde Sola 1415

Radiosonde data from closest station is used to identify anaprop cases, the cases are studies to assess the influence of propagation changes on the degree of blockage

The importance of using temporally/spatially variable correction fields

Time series of IDmax and IDmin for station Sola

Page 13: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

anaprop case 9.7.2005, 00:00 UTC

Precipitation intensity product

Normal atmosphere Radiosonde data

Page 14: Meteorologisk Institutt met.no Toulouse 5.9.-9.9.2005 Radar Data Quality – the Challenge of Beam Blockages and Propagation Changes Uta Gjertsen, met.no

Meteorologisk Institutt met.no

Summary and conlusions

Correction fields produced by BPM reduce the gauge/radar bias at radar Bømlo

The improvement is dependent on the distance from the radar and the degree of blockage

The BPM seems to give realistic output for normal conditions and cases with anaprop

The effect of anaprop on the degree of blockage will be investigated to see whether spatially/temporally variable correction fields are necessary

The use of radiosondes and NWP data (HIRLAM) as input to the BPM will be investigated

It is intended to integrate the blockage correction into the operational NORDRAD system