metallic magnetic calorimeter

21
Status of Development Metallic Magnetic Calorimete A. Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität Heidelberg H. Eguchi, Y.H. Yong, G.M. Seidel Department of Physics Brown University

Upload: krysta

Post on 15-Jan-2016

42 views

Category:

Documents


1 download

DESCRIPTION

Metallic Magnetic Calorimeter. H. Au:Er. Calorimeter Signal. satisfying agreement of theory and experiment signal size can be predicted !. 122 keV in Au :Er 300ppm. Resolution of optimized detector:. Gradiometer With Two Sensors: Two-Pixel Detector. 50 μ m. commercial SQUID chip - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Metallic Magnetic Calorimeter

Status of Development of

Metallic Magnetic Calorimeters

A. Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss

Kirchhoff-Institut für PhysikUniversität Heidelberg

H. Eguchi, Y.H. Yong, G.M. SeidelDepartment of Physics

Brown University

Page 2: Metallic Magnetic Calorimeter

2

Metallic Magnetic Calorimeter

Au:Er

H

Page 3: Metallic Magnetic Calorimeter

3

Calorimeter Signal

122 keV in Au:Er 300ppm

• satisfying agreement of theory and experiment

• signal size can be predicted!

Resolution of optimized detector:

Page 4: Metallic Magnetic Calorimeter

4

Gradiometer With Two Sensors: Two-Pixel Detector

performance of pixels almost identical

commercial SQUID chipM.B. Ketchen, IBM 1992

50 μm

Page 5: Metallic Magnetic Calorimeter

5

two Au:Er 300 ppm sensors

Gold absorber: 160 x 160 x 5 m3

Heat capacity corresponds to a Bi absorber of 250 x 250 x 28 m3

MMC Detector 2003

160 μm x 160 μm x 5 μm

clean spectrum

Page 6: Metallic Magnetic Calorimeter

6

Resolution: Kα-Line 55Mn

energy resolution 3.4 eV

Raw Data

natural linewidth

Page 7: Metallic Magnetic Calorimeter

7

Kβ-Line 55Mn

A. Fleischmann, M. Linck, T. Daniyarov, H. Rotzinger, C. Enss, G.M. Seidel, Nucl. Instr. and Meth. A 520, 27 (2004).

Page 8: Metallic Magnetic Calorimeter

8

Baseline Noise

two Au:Er 300 ppm sensorsGold absorber: 160 x 160 x 5 m3

one Au:Er 300 ppm sensorsGold absorber: 160 x 160 x 5 m3

Spectrum: 3.5 eV because of Temperature stabilization problems

Page 9: Metallic Magnetic Calorimeter

9

E/E at 6 keV

ionisation detectors

2 eV

6 eV

3.4 eV

Page 10: Metallic Magnetic Calorimeter

10

Predicted Resolution for Different Detectors

Resolution:

Energy range: 1 ... 6 keV

250 x 250 x 5 m3, Bi absorber

Au:Er 900 ppm sensor, 35 m, h = 14 m

T = 50 mK, 0 = 10-6 s, 1 = 10-4 s

EFWHM = 0.7 eV

Energy range: 0.25 ... 0.6 keV

120 x 120 x 0.5 m3, Bi absorber

Au:Er 900 ppm sensor, 20 m, h = 8 m

T = 50 mK, 0 = 10-6 s, 1 = 10-4 s

EFWHM = 0.1 eV

Page 11: Metallic Magnetic Calorimeter

11

MMC Detectors for X Ray Astronomy

increase detector speed

not a problem

micro-fabrication of MMCs

schemes for arrays and multiplexing

a problem, but likely to be solvable

a very complex problem

spot welded detector heat capacity 10-9 J/K

Page 12: Metallic Magnetic Calorimeter

12

MMC Arrays for X Ray Astronomy

speed

cross talk

efficiency

homogeneity

power dissipation

signal to noise

complexity

stability

coupling schemes

fabrication techniques

layout and wiring schemes

signal analysis

schemes

readout schemes

?

?MMC specific : non-contact readout

non-dissipative method

Page 13: Metallic Magnetic Calorimeter

13

Informal Collaboration on MMCs for Astronomy

S.R. BandlerT.R. StevensonF.S. PorterE. Figueroa-FelicianoC.K. StahleR. Kelley

S. Romaine R. Bruni

A. FleischmannM. LinckT. DaniyarovH. RotzingerA. BurgC. Enss

Berlin

SAO

G.M. SeidelY.H. KimY.H. HuangH. Eguchi

K.D. IrwinB.L. ZinkG.C. Hilton D.P. Pappas J.N. UllomM.E. Huber, Uni. Colorado

Heidelberg

Goddard

Boulder

J. BeyerD. DrungT. Schurig

H.-G. MeyerR. StolzS. Zarisarenko

Jena

Page 14: Metallic Magnetic Calorimeter

14

SAO

development of deposition techniques for Au:Er

integrate Au:Er sensors on SQUID chips

Page 15: Metallic Magnetic Calorimeter

15

NASA - GSFC

development of suitable absorbers Bi:Cudevelop means of fabricating MMC mushrooms investigating different transformer schemes development of position sensitive MMCs

MMC MMC

Page 16: Metallic Magnetic Calorimeter

16

NIST Boulder

development of integrated MMCsinvestigating new schemes for MMCs: self-inductance MMCsdevelop optimized SQUIDs explore new multiplexing techniquesdevelop fabrication methods

OptimizedSQUID

Co-evaporatedAu:Er Sensor

Film

Self-InductanceMeander

Transformer

Page 17: Metallic Magnetic Calorimeter

17

PTB Berlin

development of optimizied SQUIDs

high speed low-noise readout electronics

10-1 100 101 102 103 104 105 106 107

1

10

f / Hz

T = 4.2 K

SI

/ (p

A/

Hz)

Page 18: Metallic Magnetic Calorimeter

18

IPTH Jena

development of optimized SQUIDs

low noise readout electronics

optimized sensor design

Page 19: Metallic Magnetic Calorimeter

19

Brown/Heidelberg

investigate alternative sensor materialsstudy fundamental noisedevelop new sensor geometries develop deposition techniques for Au:Eroptimize single pixel performancestudy properties of small arrays

Page 20: Metallic Magnetic Calorimeter

20

MMCs can be a new exciting tool for X-ray astronomy

Let’s work to make it happen

Summary

SOHO 304 Å

Page 21: Metallic Magnetic Calorimeter

21

Problem: Slewrate too low

slew rate of SQUID too low (100 0/ms)

limits the usable signal size

feedback of Ketchen-SQUID to weak