metal gate electrode impurity engineering for control of ... roll off – electrical thickness...

35
Metal Gate Electrode Impurity Engineering for Control of Effective Work Function Jim Chambers, Hiro Niimi, Andrei Li-Fatou and Judy Shaw Texas Instruments, Incorporated, Advanced CMOS Chris Hinkle, Jim Burris, Husam Alshareef, Richard Chapman, Rohit Galatage and Eric Vogel University of Texas at Dallas, Department of Materials Science and Engineering Mikael Christensen, Clive Freeman and Erich Wimmer Materials Design, Incorporated February 23, 2010

Upload: doankien

Post on 28-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Metal Gate Electrode Impurity Engineering for Control of Effective Work Function

Jim Chambers, Hiro Niimi, Andrei Li-Fatou and Judy ShawTexas Instruments, Incorporated, Advanced CMOS

Chris Hinkle, Jim Burris, Husam Alshareef, Richard Chapman, Rohit Galatage and Eric VogelUniversity of Texas at Dallas, Department of Materials Science and Engineering

Mikael Christensen, Clive Freeman and Erich WimmerMaterials Design, Incorporated

February 23, 2010

2

Outline

• Introduction– High-k gate dielectrics– Metal gate electrodes– This work

• Oxygen impurities in CVD W– High work function– WF, EOT and mobility degradation

• Post-Metal Annealing for Metal Gate Impurity Control– Experimental– Oxygen incorporation into TiN– Effective work function of PMA oxygen annealed PVD TiN

• Ab initio simulation of TiN/HfO2 gate stacks– TiN/HfO2 interface formation– Effect of interface dipole on work function– Thermodynamics of vacancy filling– Model for metal gate work function engineering

• Summary

3

Today’s Performance versus Power Tradeoff

Standby Power (a.u.)

Rel

ativ

e P

erfo

rman

ce (a

.u.) Servers

PCCell

Station

Netbook

SmartPhone

MobileMultimedia

Medicalrf

CellPhone

~3 O

rder

s

~6 Orders

4

Approach to Reducing Standby Power Today

• CMOS power reduction strategies– Reduce supply voltage

P = CV2f– Reduce subthreshold leakage

Jss ~ exp(1/Vt)– Reduce gate induced drain

leakageGIDL ~ Defects

– Reduce gate leakageJg ~ exp(thickness)

High-k Gate DielectricsMetal Gate Electrodes

Today

5

Advanced CMOS Cross-Section

• SiON tunneling current limits scaling

Interconnect Level

Contact Level

Gate Level

Gate Dielectric Level

Polysilicon

c-Si

SiON

Cu

W Plug

Polysilicon

6

Motivation for High-k Gate DielectricsHigh-k gate dielectrics reduce gate leakage

SiO2

Si Substrate

GateElectrode

High-k

Si Substrate

GateElectrode

↑Dielectric constant↑Thickness

Challenge Replacing Mother Nature’s nearly perfect SiO2 dielectric

HK

SiOHKPhysThkEOT

εε

2=

1. SiO2

2. High-k

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.0 10.0 20.0 30.0Equivalent Oxide Thickness (Å)

Gat

e Le

akag

e (A

/cm

2 )

30% SiO240% SiO260% SiO270% SiO280% SiO2SiO2 Trend

↑ %HfO2

↑ %N or ↓ Thk

1

2

7

Motivation for Metal Gate ElectrodesMetal gates eliminate gate depletion and increase capacitanceMetal gates provide gate leakage scaling

Challenge Obtaining correct metal gate work functions

1.E-051.E-041.E-031.E-021.E-011.E+001.E+011.E+021.E+031.E+04

5 10 15 20 25 30Inversion Electrical Thickness (Å)

Gat

e Le

akag

e (A

/cm

2 )

↓Depletion

0

50

100

150

200

250

300

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Gate Voltage (V)

Gat

e C

apac

itanc

e (p

F)

Metal GateNpoly = 2E20 cm-3Npoly = 1E20 cm-3Npoly = 5E19 cm-3

EOT = 1.0nm

↓Depletion

High-k

Si Substrate

P+

PolysiliconElectrode

Depletion Layer

High-k

Si Substrate

P+

PolysiliconElectrode

Depletion Layer

High-k

Si Substrate

MetalGate

Electrode

High-k

Si Substrate

MetalGate

Electrode

1. Poly Gate

2. Metal Gate

1

2

12

SiO2 Trend Line

8

• What is the source of large variation in reported eWFs?Impurities in metal electrode / high-k gate stacks

ΔWF ~ 600meV

Summary reported by Mizubayashi, VLSI, 42, 2008

Motivation for This WorkLarge variation observed in reported work functions

9

Outline

• Introduction– High-k gate dielectrics– Metal gate electrodes– This work

• Oxygen impurities in CVD W– High work function– WF, EOT and mobility degradation

• Post-Metal Annealing for Metal Gate Impurity Control– Experimental– Oxygen incorporation into TiN– Effective work function of PMA oxygen annealed PVD TiN

• Ab initio simulation of TiN/HfO2 gate stacks– TiN/HfO2 interface formation– Effect of interface dipole on work function– Thermodynamics of vacancy filling– Model for metal gate work function engineering

• Summary

10

Dual Work Function Metal Gate Integration

• Dual work function metal gate– Required for optimized device performance

• High thermal budget, gate-first integration approach– Material system W-WSi2 pair– WSi2 formed from the PMOS metal by reaction– Enables dual metal integration without exposing dielectric to metal etch

• Target Work Function– NMOS = 4.15 eV Si conduction band edge– PMOS = 5.1 eV Si valence band edge

Si

Poly-Si

Gate DielectricW

Barrier

NiSi

Poly-Si

Gate DielectricWSi2

Barrier

NiSi

NiSi NiSiNiSi

PMOS NMOS

11

DWFMG Roadblock WF, EOT and Mobility Entitlement

• W electrodes Scaling the electrical thickness results in Vfb roll off– Electrical thickness degradation– Mobility degradation

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10EOT (nm)

Flat

Ban

d V

olta

ge (V

)

PMOS Vfb Roll Off

W WF = 4.97 eV

WSi2 WF = 4.37 eV

Vfb Roll Off

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2.0 -1.0 0.0 1.0 2.0Voltage (V)

Cap

acita

nce

(pF)

MG EOT DegradationTiN

W

0

100

200

300

400

500

600

Effective Field (MV/cm)

Mob

ility

(cm

2 /V-s

)

0.2 0.6 1.0 1.4

MG Mobility Degradation

TiN

W

Universal Mobility

W/HfSiON

12

• As deposited W contains high level of oxygen impurity

– W(CO)6 precursor• Clustered N2 anneal reduces oxygen impurity

SIMS – Impact of Clustering

1.E+18

1.E+19

1.E+20

1.E+21

1.E+22

1.E+23

0 200 400 600 800 1000 1200Depth (A)

[O] (

cm-3

)

Clustered No Anneal

Clustered + 800C N2

TaN W SiO2

TaN

W

SiO2

AnnealClustered

Oxygen Impurity Observed in CVD W

W(CO)6

CO

W

As Dep

13

Model Describing WF/EOT/Mobility Degradation Due to O-Impurities in W

High-k Directly on SiHigh-k Directly on SiHigh-k on Thick SiO2High-k on Thick SiO2

OO O

OO

OO

OO

VV

VV

VV

V

OOO

OO

OO

O OV

VV

VO

O

OO O O OX

OO O

OO

OO

OO

VV

VV

VV

V

TaN

W

HK

SiO2

c-Si

TaN

W

HK

SiO2

c-Si

Oxygen impurityin CVD W

As Deposited

Gate First Thermal

Oxygen vacancyin high-k

Oxygen migrationto interfaceOxygen fills

vacancy in HK

Thick SiO2Diffusion barrier

As Deposited

Gate First ThermalTaN

W

HKSiO2c-Si

TaN

W

HK

c-Si

Oxygen impurityin CVD W

Oxygen vacancyin high-k

OOOO

VV

V

VO

V

V O

Low oxygenat interface

Low vacancy filling in HK

Interfacial SiO2growth

14

Outline

• Introduction– High-k gate dielectrics– Metal gate electrodes– This work

• Oxygen impurities in CVD W– High work function– WF, EOT and mobility degradation

• Post-Metal Annealing for Metal Gate Impurity Control– Experimental– Oxygen incorporation into TiN– Effective work function of PMA oxygen annealed PVD TiN

• Ab initio simulation of TiN/HfO2 gate stacks– TiN/HfO2 interface formation– Effect of interface dipole on work function– Thermodynamics of vacancy filling– Model for metal gate work function engineering

• Summary

15

Ideal Replacement Metal Gate and High-k Device Structure

• Low thermal budget, gate-last integration approach• TiN as metal gate on both NMOS and PMOS• WF engineering on NMOS side to decrease work function• WF engineering on PMOS side to increase work function

Si

Metal Fill

HfSiONTiN

Metal Fill

HfSiONNiSi NiSiNiSi

PMOS NMOS

TiN

Challenge Can oxygen be used for WF engineering to increase the work function for PMOS?

16

Experimental• Goal

– Understand the role of oxygen impurities in HK/MG stacks in determining the effective work function

• Gate stacks– ALD HfO2 gate dielectric– PVD TiN gate electrode

• Annealing– RTP 10-100s– 450-1000 °C– P = 200 Torr– Ambient

• N2 with residual oxygen contamination (university tool)• 10% O2/N2

• Physical analysis– SIMS (Dynamic and Cation)– XRD

• Electrical analysis– MOSCAP– CV @ 100kHz NCSU CVC

17

Depth (nm)0 20 40 60 80 100

[O] (

#/cm

3 )

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23

1e+24400C, 10s 400C, 30s 450C, 20s 500C, 10s 500C, 30s

Depth (nm)0 5 10 15 20

[O] (

#/cm

3 )

1e+21

1e+22

1e+23400C, 10s 400C, 30s 450C, 20s 500C, 10s 500C, 30s

Controlled Oxygen Incorporation into TiN

• 400 °C No appreciable oxygen incorporation

• 450C-500 °C Controllable oxygen addition

O2400-500 °C10-30s

O2400-500 °C10-30s

↓ Thermal Budget

TiN Si

TargetMGthickness

50nm TiN

c-Si

O2 Anneal

SiO2

18

Method to Determine Interface Composition

• Si-capped sandwich TiN stacks Determine impact of anneal only• Oxygen-free in-situ TiN/a-Si interface• Interfaces defined at 50% rise/fall of Si signal

Depth (nm)0 20 40 60 80 100

Con

cent

ratio

n (#

/cm

3 )

1e+20

1e+21

1e+22

1e+23

a-Si a-Si

TiN

“Top”Interface

OSi

10nm TiN

a-Si

40nm a-Si

In-situ

10nm TiN

a-Si

40nm a-Si

In-situ

C-SIMS

19

Equivalent Oxide Thickness (nm)0 1 2 3

Flat

band

Vol

tage

(V)

-0.5

0.0

0.5

1.0

[O] = 2.1E20 cm-3

[O] = 6.0E21 cm-3

[O] = 1.3E22 cm-3

[O] = 2.1E20 cm-3

[O] = 6.0E21 cm-3

[O] = 1.3E22 cm-3sm φφ −

Wor

k Fu

nctio

n +5

50m

eV

↑[O]

Depth (nm)0 10 20 30 40 50

[O] (

cm-3

)

1020

1021

1022

1023

[O] = 2.1E20 cm-3

[O] = 6.0E21 cm-3

[O] = 1.3E22 cm-3

[O] = 2.1E20 cm-3

[O] = 6.0E21 cm-3

[O] = 1.3E22 cm-3

a-Si TiN a-Si

WF Increased by Engineered Oxygen Incorporation

Post-TiN anneal optimized for oxygen

incorporation at interface

High-k

100Å TiN

SiO2

n-Si

High-k

100Å TiN

SiO2

n-Si

4000Å Al

Anneal

10nm TiN

a-Si

Anneal

40nm a-Si

Work function increased by 550meV by engineered oxygen

incorporation

20

2Theta20 25 30 35 40 45 50

Inte

nsity

(a.u

.)

As Deposited450C, N2, 30s450C, 10% O2/N2, 30s500C, N2, 30s500C, 10% O2/N2, 30s

TiN<111>

TiN<200>

Anatase<101>

TiN Phase Maintained for 450 °C Anneals

• No phase change observed from as deposited to 450 °C anneals and 500 °C, N2

• TiN annealed at 500 °C, 10% O2/N2, 30s almost entirely converted to TiO2

As

Dep

osite

d

“N2”

, 450

C, 3

0s

10%

O2/N

245

0C, 3

0s

As

Dep

“N2”

500C

30s

10%

O2/N

250

0C, 3

0s

a-Si

TiNa-Si

21

Outline

• Introduction– High-k gate dielectrics– Metal gate electrodes– This work

• Oxygen impurities in CVD W– High work function– WF, EOT and mobility degradation

• Post-Metal Annealing for Metal Gate Impurity Control– Experimental– Oxygen incorporation into TiN– Effective work function of PMA oxygen annealed PVD TiN

• Ab initio simulation of TiN/HfO2 gate stacks– TiN/HfO2 interface formation– Effect of interface dipole on work function– Thermodynamics of vacancy filling– Model for metal gate work function engineering

• Summary

22

Computational Methodology

• First-principles calculations– VASP (Vienna Ab initio Simulation Package)– Density functional theory (DFT) with Perdew, Burke and Ernzerhof (PBE)

generalized gradient approximation (GGA)– All-electron frozen core approach with projector augmented wave (PAW) method– Structures

• Crystallographic literature• Simulated annealing• Energy minimization

– Properties• System energies• Partial densities of states• Electrostatic potentials

• Modeling infrastructure– MedeA for model and interface construction, calculation management and analysis

TiN

HfO2

23

Computational Determination of Most Stable HfO2 Surface Selection of (111)

• Starting with monoclinic HfO2

• Analyze low index planes

• Compare with iso-structural ZrO2

• (111) surface selected for creation of TiN/HfO2 interface

Calculated Surface Energies

24

Relaxed HfO2 (111) Surface

• Surface structure– Two types of oxygen with coordination of 3– Bridging oxygen– Hafnium with 4 and 5 fold coordination

• Bulk contains Hf coordinated with 7 oxygen atoms

Side View Perspective View

25

TiN/HfO2 Interface Structure after Simulated Annealing and Energy Minimization

• TiN rock salt (111) + HfO2 monoclinic (111)• Systematic search for lattice match• Match at lattice shift of 4° and 2.8% area• 288 atoms per supercell

Top View

Cross-Section

Abrupt TiN/HfO2interface

26

TiN/HfO2 Interface Structure Detail – Nitrogen Rearrangement

• Nitrogen atom moves from upper layer to coordinate with TiN and Hf• Overall, minimal restructuring changes occur at interface

27

Electrostatic Potential of TiN/HfO2 Stack

• Planar average exhibits ripples associated with each atomic layer• Macroscopic average taken as the moving average across several layers• Macroscopic average used as basis for comparison between test cases

28

Ab Initio Modeling Confirms Increase in Work Function with Presence of N-induced Dipole

• Dipole due to oxygen in TiN screened due to metal atoms• N-induced dipole at interface can not be screened by the dielectric• Additional simulations indicate > 400 meV shift for N replacing all O at interface

N replacing O at interface

O replacing Ninside TiN

~0 meV

HfO2 TiN HfO2 TiN

29

Ab Initio Modeling Confirms Decrease in Work Functionfor Oxygen Vacancy at Interface

• Oxygen vacancies decrease work function• Conversely, filling oxygen vacancies increases work function

3030

Thermodynamics of Vacancy Filling in TiN and HfO2

• Vacancy filling by oxygen highly favorable

½ N2

ΔE = -241 kJ/mol N ΔE = -425 kJ/mol O ΔE = -107 kJ/mol N ΔE = -650 kJ/mol O

TiN with N-vacancy HfO2 with O-vacancy

½ O2 ½ N2 ½ O2

31

TiN

HfO2c-Si

V V VV

NXX

Thermodynamics of N-induced Dipole Formation

• Not favorable for N from TiN to fill HfO2 O-vacancy• Combination of TiN oxygenation + O-vacancy filling by N is favorable

Oxygen vacancy

TiN

HfO2c-Si

ΔE = 134 kJ/mol N ΔE = -425 kJ/mol O ΔE = -291 kJ/mol N

V V VV

½ O2

N

V V VV

½ O2

V

Nitrogen vacancy

32

Depth (nm)0 10 20 30 40 50 60

Con

cent

ratio

n (#

/cm

3 )

1e+16

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23

1e+24

18O Anneal of TiN/HfO2 Stack Confirms O-Vacancies or O-Exchange

• 18O corresponding to natural abundance observed in as deposited sample

• 18O anneal results in oxygen incorporation in TiN and HfO2

– Increase in WF– Decrease in O-vacancies

Depth (nm)0 10 20 30 40 50 60

Con

cent

ratio

n (#

/cm

3 )

1e+15

1e+16

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23

1e+24

18OAnneal

c-Si

2nm HfO2

10nm TiN

TiN

Si

16O

18O

16O/486.6

TiN

Si

16O

18O

16O/486.6

As Deposited

18O Anneal

33

Model Describing Mechanism for WF Increase due to Low Temp O2 PMA

TiN

HfO2c-Si

V

V

½ O2

N

V

½ O2

TiN

HfO2c-Si

V

V V

N-vacancy in TiN

O-vacancy in HfO2

Low Temp O2 Anneal

TiON

HfO2c-Si

O

N

O

O

Oxygenated TiN

N at InterfaceFilled O-vacancy

As Deposited

During Anneal

Post-Anneal

½ O

3434

Ongoing Work Includes a Complete Gate Stack Model

Si SiO2 HfO2 TiN Al

1.7nm 1.5nm 1.4nm 1.2nm

35

Summary

• Ab initio simulation used to guide and confirm experiment

• Simulations indicate the effective work function can be engineered by controlling dipoles at the HK/MG interface and in the HK

• Oxygen incorporation by low temperature anneal of TiN/HK gate stacks resultings in a N-induced dipole that can increase the effective work function by 550 meV