metal additive manufacturing (am): an assessment of mechanical properties...

67
Metal Additive Manufacturing (AM): An assessment of mechanical properties of metal AM parts compared to castings Sheku Kamara Director, Rapid Prototyping Consortium

Upload: truongnguyet

Post on 15-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Metal Additive Manufacturing (AM): An assessment of

mechanical properties of metal AM parts compared to castings

Sheku Kamara Director, Rapid Prototyping Consortium

About MSOE

• Founded in 1903

• Located in downtown Milwaukee, WI

• About 2600 students

• Offering degrees in business, engineering & nursing

• Students spend about 600 hours of lab time

• 14:1 student to faculty ratio

• 96% job placement rate

Who is the Rapid Prototyping Consortium?

• Range of materials

• Form-fit-function…and end use

• Integrated plumbing, valves, and actuation

• Direct printed or Hybrid

3D-Printing combined with fluid power is a medical enabler…

AM Technologies – Concept Modelers

Stratasys Dimension

3D Systems ProJet™ 650 envisionTEC Perfactory® Solidscape 3ZPro

3D Systems ProJetTM 3510 Stratasys Objet 500

AM Technologies – Main Frame Machines

Stratasys Fortus 900mc 3D Systems ProXTM 950 3D Systems ProX™ 500

EOS M 400 Arcam Q20 Concept Laser X Line 1000R

What is Additive Manufacturing?

Courtesy: ReliabilityWeb.com

10 microns

400 microns

General Build Flow Process

idea

Build orientation,

Nesting if needed;

Support structure

generation, Slicing

stl file

generation

Solid Modeling

System

3D Printer/AM System

AM Machine

solid

modeling

AM Technologies

• Binder jetting

• Directed energy deposition

• Material extrusion

• Material jetting

• Powder bed fusion

• Sheet lamination

• Vat photopolymerization

AM Metal Categories

• Direct Metals

– Hybrid Systems

• Indirect Metals

Direct Metal • Directed Energy Deposition

– DMG Mori Seiki – Japan (Hybrid)*

– eFesto – US*

– Mazak – INTEGREX i-400AM (Hybrid)

– Optomec – US

– Sciaky – US

• Sheet Lamination

– Fabrisonic – US (Hybrid)*

Direct Metal

• Powder Bed Fusion – 3D Systems – US

– Arcam – Sweden*

– Concept Laser – Germany

– EOS GmBH – Germany*

– Matsuura – Japan (Hybrid)*

– ReaLizer – Germany

– Renishaw – UK

– SLM Solutions – Germany

– Trumpf – Germany

Indirect Metal

• Binder Jetting

– ExOne – US*

– Voxeljet – Germany*

• Powder Bed Fusion

– 3D Systems – US

• Vat Photopolymerization

– 3D Systems – US

DMG Mori Seiki Lasertec 65 3D

Photo courtesy of Mori Seiki

Directed Energy Deposition

Lasertec 65 3D Specs

• C-axis (turning range) – 360°

• Swivel range – -120° to +120°

• Build Volume (XYZ) – 29.0 x 25.6 x 22.0 in

• Traverse Speed (XYZ) – 26 in/s

• Laser Source – 600 W (fiber)

• Max. work piece weight – 1322 lbs

Materials

• Stainless steel • Tool steel • Aluminum alloys • Cobalt-chrome-molybdenum alloys • Bronze alloys • Noble metal alloys • Nickel-based alloys • Tungsten carbide • Stellite

eFesto 557

Photo courtesy of eFesto

eFesto 557 Specs

• Build Volume (XYZ) – 5 x 5 x 7 ft

• Traverse Speed (XYZ) – 26 in/s

• Layer thickness – ~0.012 in

• Laser Source – 3 KW (fiber)

• C-axis (turning range) – 360°

• Swivel range – -90° to +90°

Materials

• Stainless steel

• Inconel 625 & 718

• Titanium

SonicLayer 4000 & 7200

Ultrasonic Welding

SonicLayer 7200

• Build Volume (XYZ) – 6 x 6 x 3 ft.

• Build rate – 15 – 30 in3/h

• Horn frequency – 20KHz

• Finish Tolerance – +/- 0.0005 in

Arcam A2X & Q20

Photo courtesy of Arcam

Electron Beam Melting

Photo courtesy of Arcam

Arcam EBM System: CoCrMo

Photo courtesy of DePuy Synthes

Arcam Q20 Specs

• Scan Speed – up to 26,000 in/s

• Build Volume – ø13.78 x 15 in

• Max Beam Power – 3 KW

• Works only in a vacuum

• Needs material to be conductive

• Materials – Cobalt-Chrome

– Titanium Ti64Al4V

– Titanium Ti64Al4V ELI

EOSINT M 280 Laser Sintering

Photo courtesy of EOS GmbH

EOS M 280 Laser Sintering: 17-4 SS

Photo courtesy of DePuy Synthes

EOSINT M 280 Specs

• Scan Speed – 270 in/s

• Build Volume – 9.85 x 9.85 x 12.8 in

• 200 or 400 W fiber laser

• 20 – 40 micron layers

Materials

• Aluminum AlSi10Mg & AlSi10Mg/200°C

• EOS CobaltChrome MP1 & SP2

• EOS MaragingSteel MS1

• EOS NickelAlloy HX, IN625 & IN718

• EOS StainlessSteel 316L, GP1 & PH1

• EOS Titanium Ti64 & ELI

Matsuura LUMEX Avance-25

Photo courtesy of Matsuura

Plastic Injection Mold Case Study

Mold Cavity Mold Core

Conformal Cooling Channels

IN 2

IN 1

Mold core has 2 separate cooling channels.

HOLLOW

Cooling channels that conform to the surface of the molded part

reduce temperature variation within the mold and reduce molding

cycle times by increasing cooling efficiency.

Constraint Free Design!

LUMEX Avance-25 Specs

• Scan Speed – 270 in/s

• Build Volume – 9.85 x 9.85 x 12.8 in

• Laser Power – 400 W fiber

• Layer thickness – 0.002 in

• Part machined every 10 layers

Materials

• Matsuura Steel

• Matsuura Maraging

• Matsuura Titanium

• Matsuura Titanium 6Al4V

• Matsuura Stainless 630

• Matsuura Stainless 316L

Indirect Metal

M-Print

Photo courtesy of ExOne

ExOne M-Print™ Specs

• Build Volume – 31 x 19 x 15 in

• Layer thickness – 0.006 in

• XY Resolution – 0.003 in

• Materials

– 420SS

– 316SS

ExOne – S-Max Furan

Binder Jetting

ExOne S-Max Furan

• Build Speed: up to 3.0 ft3/h

• Build Volume: 70.90 x 39.37 x 27.56 in

• Layer thickness: 0.011 – 0.0197 in

• XY Resolution: 0.004 in/in

• Materials: Furan Sand

Voxeljet VX4000 Specs

Photo courtesy of Voxeljet

Voxeljet VX4000 Specs

• Build Speed – up to 5.83 ft3/h

• Print Resolution (xy) – 600 dpi

• Build Volume – 157 x 78 x 39 in

• Layer thickness – 0.0047 – 0.011 in

• Materials

– Silica Sand

Materials

Stainless Steel 15-5 PH

0

50

100

150

200

250

Casting Casting (H900) EOS M280 EOS M280 (H900) SLM Solutions

UTS A (ksi)

UTS A (ksi)

Stainless Steel 15-5 PH

0

2

4

6

8

10

12

14

16

18

Casting Casting (H900) EOS M280 EOS M280 (H900) SLM Solutions

Elongation %

Elongation %

Stainless Steel 15-5 PH

0

5

10

15

20

25

30

35

40

45

50

Casting Casting (H900) EOS M280 EOS M280 (H900) SLM Solutions

Hardness (HRC)

Hardness (HRC)

Ti64

0

50

100

150

200

250

Casting Casting (treated)

MSOE - EBM

MSOE - EBM

(treated)

SLM SLM (treated)

MSOE - SLM

MSOE - SLM

(treated)

EBM EOS XY EOS Z EOS XY (treated)

EOS Z (treated)

UTS A (ksi)

UTS A (ksi)

Ti64

0

2

4

6

8

10

12

14

16

Casting Casting (treated)

MSOE - EBM

MSOE - EBM

(treated)

SLM SLM (treated)

MSOE - SLM

MSOE - SLM

(treated)

EBM EOS XY EOS Z EOS XY (treated)

EOS Z (treated)

Elongation %

Elongation %

Ti64

0

10

20

30

40

50

60

Casting Casting (treated)

MSOE - EBM MSOE - EBM (treated)

SLM SLM (treated)

MSOE - SLM MSOE - SLM (treated)

EBM EOS

Hardness HRC

Hardness HRC

Inconel 625

120

125

130

135

140

145

150

Casting EOS M280 SLM Solutions

UTS (ksi)

UTS (ksi)

Inconel 625

0

10

20

30

40

50

60

Casting EOS M280 SLM Solutions

Elongation

Elongation

• Consolidation of Established OEMs • Expiration of Patents

– Explosion of low end machine options (Polymers) – Increased industry exposure – Significant increase in users and applications

• Large Platform Equipment Development – Improved feedback systems – Predictable simulation software

• Smaller User Focused Systems – Custom materials and systems – Lower maintenance costs

AM Economic Trends

• No Tooling Investment Required

• Complexity is Free

• Mass Customizations Applications

• Complete Freedom of Design

AM SWOT Analysis – Strengths

• Significant Part Variation (accuracy/repeatability issues)

• Expensive Material Costs

• Limited Material Properties

• Limited Surface Finish Capability

AM SWOT Analysis – Weakness

• Improved Materials

• Improved Machines

• Inexpensive Low End Machines – Patent expiration

• Increased Content Availability (CAD and scanning)

AM SWOT Analysis – Opportunities

• Continued Advance of CNC Equipment

• Inexpensive Robotic Routers

• Automated CAM Software

• Improved Virtual Reality Systems

AM SWOT Analysis – Threats

Case Studies

Printing functional Valves

Vat Photopolymerization

CAD Design

Seals inserted in SLA machine during build

Flow Testing

Angle Valve Design

Q U E S T I O N S

• Sheku Kamara – Director, Rapid Prototyping Consortium

– Milwaukee School of Engineering

– 1025 N Broadway

– Milwaukee, WI 53202

– Office: (414) 277-7384

– Mobile: (414) 333-9421

[email protected]